Lattice modulation experiments with fermions in optical lattices and more

Nonequilibrium dynamics of Hubbard model

Ehud Altman
David Pekker
Rajdeep Sensarma
Eugene Demler

Weizmann Institute
Harvard University
Harvard University
Harvard University
Fermionic Hubbard model

From high temperature superconductors to ultracold atoms

\[
\mathcal{H} = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} - \mu \sum_i n_i
\]

\(YBa_2Cu_3O_7\)

Antiferromagnetic and superconducting \(T_c\) of the order of 100 K

Antiferromagnetism and pairing at sub-micro Kelvin temperatures

Atoms in optical lattice
Fermions in optical lattice

Hubbard model plus parabolic potential

\[\mathcal{H} = -t \sum_{\langle ij \rangle \sigma} c_i^{\dagger} c_j \sigma + U \sum_i n_{i\uparrow} n_{i\downarrow} + \sum_i V(r_i) \]

\[V(r_i) = \frac{1}{2} m_0 \omega_0^2 r_i^2 \]

Probing many-body states

Electrons in solids

- Thermodynamic probes i.e. specific heat
- X-Ray and neutron scattering
- ARPES
- Optical conductivity
- STM

Fermions in optical lattice

- System size, number of doublons as a function of entropy, U/t, ω_0
- Bragg spectroscopy, TOF noise correlations
- ARPES
- Optical conductivity
- STM
Outline

• Introduction. Recent experiments with fermions in optical lattice. Signatures of Mott state
• Lattice modulation experiments in the Mott state. Linear response theory
• Comparison to experiments
• Lifetime of repulsively bound pairs
• Lattice modulation experiments with d-wave superfluids
Mott state of fermions in optical lattice
Signatures of incompressible Mott state

Suppression in the number of double occupancies

Esslinger et al. arXiv:0804.4009

![Diagram showing energy vs position with double occupancies and atom number graphs.](image)
Signatures of incompressible Mott state

Response to external potential

Radius of the cloud as a function of the confining potential

Comparison with DMFT+LDA models suggests that temperature is above the Neel transition

Next step: observation of antiferromagnetic order

However superexchange interactions have already been observed
Radius of the cloud: high temperature expansion

Starting point: zero tunneling.
Expand in t/T.
Interaction can be arbitrary

Minimal cloud size for attractive interactions

- Observed experimentally by the Mainz group
- Competition of interaction energy and entropy
- Theory: first two terms in t/T expansion
Lattice modulation experiments with fermions in optical lattice. Mott state

Related theory work: Kollath et al., PRA 74:416049R) (2006)
Huber, Ruegg, arXiv:0808:2350
Lattice modulation experiments
Probing dynamics of the Hubbard model

Modulate lattice potential V_0

Measure number of doubly occupied sites

$t \sim \exp\left(-\sqrt{V_0/E_R}\right)$

$U \sim \left(\frac{V_0}{E_R}\right)^{3/4}$

Main effect of shaking: modulation of tunneling

$\mathcal{H}_{\text{pert}}(\tau) = \lambda t \cos \omega \tau \sum_{\langle ij \rangle, \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}$

Doubly occupied sites created when frequency ω matches Hubbard U
Lattice modulation experiments
Probing dynamics of the Hubbard model

R. Joerdens et al., arXiv:0804.4009
Mott state

Regime of strong interactions $U \gg t.$

Mott gap for the charge forms at $T \sim U$

Antiferromagnetic ordering at $T_N \sim J = \frac{4t^2}{U}$

“High” temperature regime $T_N \ll T \ll U$

All spin configurations are equally likely. Can neglect spin dynamics.

“Low” temperature regime $T \leq T_N$

Spins are antiferromagnetically ordered or have strong correlations.
Schwinger bosons and Slave Fermions

\[
\begin{align*}
\uparrow & \quad \downarrow & \quad \uparrow \downarrow & \quad \bullet \\
\quad a_{\uparrow}^\dagger & \quad a_{\downarrow}^\dagger & \quad d_{\uparrow}^\dagger & \quad h_{\uparrow}^\dagger
\end{align*}
\]

Bosons

Fermions

\[
c_{i\sigma}^\dagger = a_{i\sigma}^\dagger h_i + \sigma a_{i-\sigma} d_i^\dagger
\]

Constraint:

\[
a_{i\sigma} a_{i\sigma} + d_i^\dagger d_i + h_i^\dagger h_i = 1
\]

Singlet Creation

\[
A_{ij}^\dagger = a_{i\uparrow}^\dagger a_{j\downarrow}^\dagger - a_{i\downarrow}^\dagger a_{j\uparrow}^\dagger
\]

