Optical lattice emulator

Strongly correlated systems: from electronic materials to ultracold atoms

"Conventional" solid state materials

Description in terms of non-interacting electrons. Band structure and Landau Fermi liquid theory

First semiconductor transistor

Intel 386DX microprocessor

"Conventional" solid state materials

Electron-phonon and electron-electron interactions are irrelevant at low temperatures

$$\frac{1}{\tau_{\rm e-e}} \sim \epsilon^2$$
 $\frac{1}{\tau_{\rm e-ph}} \sim \epsilon^3$

Landau Fermi liquid theory: when frequency and temperature are smaller than E_F electron systems are equivalent to systems of non-interacting fermions

$$\rho = \rho_0 + aT^2$$

$$c/T = const$$

$$\kappa/T = \text{const}$$

Non Fermi liquid behavior in novel quantum materials

T(K)

0.5

T(K)

Wiedemann-Franz law in high Tc superconductors Hill et al., Nature 414:711 (2001)

Puzzles of high temperature superconductors

Unusual "normal" state

Resistivity, opical conductivity, Lack of sharply defined quasiparticles, Signatures of AF, CDW, and SC fluctuations

Mechanism of Superconductivity

High transition temperature, retardation effect, isotope effect, role of electron-electron and electron-phonon interactions

Competing orders

Role of magnetsim, stripes, possible fractionalization

Maple, JMMM 177:18 (1998)

Applications of quantum materials: High Tc superconductors

High temperature superconductors

 $YBa_2Cu_3O_7$

Superconducting Tc 93 K

Picture courtesy of UBC Superconductivity group

Hubbard model – minimal model for cuprate superconductors

P.W. Anderson. cond-mat/0201429

$$\mathcal{H} = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \mu \sum_{i} n_{i}$$

Positive U Hubbard model

Possible phase diagram. Scalapino, Phys. Rep. 250:329 (1995)

Antiferromagnetic insulator

D-wave superconductor

Fermionic atoms in optical lattices

$$\mathcal{H} = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \mu \sum_{i} n_{i}$$

Quantum simulation of the fermionic Hubbard model using ultracold atoms in optical latices

Fermions in a 3d optical lattice, Kohl et al., PRL 2005

Superfluidity of fermions in an optical lattice, Chin et al., Nature 2006

Simulation of condensed matter systems: Hubbard Model and high Tc superconductivity

Fermions with repulsive interactions in an optical lattice can be described by the same microscopic model as cuprate high temperature superconductors
Theory: Hofstetter et al., PRL 89:220407 (02)

Questions for future work:

- What is the ground state of the Hubbard model away from filling n=1
- Beyond "plain vanilla" Hubbard model
- a) Boson-Fermion mixtures: Hubbard model + phonons
- b) Inhomogeneous systems (stripes), role of disorder
- Detection of many-body states
 (spin antiferromagnetisim, d-wave superconductivity, CDW, ...)

How to detect antiferromagnetic order and d-wave pairing in optical lattices?

Quantum noise ?!

Second order interference from the BCS superfluid

$$\Delta n(\mathbf{r}, \mathbf{r}') \equiv n(\mathbf{r}) - n(\mathbf{r}')$$

$$\Delta n(\mathbf{r}, -\mathbf{r}) | \Psi_{BCS} \rangle = 0$$

Momentum correlations in paired fermions

Greiner et al., PRL 94:110401 (2005)

Fermion pairing in an optical lattice

Second Order Interference In the TOF images

$$G(r_1, r_2) = \langle n(r_1)n(r_2)\rangle - \langle n(r_1)\rangle \langle n(r_2)\rangle$$

Normal State

$$G_{\rm N}(r_1, r_2) = \delta(r_1 - r_2)\rho(r_1) - \rho^2(r_1) \sum_G \delta(r_1 - r_2 - \frac{G\hbar t}{m})$$

Superfluid State

$$G_{\rm S}(r_1, r_2) = G_{\rm N}(r_1, r_2) + \Psi(r_1) \sum_{G} \delta(r_1 + r_2 + \frac{G\hbar t}{m})$$

$$\Psi(r) = |u(Q(r))v(Q(r))|^2$$
 measures the Cooper pair wavefunction

$$Q(r) = \frac{mr}{\hbar t}$$

One can identify unconventional pairing

Second order coherence in the insulating state of bosons and fermions

Theory: Altman et al., PRA 70:13603 (2004)

Expt: Folling et al., Nature (2005); Spielman et al., PRL (2007); Rom et al., Nature (2006)

"Bosonic" bunching

"Fermionic" antibunching

A powerful tool for detecting antiferromagnetic order

Boson Fermion mixtures

Experiments: ENS, Florence, JILA, MIT, ETH, Hamburg, Rice, Duke, Mainz, ...

