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p excitation of the t-J model

Eugene Demler
Department of Physics, Stanford University, Stanford, California 94305

Hiroshi Kohno
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Shou-Cheng Zhang
Department of Physics, Stanford University, Stanford, California 94305
~Received 14 October 1997; revised manuscript received 5 March 1998!

In this paper, we present analytical and numerical calculations of thep resonance in thet-J model. We show
in detail how thep resonance in the particle-particle channel couples to the dynamical spin correlation function
in a superconducting state. The contribution of thep resonance to the spin excitation spectrum can be esti-
mated from general model-independent sum rules, and it agrees with our detailed calculations. The results are
in overall agreement with the exact diagonalization studies of thet-J model. Earlier calculations predicted the
correct doping dependence of the neutron resonance peak in the YBa2Cu3O61x superconductor, and in this
paper detailed energy and momentum dependence of the spin correlation function is presented. The micro-
scopic equations of motion obtained within current formalism agree with that of the SO~5! nonlinears model,
where thep resonance is interpreted as a pseudo-Goldstone mode of the spontaneous SO~5! symmetry
breaking.@S0163-1829~98!02933-6#
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I. INTRODUCTION

Of many fascinating experiments on high-Tc supercon-
ductors, the resonant neutron-scattering peak observed i
YBa2Cu3O61x family is an extremely striking one.1–5 It was
first observed in the optimally doped YBa2Cu3O7 materials.
The mode exists only in a narrow region in reciprocal sp
near (p/a,p/b,p/c), wherea andb are the lattice constant
in the CuO2 plane andc is the distance between two neig
boring CuO2 planes in a unit cell.~In the following, we will
set these lattice constants to unity to simplify notations!. The
energy of the resonance is 41 meV and it disperses weak
reciprocal space. Perhaps the most striking property of
mode is its disappearance aboveTc . More recently, this type
of collective mode has also been observed in the underdo
families of the YBa2Cu3O7 superconductors. Here the ener
of this mode is 33 and 25 meV, for materials withTc values
of 62 and 52 K, respectively. While the mode energy d
creases monotonically withTc , the mode intensity increase
as Tc decreases. Compared with the 41 meV peak, th
modes also have a broader spectral distribution belowTc . In
these underdoped materials the resonance is also obs
above Tc where it becomes significantly broader. All th
modes have been observed in the neutron spin-flip chan
and more recently, the 41 meV mode was seen to broa
under a uniform magnetic field,6 both indicating that the
modes are spin triplets.

These striking resonances have generated wide theore
interests and a number of theoretical ideas have been
gested in order to explain their properties.7–16 We believe
that one key ingredient is the coupling of the neutron to
particle-particle (p-p) channel which occurs in the supe
conducting~SC! state via the condensate. In particular for
dx22y2 gap, the coherence factor@12Dk1qDk /EkEk1q#/2
PRB 580163-1829/98/58~9!/5719~12!/$15.00
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for q5(p,p,p) goes to unity at threshold rather than va
ishing as it would for ans-wave superconductor.1,17 Further-
more, two of us argued that thep-p interactions in this chan-
nel leads to a sharp resonance which was called thep mode.7

In the normal state, the resonance is decoupled from
neutron scattering, but can in principle be observed in p
tunneling experiments.18 This theory predicted the dopin
dependence of the mode energy and intensity which was
sequently verified experimentally.19 This picture was also
later verified in detailed numerical calculations of the Hu
bard and thet-J models by Meixnetet al.20 and by Eder,
Hanke, and one of us.21

In this paper, we study thep resonance using a self
consistent linear response~SCLR! theory which formally
takes into account the mixing of the particle-hole (p-h) with
thep-p channels in the SC state. This formalism is explain
in Sec. II. In Sec. III, we present numerical results based
this formalism and show the overall structure of the sp
correlation function. We then give an approximate but a
lytic expression for the resonance in Sec. IV. In Sec. V,
compare our formalism with the results obtained by us
equations of motion for thet-J model and with the SO~5!
quantum nonlinears model. In Sec. VI, we summarize th
results and conclude the paper with some general rema
Before going into these details, we give here some gen
features of thep resonance.