Boson Hopping

\[
F_{ij}^\dagger = a_{i\uparrow}^\dagger a_{j\uparrow} + a_{i\downarrow}^\dagger a_{j\downarrow}
\]
Schwinger bosons and slave fermions

Fermion hopping

\[c_{i\uparrow}^\dagger c_{j\uparrow} + c_{i\downarrow}^\dagger c_{j\downarrow} + \text{h.c.} = (d_{i\uparrow}^\dagger d_{j\uparrow} - h_{i\uparrow}^\dagger h_{j\uparrow}) F_{ij} + d_{i\downarrow}^\dagger h_{j\downarrow}^\dagger A_{ij} + \text{h.c.} \]

Propagation of holes and doublons is coupled to spin excitations. Neglect spontaneous doublon production and relaxation.

Doublon production due to lattice modulation perturbation

\[\mathcal{H}(\tau) = \lambda t \sin \omega \tau \sum_{\langle ij \rangle} \left(d_{i\uparrow}^\dagger h_{j\downarrow}^\dagger A_{ij} + \text{h.c.} \right) \]

Second order perturbation theory. Number of doublons

\[N_d(\tau) = t^2 \lambda^2 \int_0^\tau dt' \int_0^\tau dt'' \sin[\omega t'] \sin[\omega t''] \sum_{\langle ij \rangle \langle lm \rangle} \langle A_{ij}^\dagger(t') d_i(t') h_j(t') h_{m}^\dagger(t'') d_{l}^\dagger(t'') A_{lm}(t'') \rangle \]
“Low” Temperature $T \ll T_N$

Propagation of holes and doublons strongly affected by interaction with spin waves

Assume independent propagation of hole and doublon (neglect vertex corrections)

Self-consistent Born approximation

Spectral function for hole or doublon

Sharp coherent part:
dispersion set by J, weight by J/t

Incoherent part:
dispersion $4t \times \text{dimension}$
Propogation of doublons and holes

Spectral function:
Oscillations reflect shake-off processes of spin waves

Comparison of Born approximation and exact diagonalization: Dagotto et al.

Hopping creates string of altered spins: bound states
“Low” Temperature $T << T_N$

Rate of doublon production

- Low energy peak due to sharp quasiparticles
- Broad continuum due to incoherent part
"High" Temperature

Atomic limit. Neglect spin dynamics. All spin configurations are equally likely.

$A_{ij}(t')$ replaced by probability of having a singlet

$$N_d(\tau) = \frac{1}{4} t^2 \lambda^2 \int_0^\tau dt' \int_0^\tau dt'' \sin[\omega t'] \sin[\omega t'']$$

$$\sum_{\langle ij \rangle \langle lm \rangle} \langle d_i(t') h_j(t') h_m^\dagger(t'') d_l^\dagger(t'') \rangle$$

Assume independent propagation of doublons and holes. Rate of doublon production

$$P_d(\omega) = \frac{\pi^3}{2} t^2 \lambda^2 \sum_{r \delta \delta'} \int d\omega' A^d(r + \delta, \omega') A^h(r + \delta', \omega - U - \omega')$$

$A^{d(h)}$ is the spectral function of a single doublon (holon)
Propogation of doublons and holes

Hopping creates string of altered spins

Retraceable Path Approximation *Brinkmann & Rice, 1970*

Consider the paths with no closed loops

Spectral Fn. of single hole Doublon Production Rate Experiments
Lattice modulation experiments. Sum rule

\[P_d(\omega) = \frac{\pi^3}{2} t^2 \lambda^2 \sum_{\delta} \int d\omega' A^d(r + \delta, \omega') A^h(r + \delta', \omega - U - \omega') \]

\(A^{(d,h)}\) is the spectral function of a single doublon (holon)

Sum Rule:

\[\int d\omega P_d(\omega) = \frac{\pi^3}{2} t^2 \lambda^2 z \]

Experiments:

The total weight does not scale quadratically with \(t\)

Possible origin of sum rule violation:

- Nonlinearity
- Doublon decay
Lattice modulation experiments
Probing dynamics of the Hubbard model

R. Joerdens et al., arXiv:0804.4009
Doublon decay rate
inspired by experiments in ETH
Relaxation of doublon hole pairs in the Mott state

- Energy released $\sim U$

- Energy carried by spin excitations
 $\sim J = 4t^2/U$

- Relaxation requires creation of $\sim U^2/t^2$ spin excitations

Relaxation rate

$$W \sim t(t/U)^{U^2/t^2}$$

Large U/t: Very slow Relaxation
Alternative mechanism of relaxation

- Thermal escape to edges
- Relaxation in compressible edges

Thermal escape time

\[\Gamma_{esc} \sim e^{-\frac{\Delta V}{k_B T}} \]

Relaxation in compressible edges

\[\Gamma_{comp} \sim e^{-\text{const.} \frac{U}{t}} \]
Doublon decay in a compressible state

How to get rid of the excess energy U?

