Strongly correlated many-body systems: from electrons in solids to ultracold atoms

Eugene Demler

"Standard" model of electrons in solids

High density of electrons. Band theory. Description in terms of weakly interacting Landau electrons. Au, Cu, Si, GaAs, ...

First semiconductor transistor

Intel 386DX microprocessor

Strongly correlated electron systems

Low density of electrons. Interactions localize electrons. Hubbard bands. Unusual

thermodynamic and transport properties. Spin and orbital ordering. Quantum magnetism.

Phase diagram of La $_{1-x}$ Ca $_x$ MnO₃

Ordered state for x=0.5

High Tc superconductors

 $YBa_2Cu_3O_7$

Atoms in optical lattice

Antiferromagnetic and superconducting Tc of the order of 100 K Antiferromagnetism and pairing at sub-micro Kelvin temperatures

U

Same microscopic model

Doublon relaxation in organic Mott insulators

One dimensional Mott insulator ET-F₂TCNQ

bis(ethylenedithio)tetrathiafulvalene difluorotetracyanoquinodimethane

Photoinduced metallic state

H. Okamoto et al., PRL 98:37401 (2007) S. Wall et al. Nature Physics 7:114 (2011)

Surprisingly long relaxation time 840 fs

h/t = 40 fs

Doublon relaxation in ultracod Fermi gases

Lattice modulation experiments Probing dynamics of the Hubbard model

Modulate lattice potential V_0

Measure number of doubly occupied sites

Measure how long it takes for doublons to decay

Ref: N. Strohmaier et al., PRL 104:80401 (2010) Experiment: T. Esslinger's group at ETH Theory: Pekker et al., Harvard

Fermions in optical lattice. Decay of repulsively bound pairs Experiments: N. Strohmaier et. al.

Doublon decay in a compressible state

Compressible state: Fermi liquid description

Excess energy U is converted to kinetic energy of single atoms Kinetic energy scale set by bandwidth

w = 12 t

Perturbation theory to order n=U/w Decay probability

$$\frac{1}{\tau} \sim (\frac{t}{U})^{\mathrm{const} \times \frac{U}{\mathrm{w}}}$$

Doublon can decay into a pair of quasiparticles with many particle-hole pairs

$$e^{-\operatorname{const} \times \frac{U}{\mathrm{w}} \times \log \frac{U}{\mathrm{t}}}$$

Doublon decay in a compressible state

To calculate the rate: consider processes which maximize the number of particle-hole excitations

Photoinduced metallic state

H. Okamoto et al., PRL 98:37401 (2007) S. Wall et al. Nature Physics 7:114 (2011)

t=0.1 eV w=4t=0.4eV U=0.7 eV

$$au \sim rac{2 \, h}{\mathrm{t}} \; e^{1.6 \; rac{U}{\mathrm{w}}} \sim 1400 \; \mathrm{fs}$$

 $YBa_2Cu_3O_7$

Atoms in optical lattice

Antiferromagnetic and superconducting Tc of the order of 100 K Antiferromagnetism and pairing at sub-micro Kelvin temperatures

U

Same microscopic model