

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA NSF Visiting Committee, April 28-29, 2014

CENTER FOR ULTRACOLD ATOMS Massachusetts Institute of Technology Harvard University

CUA.mit.edu

CUA Theory

Paola Cappellaro	quantum control in hybrid systems
Mikhail Lukin	many-body systems of ultracold atoms and molecules,
Susanne Yelin	Polar molecules, many-body physics of cold atoms and molecules, hybrid systems
Eugene Demler	many-body systems of ultracold atoms and molecules

Strength of CUA theory: synergy with experimental work, collaborations between theory and experiment both within and outside of CUA

Examples of CUA theory/experiment collaborations: Cappellaro and Lukin; Yelin and Lukin; Demler, Lukin and Vuletic; Demler and Ketterle; Demler and Zwierlein; Demler, Greiner and Lukin

Experimental collaboration outside of CUA: Bloch's group at MPQ, Schmiedmayer's group at TU Vienna, A. White's group at Univ. of Queensland, Esslinger's group at ETH, Salomon's group at ENS, Imamoglu's group at ETH

Goals of CUA Theory

Identifying new frontiers in cold atoms research

Example: Interferometric probes of topological states in optical lattices

Zak/Berry phase topological order parameter in 1d Theory: Harvard, Expt: MPQ/LMU

Measurements of Berry curvature, Chern number Theory: Harvard, Expt: MPQ/LMU

Extensions to Quantum Spin Hall effect, Z2 order parameter, interacting systems

Developing new theoretical tools, concepts, analytical and numerical methods

Example: exploring many-body localization

MBL as integrability, real space RG

MBL in systems with long range interactions

Probe of MBL with Ramsey/echo probe

Experiment/theory collaboration and synergy

Examples:

Prethermalization

Higgs resonance in Optical Lattice

Topological quantum walk of photons

BEC polarons

Dynamics of multicomponent Fermi gas

Superradiance and spin squeezing

Identifying new frontiers in cold atoms research

Interferometric probes of topological states in optical lattices

Theory: D. Abanin, T. Kitagawa, E. Demler

Experiments: M. Atala, M. Aidelsburger, J. Barreiro, I. Bloch (MPQ/LMU)

M. Atala et al., Nature Physics (2013), T. Kitagawa et al., PRL (2013)

Order parameters

Broken symmetries vs topological order

accuracy 10-9

How to measure topological order parameter?

Berry/Zak phase in 1d

SSH Model with bichromatic lattice

When $d_z(k)=0$, states with $\delta t>0$ and $\delta t<0$ are topologically distinct. We can not deform two paths into each other without closing the gap.

Characterizing SSH model using Zak phase Two hyperfine spin states experience the same optical potential

Zak/Berry phase measurements

M. Atala et al., Nature Physics (2013)

The first direct measurement of topological order parameter either in solid state or condensed matter systems

Measuring Berry curvature in 2d and Chern number

Integral of the Berry phase around the Dirac point

 $\frac{1}{i} \int_{C} d\vec{k} \langle \psi_{k} | \partial_{\vec{k}} | \psi_{k} \rangle = \pi$

Interferometric probe of Berry curvature and Chern number in 2d systems Theory: Kitagawa et al. PRL (2013), Expt. MPQ

Manifestation of Berry phase of Dirac points in grapheme: IQHE plateaus are shifted by 1/2

Extension to more exotic states:Quantum Spin Hall Effect states and Topological Insulators in 3D. Grusdt et al., arXiv:1402.2434

Developing new theoretical tools, concepts, analytical and numerical methods

Exploring many-body localization

Conceptual understanding of MBL states as integrability

Role of long range interactions

How to probe MBL phases in experiments

Many-body localization (MBL)

- localization in the presence of interactions
- system does not act as its own bath (discrete local spectrum)
- MBL states vs. Anderson localized states
- \rightarrow interactions create non-local correlations (growth of entanglement)

- Anderson
- Basko, Aleiner, Altshuler
- Huse, Oganesyan, Pal
- Aleiner, Altshuler, Shlyapnikov

Bardarson et al., PRL (2012) Vosk, Altman, PRL (2013) Abanin, et al. PRL (2013)