Compressible state: Fermi liquid description

Doublon can decay into a pair of quasiparticles with many particle-hole pairs

U

$p-h$

$p-h$

$p-h$

$p-p$
Doublon decay in a compressible state

Decay amplitude
Doublon decay in a compressible state

Fermi liquid description

Single particle states

\[\mathcal{H}_t = -t \sum_{\langle ij \rangle \sigma} P c_{i\sigma}^\dagger c_{j\sigma} P \]

Doublons

\[\mathcal{H}_d = U \sum_i d_i^\dagger d_i \]

Interaction

\[\mathcal{H}_{\text{int1}} = -t \sum_{\langle ij \rangle \sigma} d_i c_{i\sigma}^\dagger c_{j\sigma}^\dagger \]

Decay

\[\mathcal{H}_{\text{int2}} = -t \sum_{\langle ij \rangle \sigma} d_i^\dagger c_{j\sigma}^\dagger d_j c_{i\sigma} \]

Scattering
Doublon decay in a compressible state

Decay rate contained in self-energy

Self-consistent equations for doublon

\[
G^{-1}(\omega) = G_0^{-1}(\omega) - \Sigma(\omega)
\]

\[
\Sigma(\omega) = t^2 \gamma_{pp}^2 \chi_{pp}(\omega) + t^2 \gamma_{ph}^2 \int d\omega' G(\omega') \chi_{ph}(\omega - \omega')
\]
Doublon decay in a compressible state
Lattice modulation experiments with fermions in optical lattice. Detecting d-wave superfluid state
Setting: BCS superfluid

- consider a mean-field description of the superfluid

\[H_0 = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k\sigma}^\dagger c_{k\sigma} + \Delta_k c_{k\uparrow}^\dagger c_{-k\downarrow} + \Delta_k^* c_{-k\downarrow} c_{k\uparrow} \]

- s-wave: \(\Delta_k = \Delta_0 \)

- d-wave: \(\Delta_k = \Delta_0 (\cos k_x - \cos k_y) \)

- anisotropic s-wave: \(\Delta_k = \Delta_0 |\cos k_x - \cos k_y| \)

Can we learn about paired states from lattice modulation experiments? Can we distinguish pairing symmetries?
Lattice modulation experiments

Modulating hopping via modulation of the optical lattice intensity

\[H_1 = t_1 \sin(\omega t) \sum_{\langle i,j \rangle, \sigma} c_{i\sigma}^\dagger c_{j\sigma} \]

\[= t_1 \sin(\omega t) \sum_k f_k \left[(u_k^2 - v_k^2)(\gamma_k^{\uparrow} \gamma_k^{\uparrow} + \gamma_k^{\downarrow} \gamma_k^{\downarrow}) + 2u_kv_k(\gamma_k^{\uparrow} \gamma_{-k}^{\downarrow} + \gamma_{-k}^{\downarrow} \gamma_k^{\uparrow}) \right] \]

where \[f_k = 2(\cos(k_x) + \cos(k_y)) \]

- Equal energy contours

Resonantly exciting quasiparticles with

\[2E_k = \omega \]

Enhancement close to the banana tips due to coherence factors
Lattice modulation as a probe of d-wave superfluids

Distribution of quasi-particles after lattice modulation experiments (1/4 of zone)

Momentum distribution of fermions after lattice modulation (1/4 of zone)

Can be observed in TOF experiments
Lattice modulation as a probe of d-wave superfluids

- Peaks at wave-vectors connecting tips of bananas
- Similar to point contact spectroscopy
- Sign of peak and order-parameter (red=up, blue=down)

\[
\langle \gamma_{q_{\uparrow}} \gamma_{q_{\downarrow}} \rangle
\]

\[
\langle \rho_{q_{\uparrow}} \rho_{-q_{\downarrow}} \rangle - \langle \rho_{0,q_{\uparrow}} \rho_{0,-q_{\downarrow}} \rangle
\]
Scanning tunneling spectroscopy of high Tc cuprates
Conclusions

Experiments with fermions in optical lattice open many interesting questions about dynamics of the Hubbard model

Thanks to: