Measuring correlation functions in interacting systems of cold atoms

Ehud Altman Ryan Barnett Mikhail Lukin Dmitri Petrov Anatoli Polkovnikov Eugene Demler

Physics Department, Harvard University

Thanks to: J. Schmiedmayer, M. Oberthaler, V. Vuletic, M. Greiner

Correlation functions in condensed matter physics

Most experiments in condensed matter physics measure correlation functions Example: neutron scattering measures spin and density correlation functions

$$S_{s}(q) = \int d\mathbf{r} e^{i\mathbf{q}\mathbf{r}} \langle S^{+}(\mathbf{r}) S^{-}(0) \rangle \quad S_{\rho}(q) = \int d\mathbf{r} e^{i\mathbf{q}\mathbf{r}} \langle \rho(\mathbf{r}) \rho(0) \rangle$$

to one another.

Shull et al., Phys. Rev. 83:333 (1951)

Outline

1. Measuring correlation functions in intereference experiments Introduction: interference of independent condensates

1D systems: Luttinger liquid behavior

2D systems: quasi long range order and the KT transition

- 2. Quantum noise interferometry of atoms in an optical lattice
- 3. Applications of quantum noise interferometry
 Spin order in Mott states of atomic mixtures
 Polar molecules in optical lattices. Charge and spin order

Measuring correlation functions in intereference experiments

Interference of two independent condensates

Andrews et al., Science 275:637 (1997)

Interference of two independent condensates

Clouds 1 and 2 do not have a well defined phase difference. However each individual measurement shows an interference pattern

$$\langle \rho_{\rm int}(r) \rangle = 0$$

 $\langle \rho_{\rm int}(r) \rho_{\rm int}(r') \rangle = e^{i \frac{m d}{\hbar t} (r - r')} + \text{c.c.}$

Similar experimental setup: Schmiedmayer et al.

$$d\rho_{\text{int}}(x,y) = \left(e^{i\frac{mdy}{\hbar t}} a_1^{\dagger}(x) a_2(x) + \text{c.c.}\right) dx$$
$$\sim \left(e^{i\frac{mdy}{\hbar t}} e^{i(\phi_2(x) - \phi_1(x))} + \text{c.c.}\right) dx$$

$$\rho_{\text{int}}(y) = e^{i\frac{mdy}{\hbar t}} \int_0^L dx \, a_1^{\dagger}(x) \, a_2(x) + \text{c.c.}$$

$$\rho_{\rm int}(y) = A_{\rm fr} e^{i\Delta \phi + i\frac{mdy}{\hbar t}} + \text{c.c.}$$

Amplitude of the interference fringes, $A_{\rm fr}$, contains information about phase fluctuations within individual condensates

Instantaneous correlation function $G(x) = \langle a(x) a^{\dagger}(0) \rangle$

$$G(x) = \langle a(x) a^{\dagger}(0) \rangle$$

Luttinger liquid at T=0

$$G(x) \sim \rho \left(\frac{\xi_h}{x}\right)^{2-1/K}$$

K – Luttinger parameter

$$\langle |A_{\rm fr}|^2 \rangle \sim (\rho \xi_h)^{1/K} (L\rho)^{2-1/K}$$

For non-interacting bosons $K=\infty$ and $A_{\rm fr}\sim L$ For impenetrable bosons K=1 and $A_{\rm fr}\sim \sqrt{L}$

Luttinger liquid at finite temperature

$$\langle |A_{\rm fr}|^2 \rangle \sim L \rho^2 \, \xi_h \, \left(\frac{\hbar^2}{m \, \xi_h^2} \, \frac{1}{T} \right)^{1-1/K}$$

Luttinger parameter K may be extracted from the L or T dependence of A_{fr}

Luttinger liquid at T=0. Rotated probe beam experiment

Similar experimental setup: Stock et al., cond-mat/0506559

Probe beam parallel to the plane of the condensates

$$\langle |A_{\rm fr}|^2 \rangle = L_x L_y \int_0^{L_x} \int_0^{L_y} d^2 \vec{r} (G(\vec{r}))^2$$

$$G(\vec{r}) \, = \, \langle \, a(\vec{r}) \, a^{\dagger}(0) \, \rangle$$

Interference of two dimensional condensates. Quasi long range order and the KT transition