Systems with interactions and disorder

Central spin problem in q-dots NV centers in diamond

- Marcus et al. (2004)
- Lukin et al. (2006)
- Jelezko et a. (2007)
- Awschalom et al. (2007)

Polar molecules in optical lattices

- Ye et al. (2013)

Nuclear spin interactions mediated by electron spin

Angular momentum as spin degree of freedom

Rydberg atoms

- Ryabtsev et al. (2010)
- Bloch et al. (2012)
- Lukin, Vuletic et al. (2013)

Strong interactions due to large electric dipole moment

New common feature: long range interactions

Hierarchical structure of excited many-body states in disordered systems: MBL and integrability

Pekker, Refael, Altman, Demler, Oganesyan, PRX (2014)

Conjecture

MBL states have hierarchical structure described by power law distributions of couplings and gaps. They are essentially integrable

Implications of the conjecture

Strongly coupled spins precess fast around each other. They mediate coupling between outer spins

Phase diagram of JJ' model

$$H = \sum_{i} h_i \sigma_i^z + J_i \sigma_i^x \sigma_{i+1}^x + J_i' \sigma_i^z \sigma_{i+1}^z$$

Localization with Long-Range Hops/Interactions

Double Electron-Electron Resonance as a smoking gun probe of MBL

Power law decay of DEER signal with time

arXiv:1403.0693

M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N. Y. Yao, C. R. Laumann, D. A. Abanin, M. D. Lukin, E. A. Demler

thermal and ensemble averaging

Theory/Experiment interactions and collaborations

Observation of Higgs mode in superfluid phase of ultracold atoms in 2d

M. Enders et al., Nature 487:454 (2012)

Demonstration of prethermalization in split 1d condensates

D. Gring et al., Science 337:1318 (2012)

Demonstration of edge states in topological ‡ quantum walk of photons including Floquet insulator

T. Kitagawa et al., Nature Communications 3:882 (2012)

(b)

0.05

0.04

0.03

0.02

0.01

L=110µm

Polarons in BEC

motivated by experiments in Zwierlein's group

Experiment/theory collaboration and synergy

A. Shashi et al., arXiv:1401.0952

+ F. Grusdt, Y. Shchadilova, A. Shashi, R. Schmidt, et al., unpublished

related to Frolich polarons in solid state systems, electrons in magnetic systems

Quasiparticle peak

Universal (dimension dependent) low frequency spectrum: signature of many-body orthogonality catastrophe

Universal (dimension dependent) high frequency tail: related to two particle physics

Bloch oscillations of BEC polarons in optical lattices

motivated by experiments in Greiner's group

+ F. Grusdt, A. Shashi, et al., unpublished

Drift beyond Esaki-Tsu model: nonlinear drift velocity for small force

Dynamics of multicomponent Fermi gases

motivated by CUA experiments, also Krauser et al., Science (2014), Scazza et al. arXiv (2014)

motivated by experiments in Vuletic's and Lukin's labs

Superradiance and Entanglement

Does (Dicke) superradiance need/create entanglement?

Why do we ask:

- Many-partite entanglement is a hot topic and as of yet unsolved theoretical question
- Superradiance is based on fully symmetric ("Dicke") states, (nearly) each of which is entangled
- What type of nonlinearity do cooperative effects/superradiance supply?

Wolfe, Yelin, Phys. Rev. Lett. 112, 140402 (2014)

Superradiant Spin Squeezing

- Superradiance alone and driving the 2-level transition alone do not create entanglement - but both together do
- Is entanglement useful? (I.e., could it improve measurements?)
- Yes the system is (strongly) spin-squeezed!

Conclusion: For systems with high optical density extremely simple spin squeezing scheme!

(squeezing parameter: $\xi^2 < 1 \Rightarrow$ system is squeezed)

Future directions

Measuring and utilizing entanglement entropy

Driven/open/nonequilibrium quantum many-body systems (cold atoms/optics/CM interface) quantum switch for measuring entanglement entropy from Abanin, Demler, PRL (2012)

Rabi oscillations of mobile impurity

Fred Heat F

QD + optical fiber

Interferometry of many-body states

Chern number for a fractional QH state from Hafezi et al. EPL (2008)