Bosons provide cooling for fermions and mediate interactions. They create non-local attraction between fermions

Charge Density Wave Phase Periodic arrangement of atoms

Non-local Fermion Pairing P-wave, D-wave, ...

Theory: Pu, Illuminati, Efremov, Das, Wang, Matera, Lewenstein, Buchler, ...

Boson Fermion mixtures

$$\mathcal{H} = \mathcal{H}_{bb} + \mathcal{H}_{ff} + \mathcal{H}_{bf}$$

$$\mathcal{H}_{bb} = -t_b \sum_{\langle ij \rangle} b_i^{\dagger} b_j + U_{bb} \sum_i n_{bi} (n_{bi} - 1)$$

$$\mathcal{H}_{ff} = -t_f \sum_{\langle ij \rangle} f_i^{\dagger} f_j$$

$$\mathcal{H}_{bf} = U_{bf} \sum_i n_{bi} n_{fi}$$

Effective fermion-"phonon" interaction

$$\tilde{\mathcal{H}}_{bb} = \sum_{q} \omega_{q} \beta_{q}^{\dagger} \beta_{q}$$

$$\tilde{\mathcal{H}}_{bf} = \sum_{kq} g_{q} (\beta_{q} + \beta_{-q}^{\dagger}) f_{k+q}^{\dagger} f_{k}$$

Fermion-"phonon" vertex $g_q \sim |q|$ Similar to electron-phonon systems

"Phonons" : Bogoliubov (phase) mode

Bose-Fermi mixture in a three dimensional optical lattice

Gunter et al, PRL 96:180402 (2006)

See also Ospelkaus et al, PRL 96:180403 (2006)

Suppression of superfluidity of bosons by fermions

Similar observation for Bose-Bose mixtures, see Catani et al., arXiv:0706.278

Issue of heating and density rearrangements need to be sorted out, see e.g. Pollet et al., cond-mat/0609604

Competing effects of fermions on bosons

Bosons

Fermions provide screening. Favors superfluid state of bosons

Orthogonality catastrophy due to fermions. Polaronic dressing of bosons. Favors Mott insulating state of bosons

Quantum regime of bosons

A better starting point:

Mott insulating state of bosons Free Fermi sea

Theoretical approach: generalized Weiss theory

Weiss theory of the superfluid to Mott transition of bosons in an optical lattice

$$\mathcal{H} = -t \sum_{\langle ij \rangle} b_i^{\dagger} b_j + U \sum_i n_i (n_i - 1) - \mu \sum_i n_i$$

Mean-field: a single site in a self-consistent field

Weiss theory: quantum action

Conjugate variables $[n, \phi] = -i$

$$S_{\text{eff}} = \int_0^\beta d\tau \left[i\dot{\phi}n - z \, t \, r \, \cos\phi + U \, n \, (n-1) - \mu \, n \right]$$

Self-consistency condition $r = \bar{n} \langle \cos \phi \rangle$

Adding fermions

Screening

Bosons

$$\Delta S_{\text{ferm}}^{(1)} = -\frac{1}{2} U_{BF}^2 \, \rho_F(0) \int_0^\beta d\tau \, n^2$$

Orthogonality catastrophy

$$\Delta S_{\text{ferm}}^{(1)} = \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \, \alpha(\tau_1 - \tau_2) \, (n(\tau_1) - n(\tau_2))^2$$
$$\alpha(\omega_{\nu}) = 2 \, \pi \, \rho_F^2(0) \, U_{BF}^2 \, |\omega_{\nu}|$$

SF-Mott transition in the presence of fermions

Competition of screening and orthogonality catastrophy (G. Refael and ED)

$$S_0 = \int_0^\beta d\tau \left[i \dot{\phi} n + \tilde{U} n (n-1) - \mu n \right] + \int_0^\beta d\tau_2 \alpha (\tau_1 - \tau_2) (n(\tau_1) - n(\tau_2))^2$$

Effect of fast fermions $t_F/U=5$

Effect of slow fermions $t_F/U=0.7$

 $YBa_2Cu_3O_7$

Antiferromagnetic and superconducting Tc of the order of 100 K

Atoms in optical lattice

Antiferromagnetism and pairing at sub-micro Kelvin temperatures

Same microscopic model

$$\mathcal{H} = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \mu \sum_{i} n_{i}$$