The central object of the theory of thep resonance is the
so-calledp operator,7 defined by

pa
†5

1

2(p
gpcp1Q

† sasyc2p
† ~1!

with sa being Pauli matrices,cp
†5(cp↑

† ,cp↓
† ), and
5719 © 1998 The American Physical Society
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gp5
1

A2
~cospx2cospy!. ~2!

This operator is a spin triplet and carries charge 2. This
erator inspired one of us~S.C.Z.! to formulate the SO~5!
theory of high-Tc superconductivity.22 Together with the to-
tal spin and total charge operators, the sixp operators form
an SO~5! Lie algebra. A natural vector representation of th
SO~5! Lie algebra is the superspin

nW 5~n1 ,n2 ,n3 ,n4 ,n5!5S D1D†

2
,Nx ,Ny ,Nz ,

D2D†

2i D
~3!

formed out of the antiferromagnetic~AF! order parameter

Na5
1

2(p
cp1Q

† sacp ~4!

and the real and imaginary components of thed-wave super-
conducting~dSC! order parameter

D5(
p

gpc2p↓cp↑ . ~5!

Heregp , Eq.~2!, is thed-wave form factor. Thep operator
rotatesNa andD into each other

@pa ,Nb#5 iDdab , ~6!

therefore within the SO~5! theory, AF and dSC are unifie
into a common object, called superspin, which can be p
tured as a unit vector on an SO~5! sphere, see Fig. 1. A direc
first-order transition between these two phases can be
duced by a chemical potentialm, and the superspin flop
from the AF direction into the dSC direction. However, i
side the dSC phase, there are four collective modes, w
can be viewed as Goldstone modes of the spontaneous S~5!
symmetry breaking. The usual SC phase mode corresp
to the rotation inside the dSC plane, while there are th
extra p modes, corresponding to rotations towards the
directions, see Fig. 1. Becausem breaks the SO~5! symmetry
explicitly and constrains the superspin to lie at the equa
the p fluctuations are massive. From this general consid
ation, we expect its mass, or the resonance energy, to
crease with decreasing doping.

FIG. 1. Geometric interpretation of thep resonance in the su
perspin phase.
-

-
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ch

ds
e
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r-
e-

The SO~5! theory therefore provides a simple picture
the p modes as collective rotations in the SO~5! sphere.
Without going into the microscopic details, this picture im
mediately provides us with some useful quantitative inform
tion. Inside the dSC phase, the right-hand side of the op
tor equation~6! can be replaced by the expectation value
the dSC order parameter, giving

@pa ,Nb#5 i ^D&dab . ~7!

This equation can be simply interpreted as the commuta
relation between a set of canonically conjugate variables,
like p and q in elementary quantum mechanics. Therefo
we see that a new set of collective quantum degrees of f
dom emerges in the broken symmetry state characterize
a dSC orderD. This simple consideration explains why thep
resonance mode is only observed belowTc . However, in the
regime where a fluctuatingD order parameter exists, thep
resonance can also appear as a broad feature.

In the dSC state, thep mode couples directly to the spi
operatorSW Q5NW . What is the dynamics associated with thep
operator? This is a model-dependent microscopic questio
one is dealing with an SO~5! symmetric microscopic
model,23–25 the dynamics of thep operator is determined by
the equation

@H,pa
† #5v0pa

† , ~8!

wherev0522m. Therefore, SO~5! symmetric models pre-
dict a sharpp resonance whose energy scales with dopi
The dynamics associated with the coupledp and spin opera-
tor in the t-J model is the central question studied in o
current paper. However, even without detailed microsco
calculations, we can give general arguments to estimate
contribution from thep operator to the spin correlation func
tion. Equation~7! leads to an important sum rule for th
mixed correlation function between the spin and thep op-
erators. Defining the mixed correlation function as

mab~v!52 K 0Upa

1

v2H1E01 i0
Nb

2Nb

1

v2H1E01 i0
paU0L ~9!

and making use of Eq.~7!, we have

E dv

2p
mab~v!52dab^0uDu0&. ~10!

In addition, we also have another sum rule for thep corre-
lation function, which follows from the commutation relatio

@pa ,pb
† #5~12n!dab , ~11!

where n is a filling factor ~half filling corresponds ton
51). From these two sum rules, we can put a lower bou
on thep contribution to the spin excitation spectrum as
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I p[
1

pEp peak
dvImx12~Q,v!*

2uDu2

12n
~12!

as shown in the Appendix. Therefore, one would expect
p contribution to the dynamic spin correlation function
scale as the square of the dSC order parameter and inve
with the dopingx512n. Both of these conclusions are co
sistent with the experimental finding in the optimally dop
YBa2Cu3O7 that the neutron resonance mode disappe
aboveTc as a sharp excitation, and with the doping dep
dence of its intensity. We can use typical values ofD (p,0)
540 meV~see Appendix for converting the order parame
to the quasiparticle energy gap!, J5120 meV, and doping
x515% to estimate the lower bound forI p as 0.32. This is
close to and consistent with the experimentally measu
value 0.5160.1.2 In a realistic model, thep operator is not
an exact eigenoperator of the Hamiltonian, and Eq.~8! is
only approximately fulfilled with other contributions to th
energyv0. However, as long as thep operator remains as a
approximate eigenoperator, it will make a sharp contribut
to the spin correlation function, and the energy of the mo
will have a leading contribution of22m.

II. SELF-CONSISTENT FORMALISM

In this paper, we shall study thep mode of thet-J model
with nearest-neighbor~NN! hopping. Before presenting th
details of the formalism, we would like to answer some ge
eral questions regarding the use of this model and the
proximations.

The first question concerns the effect of the NN Coulo
interactionV( i , jninj .26 Even if we did not include a bareV
term, the reduction from the on-site Hubbard model to
t-J model would generate such a term withV52J/4. Ac-
tually, at this particular value ofV, the interaction between
the quasiparticles making up a spin triplet is zero. One mi
be concerned that without the multiple scattering in the tr
let channel, there would not be anyp resonance. However
this is not the case. Even in the absence of a triplet inte
tion, there is a sharpp mode given by

E dteivtu~ t !^0upa~ t !pb
†~0!u0&5

12n

v12m1 i0
dab .

~13!

This occurs because thep-p continuum collapses to a poin
at total momentumq5Q. Interaction in the triplet channe
simply shifts the resonance energy from22m. In this paper,
we shall only calculate thep and spin correlation function
with V50. The effect ofV is twofold, it changesboth the
interaction in thep triplet channel and the energy to destr
a d-wave pair in the ground state, thereby changing
chemical potentialm. Since theV interaction does not distin
guish between the singlet Cooper pair and the tripletp pair,
these two contributions will essentially cancel each oth
This cancellation is indeed observed rather accurately in
numerical calculations in both the Hubbard and thet-J
model.20,21 Because theJ interaction is different in the sin
glet and triplet channels, this cancellation does not oc
Therefore, in this paper, we shall only study the effect of
J interaction.
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The second question concerns the effect of the ne
nearest-neighbor hopping termt8.20,21,26,27In the presence of
this term, thep-p continuum no longer collapses at tot
momentumQ, and it is not clear if thep mode can remain
sharp in the presence oft8. This question depends on th
bandwidth around the (p,0) and (0,p) points in reciprocal
space. While the bare bandwidth might be large, it is kno
from both photoemission and numerical experiments t
many-body corrections reduce the bandwidth at these po
significantly. Assuming the reduced band structure, thep
mode remains sharp in the normal state. Direct numer
calculations on thep resonance also show that thep mode
remains sharp for a wide range oft8.20,21Because the many
body reduction of the bandwidth is hard to obtain from dire
perturbation theory, we shall not address thet8 issue in this
paper.

In this work, we shall mainly discuss the two-dimension
case where thep operator carries momentum (p,p). Gen-
eralizations to bilayer system is straightforward. In this ca
the p operator rotates the three-dimensional~3D! AF state
into the 3D dSC state, and carries momentum (p,p,p), i.e.,
it is odd under bilayer interchange. If the 3Dp operator is an
approximate eigenoperator of the interlayer Hamiltonia
analysis presented in this paper will carry through in t
bilayer case as well.

Finally we would like to address the issue of the lar
HubbardU repulsion or the no double occupancy constra
in the t-J model.28,29 In this paper, we shall only treat th
HubbardU within the Hartree approximation. In this case,
effect can be captured by a renormalization of the chem
potential29 and the hoppingt. Alternatively, we can treat the
t-J model within the slave boson mean field theory. He
one replaces the electron operatorcis by a product ofbi f is .
Within the dSC state, the holonsbi are condensed and can b
replaced by itsc-number expectation value. The resultin
Hamiltonian for the spinonsf is is just a t-J model with
renormalized parameters, where the constraint is only tre
on the average, again by adjusting the chemical potential
renormalizing the hopping parameter.30 These two formal-
isms therefore lead to the same perturbation series in
interactionJ.

We now review the self-consistent formalism for compu
ing the spin correlation function in the SC state. This se
consistent approach has been pioneered by Anderson31 and
Rickayzen32 in treating the problem of the response of
superconductor to an electromagnetic field and later used
Bardasis and Schrieffer to study collective excitations in
superconductor.33 The basic idea of this method is the sam
as that of any linear response calculation. We perturb a
tem by a small external field and then compute the co
sponding induced response. It is, however, important to
member that when the system has SC order, any fluctua
in the p-h channel immediately mixes with fluctuations
the p-p and hole-hole channels. This mixing is responsib
for restoration of the transversality of the electromagne
response of a superconductor32 and preserving the Ward
identities.34 Microscopically it corresponds to taking into ac
count the response of the superconductor due to the back
of the condensate as well as the creation of the quasipar
excitations. We have applied this formalism to theh reso-
nance in the negative-U Hubbard model34 ~see also Ref. 35!,
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and shown that it constitutes a conserving approximat
which gives excellent agreement with the exact theorems
the h resonance of theU,0 Hubbard model.36,37 A similar
formalism has been used recently by Kohno, Normand,
Fukuyama,38 Salkola and Schrieffer,39 and Brinckmann and
Lee40 to study collective excitations.

In this paper we emphasize that the origin of the neut
resonance peak is coupling to thep-p channel belowTc .
The SCLR formalism is a complete framework which tak
this effect into account, and has been shown to agree
exact theorems where they are available.34 However, the na-
ive random-phase approximation~RPA! formula xRPA
5xBCS/(11VQxBCS) also contains partial information abou
mixing into the noninteractingp-p channel due to the
anomalousF†F term in xBCS. Therefore the peak observe
at 22m in the RPA treatment may also have its origin due
p-p mixing. This argument is further strengthened by t
findings in our present work that the RPA peak at22m
moves to the energy of the interacting triplet pair with
SCLR formalism.

We start by considering thet-J Hamiltonian

H52t (
^ i j &s

~cis
† cj s1H.c.!1J(̂

i j &
SiSj

1U(
i

ni↑ni↓2m(
is

nis . ~14!

Within the Hartree-Fock approximation that we use here,
HubbardU only renormalizes the band structure, but it do
not affect the collective excitations of the order ofJ ~see
discussion above!. Therefore in the rest of the paper we di
regard theU term in Hamiltonian~14!, and assume that th
appropriate renormalization of parameters has b
performed.41

In this paper, we also restrict ourselves to a dSC stat
zero temperature, and assume that the equilibrium state
be described by the BCS mean-field Hamiltonian

H05(
ps

epcps
† cps1(

p
Dpcp↑

† c2p↓
† 1(

p
Dp* c2p↓cp↑ ,

~15!

where Dp5D0gp is the d-wave pairing gap42 and ep
522t(cospx1cospy)2m. The magnitude ofD0 is deter-
mined by the self-consistent equation

15VBCS(
p

gp
2

2Ep
tanhS Ep

2TD ~16!

~with T50), whereVBCS53J/2 andEp5Aep
21Dp

2.
If we now apply the magnetic fieldhqve2 ivt that couples

to the spin operatorSq
25(pcp↓

† cq1p↑ ~only the Zeeman ef-
fect of the applied field is of interest to us!, the system will
respond in the spin channel as well as in thep channels in
such a way that the operators

Sq5(
p

cq1p↑
† cp↓ , ~17!
n,
n

d

n

s
th

e
s

n

at
ay

pq
15(

p
gpcq1p↑

† c2p↑
† , ~18!

pq
25(

p
gpc2q2p↓cp↓ ~19!

get nonvanishing time-dependent expectation values. T
Fourier transform will be denoted asSqv5*dteivt^Sq(t)&
andpqv

6 5*dteivt^pq
6(t)&. The weight functiongp @Eq. ~2!#

of the pq
6 operators arises from the assumedd-wave sym-

metry of the SC order parameter.43 The perturbed Hamil-
tonian~14! is then linearized around the unperturbed oneH0

by factoring out the quantitiesSqv andpqv
6 :

H5H01H1 , ~20!

H15~VqSqv2hqv!e2 ivt(
p

cp↓
† cq1p↑

1
J

4
pqv

1 e2 ivt(
p

gpc2p↑cq1p↑

1
J

4
pqv

2 e2 ivt(
p

gpcp↓
† c2q2p↓

† , ~21!

whereVq5J(cosqx1cosqy). TakingH1 as the perturbation
we then use Kubo formulas

^ f̂ ~ t !&52 i E
2`

t

dt8^@ f̂ ~ t !,H1~ t8!#&H0
~22!

to determine expectation valuesSqv and pqv
6 ~and hence

their responses to the original perturbationhqv) in a self-
consistent manner. This procedure of SCLR is describe
detail in our earlier paper on theh excitation of the
negative-U Hubbard model.34

It is convenient to introduce the amplitude and phase
cillations as bqv

1 5pqv
1 1pqv

2 and bqv
2 5pqv

1 2pqv
2 . After

some simple calculations, we arrive at the coupled equat
for bqv

1 , bqv
2 andSqv

bqv
1 5

J

4
t11bqv

1 1
J

4
t12bqv

2 22Vqm1~Sqv2hqv /Vq!,

bqv
2 5

J

4
t12bqv

1 1
J

4
t22bqv

2 22Vqm2~Sqv2hqv /Vq!,

~23!

Sqv52
J

4
m1bqv

1 2
J

4
m2bqv

2 2Vqx0~Sqv2hqv /Vq!,

~24!

where
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t115 i(
p

gp
2E dn

2p
$G2p~n2v!Gp1q~2n!1G2p~n!Gp1q~v2n!12F2p~n2v!Fp1q~2n!%

52(
p

gp
2~u2pup1q1v2pvp1q!2

npq

v22npq
2

,

t125 i(
p

gp
2E dn

2p
$G2p~n2v!Gp1q~2n!2G2p~n!Gp1q~v2n!%52(

p
gp

2~v2p
2 vp1q

2 2u2p
2 up1q

2 !
v

v22npq
2

,

t225 i(
p

gp
2E dn

2p
$G2p~n2v!Gp1q~2n!1G2p~n!Gp1q~v2n!22F2p~n2v!Fp1q~2n!%

52(
p

gp
2~u2pup1q2v2pvp1q!2

npq

v22npq
2

, ~25!

m15 i(
p

gpE dn

2p
$Fp1q~n!G2p~n1v!2F2p~2n2v!Gp1q~n!%52(

p
gpup1qvp1q~u2p

2 2v2p
2 !

npq

v22npq
2

,

m252 i(
p

gpE dn

2p
$Fp1q~n!G2p~n1v!1F2p~2n2v!Gp1q~n!%522(

p
gpup1qvp1q

v

v22npq
2

,

x05 i(
p
E dn

2p
$G2p~n!Gp1q~n1v!1F2p~2n!Fp1q~n2v!%52(

p
~up1qv2p2u2pvp1q!2

npq

v22npq
2

.

i-

ti-

roxi-
-
atic

We

e la-
nal
In the equations above, npq5Ep1q1E2p , upvp

5Dp /2Ep , up
25 1

2 (11 ep /Ep), andvp
25 1

2 (12 ep /Ep). The
Green’s functions have been defined as

Gp~v!5E dteivt~2 i !^Tcps~ t !cps
† ~0!&,

Fp~v!5E dteivt~2 i !^Tcp↑~ t !c2p↓~0!&,

~26!

Fp
†~v!5E dteivt~2 i !^Tc2p↓

† ~ t !cp↑
† ~0!&.

In Eq. ~25!, v should be taken to have an infinitesimal imag
nary part,G501, coming from causality.

Solution of Eqs.~24! gives the dynamical spin suscep
bility in the present SCLR formalism:

xSCLR~q,v!5 i E dteivtu~ t !^@Sq
1~ t !,S2q

2 ~0!#&5
Sqv

hqv
.

~27!

It can be written in the form
xSCLR~q,v!5
x irr

11Vqx irr
, ~28!

x irr5x01Dx, ~29!

Dx52
J

2

m1
2 1m2

2 2
J

4
m1

2 t222
J

4
m2

2 t111
J

2
m2m1t12

12
J

4
t112

J

4
t221

J2

16
t11t222

J2

16
t12
2

,

~30!

and may be understood as a modified random-phase app
mation where the bare bubblex0 has been modified by in
cluding the ladder diagrams. Figure 2 gives the diagramm
interpretation of formulas~29! and ~30!.

The procedure for finding thep-p correlation function

P~q,t !52 iu~ t !^@pq
1~ t !,pq

2~0!#& ~31!

is similar to the one shown above for the spin channel.
only need to add an external field in thepQ

† channel and
compute the response in the same channel. Skipping th
borious but straightforward calculations we present the fi
expression for its Fourier transform
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P~q,v!5

t111t221
J

2
t12
2 2

J

2
t11t2222t122

J

4

m1
2 S 12

J

2
t22D1m2

2 S 12
J

2
t11D22m1m2S 12

J

2
t12D

11Vqx0

12
J

4
t112

J

4
t222

J2

16
t12
2 1

J2

16
t11t221J2

m1
2 S 12

J

4
t22D1m2S 12

J

4
t11D1

J

2
m1m2t12

11Vqx0

.

~32!
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In the normal state this reduces to a simpleT-matrix ex-
pression that was studied in Ref. 7. There it was shown t
in the normal state, thep-p spectrum atq5Q is dominated
by the collectivep-mode resonance that appears due to
collapse of thep-p continuum (ep1Q1e2p522m) and the
repulsive interaction of two particles in a triplet state sitti
on NN sites. We suggested that this collective mode m
contribute to the spin-fluctuation spectrum when the sys
becomes superconducting. However, such an argum
raises an immediate concern that superconductivity coul
principle lead to another effect—a significant broadening
the p resonance due to possible scattering into thep-h ex-
citations. The goal of the next part is to show that this do
not happen. Thep resonance survives as a collective mo
and affects strongly the dynamic spin-spin correlation fu
tion in the SC state. The important point here is that unl
x0, Dx in x irr contains information about thep resonance.
As we shall see in the next section, Imx irr nearly vanishes a
thep resonance energy, where Rex irr is sharply peaked. The
combination of these two effects gives rise to a sharpp
resonance inxSCLR.