Above KT transition

$$G(r) \sim e^{-r/\xi}$$

$$\langle |A_{\rm fr}|^2 \rangle \sim L_x L_y$$

$$\log \xi(T) \sim 1/\sqrt{T - T_{\mathrm{KT}}}$$

Below KT transition

$$G(r) \sim \rho \left(\frac{\xi_h}{r}\right)^{\alpha}$$

$$\alpha(T) = \frac{m T}{2 \pi \rho_s(T) \hbar^2}$$

$$\langle |A_{\rm fr}|^2 \rangle \sim (L_x L_y)^{2-\alpha}$$

One can also use rotated probe beam experiments to extract α from the angular dependence of $A_{\rm fr}$

Rapidly rotating two dimensional condensates

$$\langle \rho(r) \rangle$$

 $\langle \rho(r) \rho(r') \rangle$

Time of flight experiments with rotating condensates correspond to density measurements

$$\langle |A_{\rm fr}|^2 \rangle = L_x L_y \int_0^{L_x} \int_0^{L_y} d^2 \vec{r} \cos(\vec{q} \, \vec{r}) (G(\vec{r}))^2$$

$$G(\vec{r}) \, = \, \langle \, a(\vec{r}) \, a^{\dagger}(0) \, \rangle$$

Interference experiments measure single particle correlation functions in the rotating frame

Quantum noise interferometry of atoms in an optical lattice

Atoms in an optical lattice. Superfluid to Insulator transition

Greiner et al., Nature 415:39 (2002)

Time of flight experiments

Quantum noise interferometry of atoms in an optical lattice

Second order coherence $G(r_1, r_2) = \langle n(r_1)n(r_2) \rangle - \langle n(r_1) \rangle \langle n(r_2) \rangle$

Second order coherence in the insulating state of bosons. Hanburry-Brown-Twiss experiment

Theory: Altman et al., PRA 70:13603 (2004)

Experiment: Folling et al., Nature 434:481 (2005)

Hanburry-Brown-Twiss stellar interferometer

$$\langle I(\vec{r}_1) \ I(\vec{r}_2) \rangle = A + B \ \cos \left((\vec{k} - \vec{k}') \ (\vec{r}_1 - \vec{r}_2) \right)$$

Second order coherence in the insulating state of bosons

Bosons at quasimomentum $\ \vec{k}$ expand as plane waves

with wavevectors $\ \vec{k}, \ \vec{k} + \vec{G}_1, \ \vec{k} + \vec{G}_2$

First order coherence: $\langle \rho(\vec{r}) \rangle$

Oscillations in density disappear after summing over \vec{k}

Second order coherence: $\langle \rho(\vec{r}_1) \rho(\vec{r}_2) \rangle$

Correlation function acquires oscillations at reciprocal lattice vectors

$$\langle \rho(\vec{r}_1) \rho(\vec{r}_2) \rangle = A_0 + A_1 \cos \left(\vec{G}_1(\vec{r}_1 - \vec{r}_2) \right) + A_2 \cos \left(\vec{G}_2(\vec{r}_1 - \vec{r}_2) \right) + \dots$$

Second order coherence in the insulating state of bosons. Hanburry-Brown-Twiss experiment

Theory: Altman et al., PRA 70:13603 (2004)

Experiment: Folling et al., Nature 434:481 (2005)

Interference of an array of independent condensates

Hadzibabic et al., PRL 93:180403 (2004)

Smooth structure is a result of finite experimental resolution (filtering)

Applications of quantum noise interferometry

Spin order in Mott states of atomic mixtures

Two component Bose mixture in optical lattice

Example: $^{87}\mathrm{Rb}$. Mandel et al., Nature 425:937 (2003)

Two component Bose Hubbard model

$$\mathcal{H} = - t_{\uparrow} \sum_{\langle ij \rangle} b_{i\uparrow}^{\dagger} b_{j\uparrow} - t_{\downarrow} \sum_{\langle ij \rangle} b_{i\downarrow}^{\dagger} b_{j\downarrow} + U_{\uparrow\uparrow} \sum_{i} n_{i\uparrow} (n_{\uparrow} - 1)$$

$$+ U_{\downarrow\downarrow} \sum_{i} n_{i\downarrow} (n_{\downarrow} - 1) + U_{\uparrow\downarrow} \sum_{i} n_{i\uparrow} n_{\downarrow}$$

Two component Bose mixture in optical lattice. Magnetic order in an insulating phase

Insulating phases with N=1 atom per site. Average densities $n_{\uparrow}=n_{\downarrow}=rac{1}{2}$

Easy plane ferromagnet
$$\mid\Psi\mid=\prod_{i}\left(\mid b_{i\uparrow}^{\dagger}\mid+\mid e^{i\phi}\mid b_{i\downarrow}^{\dagger}\mid\mid0\mid\rangle\right)$$

Easy axis antiferromagnet $|\Psi\rangle=\prod_{i\in A}b_{i\uparrow}^{\dagger}\prod_{i\in B}b_{i\downarrow}^{\dagger}$

Quantum magnetism of bosons in optical lattices

Kuklov and Svistunov, PRL (2003) Duan et al., PRL (2003)

$$\mathcal{H} = J_z \sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z + J_\perp \sum_{\langle ij \rangle} \left(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y \right)$$

$$J_z = \frac{t_\uparrow^2 + t_\downarrow^2}{2U_{\uparrow\downarrow}} - \frac{t_\uparrow^2}{U_{\uparrow\uparrow}} - \frac{t_\downarrow^2}{U_{\downarrow\downarrow}} \qquad \qquad J_\perp = -\frac{t_\uparrow t_\downarrow}{U_{\uparrow\downarrow}}$$

- Ferromagnetic
- Antiferromagnetic

$$U_{\uparrow\downarrow} >> U_{\uparrow\uparrow}, \ U_{\downarrow\downarrow}$$

$$U_{\uparrow\downarrow} << U_{\uparrow\uparrow}, \ U_{\downarrow\downarrow}$$

Two component Bose mixture in optical lattice. Mean field theory + Quantum fluctuations

Coherent spin dynamics in optical lattices

Widera et al., cond-mat/0505492

 $^{87}{
m Rb}\,$ atoms in the F=2 state

Probing spin order of bosons

Correlation Function Measurements

$$G(r_1, r_2) = \langle n(r_1) n(r_2) \rangle_{TOF} - \langle n(r_1) \rangle_{TOF} \langle n(r_2) \rangle_{TOF}$$

$$\sim \langle n(k_1) n(k_2) \rangle_{LAT} - \langle n(k_1) \rangle_{LAT} \langle n(k_2) \rangle_{LAT}$$

Extra Bragg
peaks appear
in the second
order correlation
function in the
AF phase

Applications of quantum noise interferometry

Polar molecules in optical lattices. Charge and spin order

Extended Hubbard model

$$\mathcal{H} = -t \sum_{\langle ij \rangle} b_i^{\dagger} b_j + \sum_{ij} n_i U_{ij} n_j - \mu \sum_i n_i$$

 U_0 - on site repulsion U_1 - nearest neighbor repulsion

Checkerboard phase:

Crystal phase of bosons. Breaks translational symmetry

Extended Hubbard model. Mean field phase diagram

van Otterlo et al., PRB 52:16176 (1995)

$$\frac{U_1}{U_0} = \frac{1}{5}$$

Hard core bosons.
$$\frac{U_2}{U_1} = \frac{1}{10}$$

Supersolid – superfluid phase with broken translational symmetry

Dipolar bosons in optical lattices

Goral et al., PRL88:170406 (2002)

Probing a checkerboard phase

Correlation Function Measurements

Multicomponent polar molecules in an optical lattice. Long range interactions and quantum magnetism

Barnett, Petrov, Lukin, Demler

Electric dipolar interactions. Heteronuclear molecules. Mixture of l=0 and l=0, $l_z=+1$ states.

$$d^x = d_0 \left(s^{\dagger} t + t^{\dagger} s \right)$$

$$d^{y} \, = \, \frac{d_{0}}{i} \, (\, s^{\dagger} \, t \, - \, t^{\dagger} \, s \,)$$

Conclusions

Interference of extended condensates can be used to probe correlation functions in one and two dimensional systems

Noise interferometry is a powerful tool for analyzing quantum many-body states in optical lattices