
Interference of one dimensional condensates
Experiments: Schmiedmayer et al., Nature Physics (2005,2006)

Transverse imaging

long. imaging

trans.
imaging

Longitudial
imaging



Interference between Luttinger liquids

Experiments: Hofferberth,
Schumm, Schmiedmayer
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Distribution function of interference fringe contrast
Experiments: Hofferberth et al., arXiv0710.1575

Theory: Imambekov et al. , cond-mat/0612011

Comparison of theory and experiments: no free parameters
Higher order correlation functions can be obtained

Quantum fluctuations dominate:

asymetric Gumbel distribution

(low temp. T or short length L)

Thermal fluctuations dominate:

broad Poissonian distribution

(high temp. T or long length L)

Intermediate regime:

double peak structure



L

Calculating distribution function 

of interference fringe amplitudes

Method II: mapping to 
inhomogeneous sine-Gordon model

Can be used for 1d systems with arbitrary 
boundary conditions and at finite temperature

Can be used to study interference of 
2d condensates

Imambekov, Gritsev, Demler, cond-mat/0612011



Inhomogeneous Sine-Gordon models

ω

Ω

Bulk Sine-Gordon model Boundary Sine-Gordon model

Limiting cases

ω=Ω ω = δ(x−x0)



Inhomogeneous Sine-Gordon models

Expand in powers of g

Coulomb gas representation



Diagonalize Coulomb gas interaction
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This is the same probability distribution function that 
we need for describing interference experiments



From SG models to fluctuating surfaces

Random surfaces interpretation:
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This method does not rely on the existence of the exact solution



Distribution function of interference fringe contrast
Experiments: Hofferberth et al., arXiv0710.1575

Theory: Imambekov et al. , cond-mat/0612011

Comparison of theory and experiments: no free parameters
Higher order correlation functions can be obtained

Quantum fluctuations dominate:

asymetric Gumbel distribution

(low temp. T or short length L)

Thermal fluctuations dominate:

broad Poissonian distribution

(high temp. T or long length L)

Intermediate regime:

double peak structure



Interference of two dimensional condensates

Ly

Lx

Lx

Experiments:   Hadzibabic et al. Nature (2006)

Probe beam parallel to the plane of the condensates

Gati et al., PRL (2006)



Interference of two dimensional condensates.
Quasi long range order and the BKT transition

Ly

Lx

Below BKT transitionAbove BKT transition
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z

Time of

flight

low temperature higher temperature

Typical interference patterns

Experiments with 2D Bose gas
Hadzibabic, Dalibard et al., Nature 441:1118 (2006)



integration

over x axis

Dx

z

z

integration

over x axis
z
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integration distance Dx

(pixels)

Contrast after

integration
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Experiments with 2D Bose gas
Hadzibabic et al., Nature 441:1118 (2006) 



fit by:

integration distance Dx

In
te

g
ra

te
d

 c
o
n

tr
as

t 0.4

0.2

0
0 10 20 30

low T
middle T

high T

if g1(r) decays exponentially 

with : 

if g1(r) decays algebraically or 

exponentially with a large : 

Exponent α

central contrast

0.5

0 0.1 0.2 0.3

0.4

0.3
high T low T

[ ]
α2

2

1

2 1
~),0(

1
~ 








∫

x

D

x D
dxxg

D
C

x

“Sudden” jump!?

Experiments with 2D Bose gas
Hadzibabic et al., Nature 441:1118 (2006) 



Experiments with 2D Bose gas. Proliferation of  

thermal vortices       Hadzibabic et al., Nature 441:1118 (2006) 

The onset of proliferation 

coincides with α shifting to 0.5!

Fraction of images showing 

at least one dislocation
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Probing spin systems using 

distribution function of magnetization



Probing spin systems using distribution function of magnetization

Magnetization in a finite system

Average magnetization

Higher moments of           contain information about higher order 
correlation functions 

Cherng, Demler, New J. Phys. 9:7 (2007)



Distribution Functions
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Using noise to detect spin liquids

Spin liquids have no broken symmetries
No sharp Bragg peaks

Algebraic spin liquids have long range 
spin correlations

Noise in magnetization exceeds shot noise

No static magnetization

A



Summary of part I

Experiments with ultracold atoms provide a new 

perspective on the physics of strongly correlated 

many-body systems. Quantum noise is a powerful 

tool for analyzing many body states of ultracold atoms



Outline

Part I

Detection and characterization of many body states

Part II

New challenges in quantum many-body theory: 

non-equilibrium coherent dynamics



Landau-Zener tunneling

q(t)

E1

E2
ω12 – Rabi frequency at crossing point

τd – crossing time

Hysteresis loops of Fe8 molecular clusters

Wernsdorfer et al., cond-mat/9912123

Landau, Physics of the Soviet Union 3:46 (1932)

Zener, Poc. Royal Soc. A 137:692 (1932)

Probability of nonadiabatic transition



Single two-level atom and a single mode field

Jaynes and Cummings,  

Proc. IEEE 51:89 (1963)

Observation of collapse and revival in a one atom maser

Rempe, Walther, Klein, 

PRL 58:353 (87)

See also solid state realizations 

by R. Shoelkopf, S. Girvin



Superconductor to Insulator 

transition in thin films

Marcovic et al., PRL 81:5217 (1998)

Bi films

Superconducting films

of different thickness.
Transition can also be tuned
with a magnetic field

d



Yazdani and Kapitulnik

Phys.Rev.Lett. 74:3037 (1995)

Scaling near the superconductor to insulator 
transition

Mason and Kapitulnik

Phys. Rev. Lett. 82:5341 (1999)

Yes at “higher” temperatures No at lower” temperatures



New many-body state

Kapitulnik, Mason, Kivelson, Chakravarty, 

PRB 63:125322 (2001)

Refael, Demler, Oreg, Fisher

PRB 75:14522 (2007)

Extended crossover

Mechanism of scaling breakdown



Dynamics of many-body quantum systems

Heavy Ion collisions at RHIC

Signatures of quark-gluon plasma?



Dynamics of many-body quantum systems

Big Bang and Inflation

Fluctuations of the 
cosmic microwave 

background radiation.

Manifestation of 
quantum fluctuations

during inflation 



Goal:

Use ultracold atoms to create many-body 
systems with interesting collective properties

Keep them simple enough to be 
able to control and understand them



Non-equilibrium dynamics of

many-body systems of ultracold

atoms

1. Dynamical instability of strongly interacting 
bosons in optical lattices

2. Adiabaticity of creating many-body fermionic

states in optical lattices
3. Dynamical instability of the spiral state of F=1 

ferromagnetic condensate
4. Dynamics of coherently split condensates

5. Many-body decoherence and Ramsey interferometry
6. Quantum spin dynamics of cold atoms in an optical lattice



Dynamical Instability of strongly interacting 
bosons in optical lattices

References:

Altman, Polkovnikov,  Demler, Halperin, Lukin,
J. Superconductivity 17:577 (2004)
Phys. Rev. Lett. 95:20402 (2005)
Phys. Rev. A 71:63613 (2005)



Atoms in optical lattices

Theory:  Zoller et al. PRL (1998)

Experiment:  Kasevich et al., Science (2001);

Greiner et al., Nature (2001);

Phillips et al., J. Physics B (2002)       

Esslinger et al., PRL (2004);

Ketterle et al., PRL (2006)



Equilibrium superfluid to insulator transition

1−n

t/U

SuperfluidMott 
insulator

Theory: Fisher et al. PRB (89), Jaksch et al. PRL (98)
Experiment: Greiner et al. Nature (01)

U

µ



Moving condensate in an optical lattice. Dynamical instability

v

Theory: Niu et al. PRA (01), Smerzi et al. PRL (02)
Experiment: Fallani et al. PRL (04)

Related experiments by

Eiermann et al, PRL (03)



Question: Question: How to connectHow to connect

the the dynamical instabilitydynamical instability (irreversible, classical)(irreversible, classical)

to the to the superfluid to Mott transitionsuperfluid to Mott transition (equilibrium, quantum)(equilibrium, quantum)

U/t

p

SF MI

???
Possible experimental 

sequence:

p

Unstable

???

U/J

π/π/π/π/2222

Stable

SF MI



Linear stability analysis: States with p>p/2 are unstable

Classical limit of the Hubbard model.                           Discreet GP equation

Current carrying states

r

Dynamical instability

Amplification of
density fluctuations

unstableunstable

Wu, Niu, New J. Phys. 5:104 (2003)



GP regime                       . Maximum of the current for              .

When we include quantum fluctuations, the amplitude of the 
order parameter is suppressed

Dynamical instability for integer filling 

decreases with increasing phase gradient

Order parameter for a current carrying state

Current



SF MI

p

U/J

π/π/π/π/2222

Dynamical instability for integer filling 
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Condensate momentum p/π

Dynamical instability occurs for

Vicinity of the SF-I quantum phase transition. 
Classical description applies for 



Dynamical instability. Gutzwiller approximation 
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Wavefunction

Time evolution

Phase diagram. Integer filling

We look for stability against small fluctuations

Altman et al., PRL 95:20402 (2005)



The first instability 

develops near the edges, 

where N=1
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Gutzwiller ansatz simulations (2D)

Optical lattice and parabolic trap. 

Gutzwiller approximation





Beyond semiclassical equations. Current decay by tunneling
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Current carrying states are metastable. 
They can decay by thermal or quantum tunneling 

Thermal activation Quantum tunneling
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Weakly interacting systems. Quantum rotor model.
Decay of current by quantum tunneling

For the link on which the QPS takes place

d=1. Phase slip on one link + response of the chain.
Phases on other links can be treated in a harmonic approximation



For d>1 we have to include transverse directions. 
Need to excite many chains to create a phase slip

The transverse size of the phase slip diverges near a phase 

slip. We can use continuum approximation to treat 

transverse directions

|| cos ,J J p

J J⊥

→

=

Longitudinal stiffness 

is much smaller than 

the transverse.



SF MI

p

U/J

π/π/π/π/2222

Weakly interacting systems. Gross-Pitaevskii regime.
Decay of current by quantum tunneling

Quantum phase slips are 
strongly suppressed 

in the GP regime

Fallani et al., PRL (04)



This state becomes unstable at                      corresponding to the 

maximum of the current:

1
3

c
p

ξ
=

( )2 2 21 .I p p pψ ξ∝ = −

Close to a SF-Mott transition 
we can use an effective 
relativistivc GL theory 
(Altman, Auerbach, 2004)

Strongly interacting regime. Vicinity of the SF-Mott transition

SF M
I

p

U/J

π/π/π/π/2222

Metastable current carrying state:
2 21 ip x

p e
ξψ ξ= −



Strong broadening of the phase transition in d=1 and d=2

is discontinuous at the transition. Phase slips are not important.
Sharp phase transition

- correlation length

SF MI

p

U/J

π/π/π/π/2222

Strongly interacting regime. Vicinity of the SF-Mott transition
Decay of current by quantum tunneling

Action of a quantum phase slip in d=1,2,3



Decay of current by quantum tunneling
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Decay of current by thermal activation
p
h
a
s
e

j

Escape from metastable state by thermal activation 
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Thermal
phase slip

∆E



Thermally activated current decay. Weakly interacting regime

∆E

Activation energy in d=1,2,3

Thermal fluctuations lead to rapid decay of currents

Crossover from thermal 
to quantum tunneling

Thermal
phase slip



Phys. Rev. Lett. (2004)

Decay of current by thermal fluctuations

Also experiments by Brian DeMarco et al., arXiv 0708:3074



Decay of current by thermal fluctuations

Experiments: Brian DeMarco et al., arXiv 0708:3074



Adiabaticity of creating many-body 

fermionic states in optical lattices



Formation of molecules with 
increasing interaction strength

Strohmaier et al., arXiv:0707.314

Saturation in the number of
molecules created is related 

to the finite rate of changing

interaction strength U(t)



Formation of molecules with 
increasing interaction strength

U

As U is increased, the excess energy of two unpaired atoms should 
be converted to the kinetic energy of bound pairs.

The kinetic energy of a single molecule is set by               .
When U>>t many particles will have to be involved in the relaxation process.

During adiabatic evolution with increasing attractive U, all single atoms
should be converted to pairs. Entropy is put into the kinetic energy of 
bound pairs.



Hubbard model with repulsion:

dynamics of breaking up pairs

Energy of on-site repulsion Energy of spin domain walls



U

E

Hubbard model with repulsion:

dynamics of breaking up pairs

Energy of on-site repulsion U
Energy of spin domain wall 

Stringent requirements on the rate of change of the interaction 
strength to maintain adiabaticity at the level crossing



Hubbard model with repulsion:

dynamics of breaking up pairs



Hubbard model with repulsion:

dynamics of breaking up pairs

Dynamics of recombination: a moving pair pulls out a spin domain wall

High order perturbation theory



Hubbard model with repulsion:

dynamics of breaking up pairs

N itself is a function of U/t :



U

E

Hubbard model with repulsion:

dynamics of breaking up pairs

Probability of nonadiabatic transition

ω12 – Rabi frequency at crossing point

τd – crossing time 

Extra geometrical factor to account for different configurations of domain walls



Formation of molecules with 
increasing interaction strength

U

Value of U/t for which one finds saturation in the production of molecules

V0/ER=10, 7.5, 5.0, 2.5

Rey, Sensarma, Demler