III. NUMERICAL RESULTS

It is well known that the RPA form of the spin correlatio
function overestimates the antiferromagnetic instabil
Therefore, if we see a peak in the dynamic spin correlat
function, it is important to check if it is an artifact due to th
RPA type of overestimate or due to a genuine collect
mode. Moreover, the size of the dSC gap relative toTc is
significantly larger than the BCS estimate. Namely, the B
gap equation~16! with the bare pairing interactionVBCS
53J/2 gives a ratio 2D (p,0) /kBTc of about 4 which is small
compared to the typically observed value of 6 to 8. The
fore, in what follows, we take two approaches to these pr
lems. We introduce an effective reduction of the antifer
magnetic vertexVQ5aVQ

bare with a,1, as a way to mode
vertex corrections, or we take the dSC gapD0 to be bigger
than its mean-field value.44 Both of these approaches hav

FIG. 2. Modification ofx irr due to ladder diagrams.
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the effect of removing the RPA type of AF instability. W
shall see that thep resonance is robust against these var
tions.

A. p resonance and its robustness against vertex corrections

In this section we takeJ50.6t andm520.3t. We choose
the mean-field value ofD050.0094t and the reduction ofVQ
is set bya50.82. We assume a finite valueG51024t for the
imaginary infinitesimal in the energy denominator and p
form integration by dividing the Brillouin zone into a 32 00
332 000 lattice.

Figure 3 shows the ‘‘mechanics’’ of the resonance
xSCLR. In the normal state thep-p channel has a sharp pea
at v0'22m1 (J/2) (12n)50.655t. Notice that there is no
visible shift of the energy of this resonance in the SC sta
but only a small broadening. This resonance in thep-p chan-
nel P(Q,v) then leads to a peak in Rex irr . Consequently at
a frequency where Rex irr5u 1/VQ u the real part of the de-
nominator in the SCLR expression~28! vanishes leading to a
peak in ImxSCLR. At these frequencies, the imaginary part
the denominator (Imx irr) is also small, and the resonanc
appears to be quite sharp.

In Fig. 4, we compare the real part ofx irr with that ofx0.
As discussed above, we have resonance peaks in ImxSCLR
when Rex irr5u 1/VQ u. We can see that takingx irr instead of
x0 considerably suppresses the divergence around22m ~this
divergence comes from the dynamic nesting of the Fe
surface; it gives rise to the RPA peak, the only resonance
gets from a naive RPA calculation! and leads to the devel
opment of a peak at the energy of thep excitation. It is
easily noticeable that if we do not take into account red
tion of VQ , but exploit the bare value ofVQ

bare522J, then

FIG. 3. Rex irr , Imx irr , ImxSCLR, and ImP vs v.
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PRB 58 5725p EXCITATION OF THE t-J MODEL
Rex irr will cross it at two points (v;22m andv0), giving
rise to both—RPA andp peaks~see Fig. 7!. However, the
divergence of Rex irr aroundv0 is much stronger, making th
p peak more robust against variations inVQ .

In Fig. 5, we show the imaginary part ofx irr andx0. Note
that a dip develops in Imx irr at the energy of thep excitation.
This means that thep resonance is much less damped th
one might have expected. In the normal state, the stabilit
the p resonance is guaranteed by the absence of the p
space available for decay (p-p continuum collapses to a
point!. In the dSC state, this argument no longer works. M
ing of thep-h andp-p channels could provide a mechanis
for the decay of thep excitation. However, we see that th
system accommodates thep excitation by suppressing Imx irr
at its energy. In Sec. IV, we shall give an approximate a
lytical derivation of this important feature.

In Fig. 6, we compare the self-consistent spin-spin co
lation functionxSCLR with the one obtained from the RPA
calculationxRPA. The latter one has an RPA peak that com
from the dynamic nesting of the tight-binding Hamiltonian
momentumQ. In ImxSCLR, this peak disappears almo
completely, and the spectral weight is transferred into thp
excitation.

In Fig. 7, we show the comparison of different choices
a in VQ . Notice the coexistence of the RPA peak with thep
peak for the choice of bare parameter (a51). