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In this paper, we present analytical and numerical calculations af tesonance in the J model. We show
in detail how therr resonance in the particle-particle channel couples to the dynamical spin correlation function
in a superconducting state. The contribution of theesonance to the spin excitation spectrum can be esti-
mated from general model-independent sum rules, and it agrees with our detailed calculations. The results are
in overall agreement with the exact diagonalization studies of-thenodel. Earlier calculations predicted the
correct doping dependence of the neutron resonance peak in thg£¥8g . , superconductor, and in this
paper detailed energy and momentum dependence of the spin correlation function is presented. The micro-
scopic equations of motion obtained within current formalism agree with that of tk& &@nlinearo model,
where thew resonance is interpreted as a pseudo-Goldstone mode of the spontang&lussyametry
breaking.[S0163-182@08)02933-9

I. INTRODUCTION for q=(,7,7) goes to unity at threshold rather than van-
ishing as it would for ars-wave superconductdrt’ Further-

Of many fascinating experiments on high-supercon- more, two of us argued that thge p interactions in this chan-
ductors, the resonant neutron-scattering peak observed in tinel leads to a sharp resonance which was calledrtivde’
YBa,Cu;Og. , family is an extremely striking onk:® It was  In the normal state, the resonance is decoupled from the
first observed in the optimally doped YB2u;O; materials.  neutron scattering, but can in principle be observed in pair
The mode exists only in a narrow region in reciprocal spacdunneling experiment® This theory predicted the doping
near (/a, /b, w/c), wherea andb are the lattice constants dependence of the mode energy and intensity which was sub-
in the CuQ plane ancc is the distance between two neigh- sequently verified experimentally. This picture was also
boring CuQ planes in a unit cell(In the following, we will  later verified in detailed numerical calculations of the Hub-
set these lattice constants to unity to simplify notatjofiie ~ bard and thet-J models by Meixnetet al?® and by Eder,
energy of the resonance is 41 meV and it disperses weakly iHanke, and one of us.
reciprocal space. Perhaps the most striking property of this In this paper, we study ther resonance using a self-
mode is its disappearance abdve More recently, this type consistent linear respong&CLR) theory which formally
of collective mode has also been observed in the underdopdgakes into account the mixing of the particle-hofe If) with
families of the YBaCuzO; superconductors. Here the energy the p-p channels in the SC state. This formalism is explained
of this mode is 33 and 25 meV, for materials wikp values in Sec. Il. In Sec. I, we present numerical results based on
of 62 and 52 K, respectively. While the mode energy de+this formalism and show the overall structure of the spin
creases monotonically witF;, the mode intensity increases correlation function. We then give an approximate but ana-
as T, decreases. Compared with the 41 meV peak, thesktic expression for the resonance in Sec. IV. In Sec. V, we
modes also have a broader spectral distribution balpwin ~ compare our formalism with the results obtained by using
these underdoped materials the resonance is also observe@uations of motion for thé-J model and with the S®)
above T, where it becomes significantly broader. All the quantum nonlinearr model. In Sec. VI, we summarize the
modes have been observed in the neutron spin-flip channggsults and conclude the paper with some general remarks.
and more recently, the 41 meV mode was seen to broaddpefore going into these details, we give here some general
under a uniform magnetic fieRiboth indicating that the features of ther resonance.
modes are spin triplets. The central object of the theory of theresonance is the

These striking resonances have generated wide theoretic®-calleds operator, defined by
interests and a number of theoretical ideas have been sug-
gested in order to explain their propertfed® We believe 1
that one key ingredient is the coupling of the neutron to the 7{;:52 gpc;ma“aycip 1)
particle-particle p-p) channel which occurs in the super- p
conducting(SC) state via the condensate. In particular for a

de_y2 gap, the coherence factdf— A, (A /ExEx:ql/2  With o being Pauli matrices;) = (c]

+
o1 ,cpl), and
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The S@5) theory therefore provides a simple picture of
the = modes as collective rotations in the &P sphere.
Without going into the microscopic details, this picture im-
mediately provides us with some useful quantitative informa-
tion. Inside the dSC phase, the right-hand side of the opera-
tor equation(6) can be replaced by the expectation value of
the dSC order parameter, giving

FIG. 1. Geometric interpretation of the resonance in the su- This equation can be simply interpreted as the commutation

perspin phase. relation between a set of canonically conjugate variables, just
like p andq in elementary quantum mechanics. Therefore,

1 we see that a new set of collective quantum degrees of free-

gp=ﬁ(cos px—Ccospy). (2 dom emerges in the broken symmetry state characterized by

a dSC ordeA. This simple consideration explains why the

This operator is a spin triplet and carries charge 2. This opf€Sonance mode is only observed befby However, in the
erator inspired one of uS.C.Z) to formulate the S() regime where a fluctuating order parameter exists, the
theory of highT, superconductivity? Together with the to- €Sonance can also appear as a broad feature. .
tal spin and total charge operators, the sixperators form In the dSC state, ther mode couples directly to the spin
an S@5) Lie algebra. A natural vector representation of thisoperatorSo=N. What is the dynamics associated with the
SO(5) Lie algebra is the superspin operator? This is a model-dependent microscopic question. If
one is dealing with an S@) symmetric microscopic
A AT A AT model?*~?°the dynamics of ther operator is determined by

n=(ny,Ny,N3,Ny,N5) = —5— NNy Ny —5— the equation

2
®) T T
[H’ 7Ta] = WQoT,, (8)
formed out of the antiferromagneti&F) order parameter
where wg=—2u. Therefore, S(b) symmetric models pre-
1 dict a sharpm resonance whose energy scales with doping.
Na=—2 cgmoacp (4)  The dynamics associated with the couptednd spin opera-

2% tor in the t-J model is the central question studied in our
and the real and imaginary components of dheave super- current paper. Howevgr, even without detailed microscopic
conducting(dSO order parameter calcullatlc.)ns, we can give general arguments to estimate the

contribution from therr operator to the spin correlation func-
tion. Equation(7) leads to an important sum rule for the
A=2 o€ o/C 5) mixed corrella_tion funct?on between_the spin_ and thep-
o CPUoplEeT erators. Defining the mixed correlation function as

Hereg,, Eq(2), is thed-wave form factor. Ther operator

rotatesN, and A into each other _ 1
Mapl@) = <O 7T“w—71/,+Eo+i0'\|/3
[Wa!NB]:iAéaBl (6) 1
Ny——————m,|0 ©)
therefore within the S®) theory, AF and dSC are unified w—H+Eq+i0

into a common object, called superspin, which can be pic- .
tured as a unit vector on an &) sphere, see Fig. 1. A direct and making use of Ed7), we have

first-order transition between these two phases can be in-

duced by a chemical potential, and the superspin flops do

from the AF direction into the dSC direction. However, in- J 5 Map(w)= —8,5(0|A|0). (10
side the dSC phase, there are four collective modes, which

can be viewed as Goldstone modes of the spontaneol® SO |, gqgition, we also have another sum rule for theorre-

symmetry breaking. The usual SC phase mode correspongiion function, which follows from the commutation relation
to the rotation inside the dSC plane, while there are three

extra = modes, corresponding to rotations towards the AF

directions, see Fig. 1. Becauacbreaks the S(®) symmetry [wa,w;@]z(l—n)éaﬁ, 11
explicitly and constrains the superspin to lie at the equator,

the 7 fluctuations are massive. From this general considerwhere n is a filling factor (half filing corresponds ton
ation, we expect its mass, or the resonance energy, to de=1). From these two sum rules, we can put a lower bound
crease with decreasing doping. on the s contribution to the spin excitation spectrum as
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- 2|Al? The second question concerns the effect of the next-
lr=— dolmy™ (Q,w)= 7 —— (120 nearest-neighbor hopping tetrh 2%21:262|n the presence of
™ peak this term, thep-p continuum no longer collapses at total
as shown in the Appendix. Therefore, one would expect thenomentumQ, and it is not clear if ther mode can remain
7 contribution to the dynamic spin correlation function to sharp in the presence of. This question depends on the
scale as the square of the dSC order parameter and inversgjgndwidth around the#,0) and (Os) points in reciprocal
with the dopingx=1—n. Both of these conclusions are con- space. While the bare bandwidth might be large, it is known
sistent with the experimental finding in the optimally dopedfrom both photoemission and numerical experiments that
YBa,Cu;O; that the neutron resonance mode disappearmany-body corrections reduce the bandwidth at these points
aboveT, as a sharp excitation, and with the doping depensignificantly. Assuming the reduced band structure, the
dence of its intensity. We can use typical valuesAgf, o mode remains sharp in the normal state. Direct numerical
=40 meV (see Appendix for converting the order parametercalculations on ther resonance also show that temode
to the quasiparticle energy gap=120 meV, and doping remains sharp for a wide range f?%?* Because the many-
x=15% to estimate the lower bound fby as 0.32. This is body reduction of the bandwidth is hard to obtain from direct
close to and consistent with the experimentally measuregerturbation theory, we shall not address théssue in this
value 0.530.12 In a realistic model, ther operator is not paper.
an exact eigenoperator of the Hamiltonian, and j.is In this work, we shall mainly discuss the two-dimensional
only approximately fulfilled with other contributions to the case where ther operator carries momentumr(7). Gen-
energywgy. However, as long as the operator remains as an eralizations to bilayer system is straightforward. In this case,
approximate eigenoperator, it will make a sharp contributiorthe 7 operator rotates the three-dimensiof@D) AF state
to the spin correlation function, and the energy of the modeénto the 3D dSC state, and carries momentuma, 7), i.e.,

will have a leading contribution of-2u. it is odd under bilayer interchange. If the 3Doperator is an
approximate eigenoperator of the interlayer Hamiltonian,
Il. SELF-CONSISTENT FORMALISM analysis presented in this paper will carry through in the
bilayer case as well.
In this paper, we shall study the mode of thet-J model Finally we would like to address the issue of the large

with nearest-neighbofNN) hopping. Before presenting the HubbardU repulsion or the no double occupancy constraint
details of the formalism, we would like to answer some gen+n the t-J model?®?° In this paper, we shall only treat the
eral questions regarding the use of this model and the apqubbardU within the Hartree approximation. In this case, its
proximations. effect can be captured by a renormalization of the chemical
The first question concerns the effect of the NN Coulombpotentiaf® and the hopping. Alternatively, we can treat the
interactionV=; ;n;n; .?° Even if we did not include a bat¢  t-J model within the slave boson mean field theory. Here
term, the reduction from the on-site Hubbard model to thQ)ne rep]aces the electron operatgy by a product Ofoifia-
t-J model would generate such a term with=—J/4. Ac-  Within the dSC state, the holots are condensed and can be
tuaIIy, at this particular value df/, the interaction between rep|aced by itsc-number expectation value. The resumng
the quasiparticles making up a spin triplet is zero. One mighHamiltonian for the spinons;,, is just at-J model with
be concerned that without the multiple scattering in the tripyenormalized parameters, where the constraint is only treated
let channel, there would not be anyresonance. However, on the average, again by adjusting the chemical potential and
this is not the case. Even in the absence of a triplet interagenormalizing the hopping paramefThese two formal-

tion, there is a sharmgr mode given by isms therefore lead to the same perturbation series in the
interactionJ.
_ 1—n We now review the self-consistent formalism for comput-
f dte'“’te(t)(0|wa(t)w2(0)|0)= m&w. ing the spin correlation function in the SC state. This self-

(13) consistent approach has been pioneered by And&rsoml
Rickayzeri? in treating the problem of the response of a
This occurs because the p continuum collapses to a point superconductor to an electromagnetic field and later used by
at total momentung=Q. Interaction in the triplet channel Bardasis and Schrieffer to study collective excitations in a
simply shifts the resonance energy frer2 . In this paper, superconductot® The basic idea of this method is the same
we shall only calculate ther and spin correlation function as that of any linear response calculation. We perturb a sys-
with V=0. The effect ofV is twofold, it changedoththe tem by a small external field and then compute the corre-
interaction in ther triplet channel and the energy to destroy sponding induced response. It is, however, important to re-
a d-wave pair in the ground state, thereby changing themember that when the system has SC order, any fluctuation
chemical potentiak. Since theV interaction does not distin- in the p-h channel immediately mixes with fluctuations in
guish between the singlet Cooper pair and the triplgtair,  the p-p and hole-hole channels. This mixing is responsible
these two contributions will essentially cancel each otherfor restoration of the transversality of the electromagnetic
This cancellation is indeed observed rather accurately in theesponse of a superconducfoand preserving the Ward
numerical calculations in both the Hubbard and thé identities® Microscopically it corresponds to taking into ac-
model?®?! Because thd interaction is different in the sin- count the response of the superconductor due to the backflow
glet and triplet channels, this cancellation does not occurof the condensate as well as the creation of the quasiparticle
Therefore, in this paper, we shall only study the effect of theexcitations. We have applied this formalism to thereso-
J interaction. nance in the negative-Hubbard modél (see also Ref. 35
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and shown that it constitutes a conserving approximation, . ‘ ‘

which gives excellent agreement with the exact theorems on Tq :E 9pCq+p1C—p1 (18

the z resonance of the)<0 Hubbard modei®3’ A similar P

formalism has been used recently by Kohno, Normand, and

Fukuyama® Salkola and Schrieffet® and Brinckmann and

Lee™ to study collective excitations. 77;:2 UpC—q-pCp) (19
In this paper we emphasize that the origin of the neutron P

resonance peak is coupling to tipep channel belowT.. i . : .

The SCLR formalism is a complete framework which takesg®! Nonvanishing time-dependent expectaﬂoniuxalues. Their

this effect into account, and has been shown to agree withPUNer transf?rin will be denoted &&,,=/dte'”’(Sy(t))

exact theorems where they are availalelowever, the na-  andmq,=Jdte“(mq (t)). The weight functiorg,, [Eq. (2)]

ive random-phase approximatiotRPA) formula xgea of the 7, operators arises from the assumdave sym-

= xpes/(1+ Voxecs also contains partial information about Metry of the SC c_)rder_paramef’é’r.The perturbed Hamil-

mixing into the noninteracting)_p Channe| due to the t0n|an(14) IS then I|near|zed around the+unpel‘turbed Oﬂﬁ

anomalous='F term in yges. Therefore the peak observed by factoring out the quantitieS,,, and g, :

at —2u in the RPA treatment may also have its origin due to

p-p mixing. This argument is further strengthened by the

findings in our present work that the RPA peak -a2u H=Tot My, (20
moves to the energy of the interacting triplet pair within
SCLR formalism. _
We start by considering thieJ Hamiltonian 7—{1=(Vqua,—hqw)e"thp Cgicmm
T J + q—iot
H=—t<%:g (e H.C.)+J%_:> Ss, + 7 Ta0® % UpC—piCqepi
J
+U2i nw”u‘#% Nig - (14 + 7T ""tEp: gpcglciq,pl, (21D

Within the Hartree-Fock approximation that we use hgre, th%vherev — J(cosq,+cosqy). Taking™, as the perturbation,
HubbardU only renormalizes the band structure, but it does q Y

. B we then use Kubo formulas
not affect the collective excitations of the order bf(see

discussion above Therefore in the rest of the paper we dis-

regard theU term in Hamiltonian(14), and assume that the . t .
appropriate renormalization of parameters has been (T()= —if dt’([F(t), Ha(t") D, (22)
performed! -

In this paper, we also restrict ourselves to a dSC state at
zero temperature, and assume that the equilibrium state méﬁ
be described by the BCS mean-field Hamiltonian t

determine expectation valu&, and w(fw (and hence
eir responses to the original perturbatibg,) in a self-
consistent manner. This procedure of SCLR is described in
detail in our earlier pa%i:r on they excitation of the
_ t t At * negativet) Hubbard modef:
Ho= % epcp”cp”+2p: ApCpTC*pﬁ}p" ApC-piCprs It is convenient to introduce the amplitude and phase os-
(15 cillations asbg,=my,+ 7y, and by,=m,,—m,,. After

_ : o some simple calculations, we arrive at the coupled equations
where A,=Aqg, is the d-wave pairing gaff and € for b’ by, and S,

= —2t(cosp,+cosp,)—u. The magnitude ofd, is deter- qo?
mined by the self-consistent equation

+ J Y -
22 = b= 7L+ +bgut 7t - Day = 2VgM, (Squ— gy Vo),
_ P _P
1—VBCS% 2Eptanr( ZT) (16)
; _ — — [Z2 A2 J J
(W'th T—O), Whel’eVBCS— 3J/2 andEp— _EP+AD b = _t+_b+ +—t__ b —2V m_(S w_h w/V )’
If we now apply the magnetic field,,e~'“" that couples do 4 qo " 4 qe 4 q qe” 74

to the spin operatosgzﬁpcglcmm (only the Zeeman ef- (23

fect of the applied field is of interest to Jighe system will

respond in the spin channel as well as in thehannels in 3 3

such a way that the operators Sqo=— Zm+ ;w_ Zm—baw—Vqu(S —hga Vo),
(24)

— t
Sq_zp Cq+ DTCPl ! (17) where
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|E g jz G- p(V w)Gp+q( v)+G_ (V)Gerq(w_V)+2Ffp(7/_w)|:p+q(_v)}

v
:22 ggz)(ufpup+q+vfpvp+q)2 z_pqz )
p 0 = Vpq
_-EzdvG G G G =23 g%(v2 2 2 .2 @
+-=1 gp E{ —p(V_w) p+q(_V)_ —p(V) p+q(w_v)}_ gp(vfpvarq_ufpuerq)ﬁ;
P P @ = Vpq
. , [dv
t,7:|% ng' Z{G,p(v—w)qu(—v)+G,p(v)Gp+q(w—V)—ZF,p(v—w)qu(—v)}
v
=22 gA(U_plUpsq— V- plpsg)’ 2_pq2 , (29
P 0 = Vpq
v
'z gpf {Fp+q(V)G—p(V+‘”) Fop(= )Gp+q(”)}:22p 9pup+q”p+q(u2—p_l’2—r’)w2_pj}2 ,
pa
1)
__|2 gpf {Fp+q V)G—p(V+w)+F ( V_w)Gp+q(V)}:_22p gpup+qvp+qﬂl
pq

) dv v
XO:I% jZ{Gp(V)Gp+q(V+w)+Fp(_V)Fp+q(V_w)}:_2p (up+qvfp_ufpvp+q)2w2_pq2 .

pq
|
In the equatlons above, vp% E+q+E_p, Upvp Xirr
=A,/2E,, us=5(1+ €,/Ey), andv;=3(1~ €,/E,). The Xsclr O, 0)= 7 —— (28)
p P p p 1+ VoXin '
Green’s functlons have been defined as
‘ Xir=XotAx, (29
Gp(w)=J dte“!(=i)(Tcp,(t)c),(0)),
2 2 J 2 J 2
3 m++m,—Zm+t,,—Zm,t+++§m,m+t+,
Fp(w)=f dte ' (=i)(Tcp(t)c_p(0)), Ax=-3 J J J2 N ’
1— —t, ——t__+—t, t _——t2
(26) 4 4 16 16

(30

fo ot T + and may be understood as a modified random-phase approxi-
Fp(“’)_f dte(—i)(Tep (t)ep(0)). mation where the bare bubb)g, has been modified by in-
cluding the ladder diagrams. Figure 2 gives the diagrammatic
In Eq.(25), w should be taken to have an infinitesimal imagi- interpretation of formulag29) and(30).
nary part,'=0%*, coming from causality. The procedure for finding thp-p correlation function
Solution of Egs.(24) gives the dynamical spin suscepti-

bility in the present SCLR formalism: P(q.)= —i At <[Tr (1), 72 (0)]) 31)

_ ot . ~ Sy is similar to the one shown above for the spin channel. We
Xscm(q'w)zlf dte o(t)([Sq (1),S-4(0) )= —- only need to add an external field in the}, channel and
q“’(27) compute the response in the same channel. Skipping the la-
borious but straightforward calculations we present the final
It can be written in the form expression for its Fourier transform
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21 Jt +m? |1 Jt 2 1 Jt
3, 3 , g Mt gt rmef 27 ot fmememo{ 27 5t -
t+++t__+§t+_ §t++t__ ty_ 1 1+Vq)(0
P(g,0)= J J J
2
3 2 2 m+<1—Zt__ +m_ 1—ZtJr+ +Em+m_t+_
2 2
— =t -t - —t _+— +
R T AR S 1+Vgxo

(32

In the normal state this reduces to a simptenatrix ex-  the effect of removing the RPA type of AF instability. We
pression that was studied in Ref. 7. There it was shown thathall see that ther resonance is robust against these varia-
in the normal state, thp-p spectrum atj=Q is dominated tions.
by the collective-mode resonance that appears due to the
collapse of thep-p continuum €, o+ €_,=—2u) and the
repulsive interaction of two particles in a triplet state sitting
on NN sites. We suggested that this collective mode may In this section we takd=0.6 andu= —0.3. We choose
contribute to the spin-fluctuation spectrum when the systenthe mean-field value ok ,=0.0094 and the reduction d o
becomes superconducting. However, such an argumeit set bya=0.82. We assume a finite vallie= 10" *t for the
raises an immediate concern that superconductivity could iitmaginary infinitesimal in the energy denominator and per-
principle lead to another effect—a significant broadening ofform integration by dividing the Brillouin zone into a 32 000
the 7r resonance due to possible scattering intoghle ex-  X32 000 lattice.
citations. The goal of the next part is to show that this does Figure 3 shows the “mechanics” of the resonance in
not happen. Ther resonance survives as a collective modeygc - In the normal state thp-p channel has a sharp peak
and affects strongly the dynamic spin-spin correlation funcat wg~—2u+ (J/2) (1—n)=0.65%. Notice that there is no
tion in the SC state. The important point here is that unlikevisible shift of the energy of this resonance in the SC state,

A. @ resonance and its robustness against vertex corrections

X0, Ax in xi, contains information about the resonance.
As we shall see in the next section, } nearly vanishes at
the 7 resonance energy, where Reis sharply peaked. The

but only a small broadening. This resonance inghp chan-
nel P(Q,w) then leads to a peak in Rg . Consequently at
a frequency where Rg,=|1/N| the real part of the de-

combination of these two effects gives rise to a sharp
resonance inyscir-

nominator in the SCLR expressi@B8) vanishes leading to a
peak in Imysc r- At these frequencies, the imaginary part of
the denominator (Img;,) is also small, and the resonance
appears to be quite sharp.

In Fig. 4, we compare the real part gf, with that of y,.

It is well known that the RPA form of the spin correlation As discussed above, we have resonance peaks ixdim
function overestimates the antiferromagnetic instability.when Re,=| 1Ngq|. We can see that taking,, instead of
Therefore, if we see a peak in the dynamic spin correlation,, considerably suppresses the divergence areudg (this
function, it is important to check if it is an artifact due to the divergence comes from the dynamic nesting of the Fermi
RPA type of overestimate or due to a genuine collectivesurface; it gives rise to the RPA peak, the only resonance one
mode. Moreover, the size of the dSC gap relativeTtois  gets from a naive RPA calculatipmnd leads to the devel-
significantly larger than the BCS estimate. Namely, the BCSpment of a peak at the energy of theexcitation. It is
gap equation(16) with the bare pairing interactioVMgcs  easily noticeable that if we do not take into account reduc-

=3J/2 gives aratio A, ) /kgT of about 4 which is small  tjon of Vg, but exploit the bare value cbeare: —2J, then
compared to the typically observed value of 6 to 8. There-

fore, in what follows, we take two approaches to these prob- 8
lems. We introduce an effective reduction of the antiferro-

IIl. NUMERICAL RESULTS

magnetic verte/o=aVg with a<1, as a way to model :?:’ Xirr
vertex corrections, or we take the dSC gapto be bigger 6 m Kirr ! .
than its mean-field valu& Both of these approaches have ] /l\;‘&?“‘

- Q

---- ImP

FIG. 2. Madification ofy;, due to ladder diagrams. FIG. 3. Reyr, IMyir, IMxscir, and InP vs w.
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2 T T 8
Im %
6l SCLR |
4 L
0.6 0.63 0.66 6.6 0.63 0.66
[} [0)]
FIG. 4. Reyi, and Regq vs w. The dotted line represents the FIG. 6. Imysc g and IMygpa VS ©

line of 1/2].

. . i . B. Robustness of thesr peak against variations
Reéxirr will cross it at two points {~ —2u andwg), giving of the superconducting gap
rise to both—RPA andr peaks(see Fig. J. However, the . ) o
divergence of Re,, aroundw, is much stronger, making the Another way of. suppressing AF instability within RPA or
7 peak more robust against variationsVg . SCLR formalism is to choose a larger dSC energy gap. In
In Fig. 5, we show the imaginary part gf, andy,. Note Fig. 8, we compare t_he results of SCLR calculations for the
that a dip develops in I, at the energy of ther excitation. ~ SPIN correlation function for two choices df,. T_he smaller
This means that the- resonance is much less damped thar®N€ A0=0.0094 corresponds to the self-consistentean-
one might have expected. In the normal state, the stability ofi€!d) value, and the bigger one was takengs=0.03. In
the 7 resonance is guaranteed by the absence of the phald#ese calculations, we take=0.6t and = —0.3t as before,
space available for decayp{p continuum collapses to a bPut withVq=—2J, the bare value¢=1).
point). In the dSC state, this argument no longer works. Mix- _ e observed in the previous subsection that two peaks
ing of thep-h andp-p channels could provide a mechanism (RPA andm) coexist with the ch_0|ce of the mean—fleld_value
for the decay of ther excitation. However, we see that the fOr Ao and a bare value fo¥ . Figure 8 shows that taking a
system accommodates theexcitation by suppressing lgg, larger dSC gap removes the RP_A peak and increases the
at its energy. In Sec. IV, we shall give an approximate anaSPectral weight of ther peak. This has an even stronger
lytical derivation of this important feature. effect than we saw in the previous section by reducing the
In Fig. 6, we compare the self-consistent spin-spin corre/AF €xchange constant. The latter one, as we found, only
lation function ysc g With the one obtained from the RPA Fémoves the RPA peak without affecting theesonance. It
calculationygpa. The latter one has an RPA peak that comesS also m;erestlng to find that for the larger gap there is an
from the dynamic nesting of the tight-binding Hamiltonian atincrease in the energy of the resonance. S
momentumQ. In IMysc g, this peak disappears almost A tenacious effect of the large dSC gap is explained in

completely, and the spectral weight is transferred intothe F19- 9. Here the choice of parameters is the same as in the
excitation. previous figure withAy=0.0%. By looking at xj, in this

In Fig. 7, we show the comparison of different choices of¢@se of largel,, we find that the RPA peak in the real part
ain Vq. Notice the coexistence of the RPA peak with the (w~—2u) has completely disappeared. For the mean-field
peak for the choice of bare parameter<1). Reducinge value of Ay, there was only a suppression of this peak. In
has no effect on ther resonance but completely destroys the contrast to that, the only effect of taking a lardey on thew
RPA peak. From the analysis carried out in this subsectionP€aK in R&, was to make it broader. This broadening ex-
we conclude that the RPA peak might be the result of overPlains the increase in the total weight of thepeak inxscir
estimating the AF instability, while ther peak is robust (the slope of Rgj, at the crossing point with 1Rdeter-
against vertex corrections.

20
1.5 | ImM Xscin
1M Kirr 15 E a=l ----
' =082 ——
1} L :
10
05+ 5r1
0.6 0.63 0.66

w

FIG. 7. Imyscr VS w for two different values of vertex correc-
FIG. 5. Imy;, and Imy, VS . tion parametek.
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20 F
0 Im XscLr(9:0)
15
10+ XscLRr(Ag=0.05) | 2
1
5 0

0.6 0.63 0.66

q 1.04x

FIG. 8. Imyscir Vs w for different values ofA.
FIG. 10. Imysc r(0,w) for q=(q,q).

mines the total weight of the resonance irygc g, S€e more
on that in Sec. IV. Also note an enormous suppression of been used in Ref. 22 to obtain approximate(@lgebra. It
imaginary part ofy;, for energies belowv, in this case of is important to realize that one should take the averagg?TJ of
large A,. not over the whole Brillouin zone but over a narrow band

In Fig. 10, we show theq and o dependence of around the Fermi surface, since in most of these expressions
ImyscLr(d, ). This plot has been done fa&x;=0.0%, «  the other factors in the integrals restrict the important domain
=1 and for computational reasons we took a larger of integration to this region.
=102t, which leads to considerable smearing. However, We introduce
the general picture of thg dependence of Iygc g(Q, w)
may be seen quite clearly. We have an incommensurate 21—v2,p—vp+Q
structure at low frequencies, which is followed by a com- '1(‘”):2 9> 2
mensurater peak. Right after the peak, there is a missing P
spectral weight at the commensurate wavevector. Qualita-
tively this picture is similar to what is seen in inelastic neu- _ Up+QUp+Q~U-—pl—p

Mk S : l(@)=2 g, > : (33

tron scattering in YBgCuwOg,«.> (The incommensurate ) w?— Voo
peaks in that case will be rotated by 45° due to a different ) -
band structure. Calculations for the YfaxOg,, band and use some identities for the BCS coherence factors and

structure will be published elsewhet®. the approximatiorg,%~l to express all the factors in E@4)
as

IV. ANALYTICAL DERIVATION OF THE @ RESONANCE _
ty =—4ul(o),

In the previous section, we showed numerically that at the

energy of therr excitation, y;, possesses a sharp peak in the t,_=—2o0l(0),
real part and a dip in the imaginary part. In this section, we )
study the origin of these properties analyticdflyWhen - 1-n o | 34
looking at the structure of the expressions in E2g), one T o (@), (34
encounters very often analogous integrals that only differ by
a factorgf, in the p summation. To simplify the following m, =—2ul,(w),
analysis, we make an approximation that this factor may be
replaced by its average value of 1. A similar assumption has m_=—wl,(),
2 2 w2—4,u2

Xo= 33+ 2onlz(w)-

Substituting these expressions into E80) and using the
identity —4uAqly(w)=(1—n)+ (4u?—w?)1,(w) which
holds within the approximation described above, we get

1 Iyw) (02— wd)(w?—4u?)

Vees 249 wz—wg-l—Aole(w)(wz—Z,u.wo),
(35
where Vgcs comes from the gap equatioX gpu,vp,
=Ay/Vgcs EQ. (16)], andwg=—2u+(J3/2) (1—n). In the
mean field analysis of thé-J model, Vgcs=3J/2. Since

FIG. 9. xir and xo Vs w for the case when, is larger than its  12(w) <0 for w~ wg, the denominator of the expressi(8b)
BCS value. vanishes when the frequency is larger thanbut very close

Xirr =
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to it (the energy separation is proportionaIAé). This ex-
plains the peak in Rg,, and the factowuz—wg in the nu-
merator explains the dip in the imaginary part.

Expression35) allows us to estimate the integrated spec-

tral weight of thew excitation in the spin-spin correlation
function. For simplicity, we neglect a small imaginary part of
Xir N€arwg. Then a pole inygc g 0Ccurs when

Rexin=— V_Q (36)

Expandingysci g around this frequency, we find that

_ Xirr ‘ 1
XSCLR VQ(&Xi"/ﬂw)‘w w—w,+i0
*

B 1 -1
V(Zg((?Xirr/é’w”w* W=, +i0°

(37

Earlier we introduced two distinct energies in our system.

The BCS couplingVgcs and the AF coupling/q=—2J. If
we consider dypotheticalsituation wherVg= —Vgcs, we
can see that the conditigq86) is satisfied exactly ab, and
a simple calculation givesyscig(®)= 2A5/V5(1—n)
[—1/(w—wo+i0)]. If we take hereVg to be Vgcs=3J/2,
we have for the intensity of the resonance

1

v

8A2
9J%(1-n)

w0+V'
doy

wofV

" _
SCLR™

(39

Iz
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with the Hamiltonian and then factorizing the results in terms
of the occupation numbers for the electrarfs=(c},Cp,)
and BCS anomalous averagesy,=(C_p;Cp;). As shown

by Anderson and other3,this procedure recovers the modi-
fied random phase ariimatrix approximations.

[H*”;Q]:(EMQJ&*F))W;Q
J
5 (1-v5-v5.9) 2 mign(P—K)

3J
- 7(S;Q+ Stp_QQ)% Uk n(p—K)

+4J upvp; Sio- (40)

[H,Spol=(€ps o €p)Spot 23(”§+Q_U:2a)§k: Sko

3J )
_7(7T;Q_7TpQ)Ek Uvn(p—K)

J L
_Eupvp; (o= k) 7(P—K), (41

[H, mpol=— (~€p+Q+~efp)7Tr;Q

J
— 5 (1= 0505, 2 mn(P—K)

The right-hand side is equal to the expression derived in the

Appendix as a lower bound. In E¢38), v andv’ character-
ize the width of themr resonance arounad,, and we intro-
duced a factor & since the Lehmann representation of Eq.
(27) is given by Iny(Q,w)=7Z,|(n[Sg|0)[?8(w— wno).
This definition ofl . is the same a#(T) of Refs. 2 and 46.
Expression(38) is also what we obtained for the intensity of
the 7 resonance in Ref. 7 usingTamatrix analysig'’

If we take realistic values 00=120 meV, A, =40
meV (this corresponds td(=28.3 meV and 1-n=15%
and substitute them into E¢38), we getl ,=0.32. For the
t-J model, |Vq|>Vpgcs, and the energy satisfying the con-
dition (36) is lower thanwg and the slop@y;, /Jw is smaller
than the above estimateee Fig. 4. This will be partly can-
celled with the increse o, and we expect E(38) gives
a semiguantitative estimate foy,.

V. COMPARISON WITH THE SO (5) EQUATIONS
OF MOTION

We now study the Heisenberg equations of motion

(EOM) for the 7= and spin operators
+ _ 1 t

TpQ™ Cp+Q1Cpr

TpQ=C-p-QiCp. » (39)

+ ot
SpQ=Cp+QiCp! »

using Eq.(14) as a Hamiltonian. A closed set of equations
may be obtained by taking commutators of the operg®@9s

3J
+7<s;Q—stp_QQ)§ U 7(p—k)

—4) upvp; Sio- (42)

Here »(p) = cosp,+cosp, and the bare dispersion is renor-

malized into~ep= €p— (3J/2)Ekvﬁn(p—k). The latter cor-

responds to a trivial rescaling ofwhich we will disregard.
The operator of the collective excitation in tke” chan-

nel is w5=2pg(p) ng. Then from Eq.(40) we have

H,mo]l=w 7T++_OS+, (43

[ Q] 0"Q VBCS Q

Wheresa = EDSSQ andVpgcg has been defined earlier. Analo-
gously,

[H,mg] - ogs (44)
, AT = —WoTo— ; .

Q 0%Q Vics Q
We can see that in the SC state the EOM ﬁg no longer
close on themselves. The third and the fourth terms in Egs.
(40) and (42), that come from anomalous self-energy and
scattering correspondingly, do not cancel each other exactly.
This may be contrasted to thgexcitation in the negativet
Hubbard modef where exact cancelation of such terms oc-
curs.

The collective mode in th& channel may be obtained by

summing Eq(41) over differentp’s.
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Ao ~ definedw mode in thep-p channel in the normal state, and
[H.Sql=— V—(Tra— mo)- (45 this mode couples to the-h spin channel in the dSC state,

BeCS where it remains as a sharp excitation. The energy of this
In order to derive this result, we had to disregarded the firsinode is not directly related to the dSC gap, but is directly
term of Eq.(41). In the language of our earlier SCLR ap- related to the doping. In the underdoped materials, the dSC
proach, this means neglecting in comparison wittA . In- gap increases slightly as doping is reduced, while the neutron
the close V|C|n|ty Ofa)o, this is a ]UStlflable a.SSUmption, be- resonance peak energy decreases withhis important ex-
cause at these frequenciay is strongly peaked and is the perimental finding shows that the neutron resonance peak is
dominant part ofy;, . However, itis less so at other frequen- not simply a “2A” phenomenon, and our interpretation in
cies, where the incoherent continuum is more importantierms of thew resonance naturally resolves this apparent
Thus the meaning of going from E@1) to Eq. (45 isa  paradox. The doping dependence of both energy and inten-
single mode approximation, which captures collective desity of the neutron resonance peak were predictétefore
grees of freedom only. How good is this approximation? Ongnhe experiments in the underdoped superconductors were
can see from the numerical results of Sec. lll that &y  carried out®
around 0.1 the 7 peak already became a dominant feature (3) Many approximations within our current calculations
of the S, spectrum. Some estimates of the realistic value ofre not completely controlled. However, the main behavior
Ao find it to be close to 0.2 In this case, such a single mode can be verified in the case where exact knowledge is avail-

approximation will truly be a good orfé. able. First of all, detailed exact diagonalization studies have
It is instructive to compare our microscopic EOM’s with pbeen carried out both for thdé-J and the Hubbard
the S@5) EOM's in the SC staté” We have models??° |t is clearly seen that ther mode in the

. p-pchannel exists in all doping range, and it has a low-

—im, =*+(Bsm, +g(ns)n,), (46)  energy peak where both the energy and intensity scale with

X, in agreement with ouf-matrix calculation. In contrast to
. 1 + the 7 correlation function, the spin correlation function does
—Ing=-— m<n5>(%— Ta), (47)  not have sharp peaks in the high doping range. In the doping
“ range where there are dSC fluctuations, #hgeak coincides
with 7 =L,,*iLs, and we assumed dSC ordering alongwith the spin peak. From these results, one can conclude that
ns. Equation(46) is the analog of Eqg43) and(44), and Eq.  the w mode is a genuine collective mode. We can also com-
(47) corresponds to Eq45). This comparison of Eqg43), pare our approximations with the exact GD models?®
(45—(47) is very revealing in that it gives a deeper under-where therr operators are exact eigenoperators of the Hamil-
standing of the nature of the excitation. Usually the exis- tonian. The manipulations presented in this work lead to re-
tence of the sharp resonance is not coincidental but is relategllts consistent with the exact ) Ward identities. Ther
to some symmetry present in the system. In our case it is aresonance is an exact excitation of the(Sdnodels, and it
approximate S(®) symmetry of the-J model that gives rise has exactly the same doping dependence of the mode energy
to such pronounced resonance. The agreement between theind intensity as obtained here.
equations of motion derived from the $) quantum non- (4) The distinction between the “RPA peak” and ther*
linear o modef? and the microscopit-J model is a key peak” in the dSC state will be a model-dependent one. In the
result of this section. It demonstrates that the®@uantum dSC state, they share the same quantum numbers, and both
nonlinearo model can be used as an effective low-energyare based on approximate calculations. The origin of the

Hamiltonian to describe the resonance. RPA peak may be related to the overestimate of the magnetic
instability and we see that it may not be robust against varia-
VI. SUMMARY tions of the vertex corrections or variations of the gap, both

of which diminish AF instability. On the other hand, the

We have presented detailed analytical and numerical calSCLR treatment of ther peak is more robust against these
culations for the contribution from ther resonance to the variations. One can test these two approximate schemes
spin correlation function in the dSC state. The results ofwithin the exact S(b) models. Only SCLR treatment includ-
these calculations support our earlier interpretation of théng the “7" process agree with the exact answer in this case.
resonant neutron-scattering peak in terms ofghe collec-  Therefore, calculations including the process is a better
tive mode in thew channel. Various approximations were approximation than the simple RPA calculation.
used in the calculations presented in this work, some of them (5) Within our approximations, the spin spectrum consists
are model dependent and may not be well controlled. Theresf an incommensurate structure at low frequencies, a sharp
fore, it is important to summarize here the main points leadeommensurate peak arising from the triplet excitation in the
ing to our conclusion. p-p channel(the 7 peak, and a missing spectral weight at

(1) From general model-independent sum rules on variousommensurate wave vector at higher frequencies. These fea-
correlation functions, one can conclude that the contributioniures are in overall agreement with experiments. The pre-
from the 7r correlation function to the dynamic spin correla- dicted weight of ther resonance agrees quantitatively with
tion function is of the order ofA|?/(1—n), in excellent experiments.
agreement with the two key experimental observations, Therefore, while each of the above arguments are not
namely, the vanishing of the sharp mode abdyeand the complete on their own, the combination of them makes a
doping dependence of its intensity. strong overall case. From the interpretation of the neutron

(2) Within model-dependent calculations, there is a well-resonance peak in terms of taemode, we hope to learn a
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general principle, rather than a specific model for fitting a

specific experiment. In strongly correlated systems, most de- Pag(@)= 2 [(0|AIn)n[B|0)&(w+Eo—E,)
grees of freedoms are strongly coupled, and most spectra are n:(07aln)

incoherent. Usually, only a symmetry principle can forbid —(0|B|n)(n|A|0)8(w—Eg+E,)] (A2)
the decay of a collective excitation. In the case of the reso-
nant neutron-scattering peak, we believe that it is thé550
symmetry principle at work, and the mode is the pseudo- .
Goldstone boson associated with this spontaneous symmet“?”‘I weight as

breaking. In this paper, we have shown that such an interpre- oy

tation is consistent with the key experimental facts, but it [PZ?‘B]ZiI f dwp, (o). (A3)
may not be the only possible interpretation. Its utility lies in “1

the simplicity and generality of the principle, which can be Al of the above spectral functior(sr spectral weightare
applied to other related experiments and lead to new experpjjinear with respect toA and B, and have the property

may be regarded as the contribution of thexcitation to the
full spectrumpa g(w). We can introducev-integrated spec-

mental predictions. paat=0 for =0 or w,=w,=0. Therefore, the Cauchy-
Schwarz inequality holds provided that the same frequency
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APPENDIX: MODEL-INDEPENDENT ESTIMATE [p"* 4] wot v’ ~1-n, [ ] Of” iA. (A5)
PW WT wg—v P NT wo—v
OF THE 7 CONTRIBUTION TO THE
SPIN SUSCEPTIBILITY Equation(A4) then immediately gives us
A spectral function for any two operatofsandB is de- - |Al?
fined as [PN NT]wO v~ 1-n" (AB)

The left-hand side of this equation represents the contribu-
_ [p'et padv tion of the # mode to the spin excitation spectrufa.g.,
Pas(®)= [D sl@)~Daglo)] Imy?% ) and the right-hand side gives its lower boufid.
This is a model-independent result.
= [(0]A|n}(n|B|0)&(w+Ey—Ey) Noting that Imy™ ~ =2 Imy??% we obtain Eq(12). When
n applying this result to the present analysis of thd
model, where Ay=VpcA=(3J/2)A, we have I,
=(8/99%)[|Ao|%/(1—n)]. The analysis in this appendix can
be generalized to finite temperatures by considering the spec-
tral function

—(0[B[n)(n[A[0) (0 —Eo+Ey)], (AD)

whereD{5(w) and Dad"(w) are retarded and advanced re-
sponse functlons respectlvelbn} s are eigenstates of the

system Hamiltonian with energl,,, and|0) is the ground 1 s s

state with energyE,. If we restrict the above summation PA,B(w):ZE (e~ PEn—e” FEm)(n|A|m)(m|B|n)
only to intermediate states that have nonzero overlap with i

71]0), then such a quantity X w+E,—Ep). (A7)
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