
Part II

New challenges in quantum many-body theory: 
non-equilibrium coherent dynamics



Non-equilibrium dynamics of

many-body systems of ultracold

atoms

1. Dynamical instability of strongly interacting 
bosons in optical lattices

2. Adiabaticity of creating many-body fermionic

states in optical lattices
3. Dynamical instability of the spiral state of F=1 

ferromagnetic condensate
4. Dynamics of coherently split condensates

5. Many-body decoherence and Ramsey interferometry
6. Quantum spin dynamics of cold atoms in an optical lattice



Dynamical Instability of the Spiral 

State of F=1 Ferromagnetic 

Condensate

Ref: 
R. Cherng et al, arXiv:0710.2499



Ferromagnetic spin textures created by D. Stamper-Kurn et al.





F=1 condensates

Spinor order parameter

Vector representation

Ferromagnetic State

Polar (nematic) state

Ferromagnetic state realized for gs > 0



Spiral Ferromagnetic State of F=1 condensate

Gross-Pitaevski equation

Mean-field spiral state

The nature of the mean-field state depends on the system preparation.

Sudden twisting

Instabillities can be obtained from the analysis of collective modes

Adiabatic limit: θ determined from the 

condition of the stationary state.



Collective modes



Instabilities of the spiral state

Adiabatic limit Sudden limit



Mean-field energy

Inflection point suggests
instability

Uniform spiral Non-uniform spiral

Negative value of

shows that  the system can

lower its energy by making

a non-uniform spiral winding



Instabilities of the spiral state

Adiabatic limit Sudden limit

Beyond mean-field: thermal and quantum phase slips?



Dynamics of coherently split 

condensates. 

Interference experiments

Refs:
Bistrizer, Altman, PNAS 104:9955 (2007)
Burkov, Lukin, Demler, Phys. Rev. Lett. 98:200404 (2007)



Interference of one dimensional condensates
Experiments: Schmiedmayer et al., Nature Physics (2005,2006)

Transverse imaging

long. imaging

trans.
imaging

Longitudial
imaging



Studying dynamics using interference experiments

Prepare a system by 

splitting one condensate

Take to the regime of 

zero tunneling
Measure time evolution

of fringe amplitudes



Finite temperature phase dynamics

Temperature leads to phase fluctuations 
within individual condensates

Interference experiments measure only the relative phase



Relative phase dynamics

Conjugate variables

Hamiltonian can be diagonalized
in momentum space

A collection of harmonic oscillators
with

Need to solve dynamics of harmonic 
oscillators at finite T

Coherence

Initial state φq = 0



Relative phase dynamics

High energy modes,                        , quantum dynamics

Combining all modes

Quantum dynamics

Classical dynamics

For studying dynamics it is important 
to know the initial width of the phase

Low energy modes,                        , classical dynamics



Relative phase dynamics

Naive estimate



Adiabaticity breaks down when

Relative phase dynamics

Separating condensates at finite rateJ

Instantaneous Josephson frequency

Adiabatic regime

Instantaneous separation regime

Charge uncertainty at this moment

Squeezing factor



Relative phase dynamics

Quantum regime

1D systems

2D systems

Classical regime

2D systems

Different from the earlier theoretical work based on a single 

mode approximation, e.g. Gardiner and Zoller, Leggett

1D systems

Bistrizer, Altman, PNAS (2007)

Burkov, Lukin, Demler, PRL  (2007)



1d BEC: Decay of coherence
Experiments: Hofferberth, Schumm, Schmiedmayer, Nature (2007)

double logarithmic plot of the 
coherence factor

slopes: 0.64 ± 0.08

0.67 ± 0.1

0.64 ± 0.06

get t0 from fit with fixed slope 2/3 
and calculate T from 

T5 = 110 ± 21 nK

T10 = 130 ± 25 nK

T15 = 170 ± 22 nK



Dynamics of partially split condensates. 

From the Bethe ansatz solution of the 

quantum Sine-Gordon model to 

quantum dynamics

Refs:

Gritsev, Demler, Lukin, Polkovnikov, Phys. Rev. Lett. 99:200404 (2007)
Gritsev, Polkovnikov, Demler, Phys. Rev. B 75:174511 (2007) 



Coupled 1d systems

J

Interactions lead to phase fluctuations within individual condensates

Tunneling favors aligning of the two phases

Interference experiments measure only the relative phase



Coupled 1d systems

J

Relative phase Particle number 
imbalance

Conjugate variables

Small K corresponds to strong quantum fluctuations



Quantum Sine-Gordon model

Quantum Sine-Gordon model is exactly integrable

Excitations of the quantum Sine-Gordon model 

Hamiltonian

Imaginary time action

soliton antisoliton many types of breathers



Dynamics of quantum sine-Gordon model

Hamiltonian formalism

Quantum action in space-time

Initial state

Initial state provides a boundary condition at t=0

Solve as a boundary sine-Gordon model



Boundary sine-Gordon model

Limit                    enforces boundary condition 

Exact solution due to Ghoshal and Zamolodchikov (93)

Applications to quantum impurity problem: Fendley, Saleur, Zamolodchikov, Lukyanov,…

Sine-Gordon

+ boundary condition in space

quantum impurity problem

Sine-Gordon

+ boundary condition in time

two coupled 1d BEC

Boundary
Sine-Gordon
Model

space and time

enter equivalently



Initial state is a generalized squeezed state

creates solitons, breathers with rapidity θ

creates even breathers only

Matrix                   and          are known from the exact solution

of the boundary sine-Gordon model 

Time evolution

Boundary sine-Gordon model

Coherence

Matrix elements can be computed using form factor approach

Smirnov (1992), Lukyanov (1997)



Quantum Josephson Junction

Initial state

Limit of quantum sine-Gordon 

model when spatial gradients

are forbidden

Time evolution

Eigenstates of the quantum Jos. junction Hamiltonian are given by Mathieu’s functions

Coherence



E2-E0 E4-E0

ω

E6-E0

power

spectrum

Dynamics of quantum Josephson Junction

Main peak

Smaller peaks

“Higher harmonics”

Power spectrum



Dynamics of quantum sine-Gordon model

Coherence

Main peak

“Higher harmonics”

Smaller peaks

Sharp peaks



Dynamics of quantum sine-Gordon model

main peak

higher harmonics

smaller peaks

sharp peaks



Many-body decoherence and 

Ramsey interferometry

Ref:

Widera, Trotzky, Cheinet, Fölling, Gerbier, Bloch, Gritsev, Lukin, Demler,

arXiv:0709.2094



Working with N atoms improves 
the precision by         .

Need spin squeezed states to

improve frequency spectroscopy

Ramsey interference

t0

1



Squeezed spin states for spectroscopy

Generation of spin squeezing using interactions.
Two component BEC. Single mode approximation

Motivation: improved spectroscopy, e.g. Wineland et. al. PRA 50:67 (1994)

Kitagawa, Ueda, PRA 47:5138 (1993)

In the single mode approximation we can neglect kinetic energy terms



Interaction induced collapse of Ramsey fringes

Experiments in 1d tubes:
A. Widera, I. Bloch et al.

time

Ramsey fringe visibility

- volume of the system



Spin echo. Time reversal experiments

Single mode approximation

Predicts perfect spin echo

The Hamiltonian can be reversed by changing a12



Spin echo. Time reversal experiments

No revival?

Expts: A. Widera, I. Bloch et al.

Experiments done in array of tubes. 

Strong fluctuations in 1d systems.

Single mode approximation does not apply.

Need to analyze the full model



Interaction induced collapse of Ramsey fringes.

Multimode analysis

Luttinger model

Changing the sign of the interaction reverses the interaction part 

of the Hamiltonian but not the kinetic energy

Time dependent harmonic oscillators

can be analyzed exactly

Low energy effective theory: Luttinger liquid approach



Time-dependent harmonic oscillator

Explicit quantum mechanical wavefunction can be found

From the solution of classical problem

We solve this problem for each 

momentum component

See e.g. Lewis, Riesengeld (1969)

Malkin, Man’ko (1970)



Interaction induced collapse of Ramsey fringes

in one dimensional systems

Fundamental limit on Ramsey interferometry

Only q=0 mode shows complete spin echo

Finite q modes continue decay

The net visibility is a result of competition 

between q=0 and other modes



Quantum spin dynamics of cold 

atoms in an optical lattice



t

t

Two component Bose mixture in optical lattice
Example:           .   Mandel et al., Nature 425:937 (2003)

Two component Bose Hubbard model



Quantum magnetism of bosons in optical lattices

Duan, Demler, Lukin, PRL 91:94514 (2003)

• Ferromagnetic

• Antiferromagnetic



Exchange Interactions in Solids

antibonding

bonding

Kinetic energy dominates: antiferromagnetic state

Coulomb energy dominates: ferromagnetic state



Two component Bose mixture in optical lattice.

Mean field theory + Quantum fluctuations

2 nd
order line

Hysteresis

1st order

Altman et al., NJP 5:113 (2003)



Superexchange interaction 

in experiments with double wells

Refs: 

Theory: A.M. Rey et al., arXiv:0704.1413

Experiment: S. Trotzky et al., arXiv:0712.1853



J

J

Use magnetic field gradient to prepare a state 

Observe oscillations between              and              states

Observation of superexchange in a double well potential
Theory: A.M. Rey et al., arXiv:0704.1413



Preparation and detection of Mott states
of atoms in a double well potential



Comparison to the Hubbard model
Experiments: I. Bloch et al.



Basic Hubbard model includes
only local interaction

Extended Hubbard model
takes into account non-local
interaction

Beyond the basic Hubbard model



Beyond the basic Hubbard model



Connecting double wells …

J’



Spin Dynamics of an isotropic 1d Heisenberg model

Initial state: product of triplets



Conclusions

Experiments with ultracold atoms provide a new 

perspective on the physics of strongly correlated 

many-body systems. This includes analysis of 

high order correlation functions, non-equilibrium 

dynamics, and many more


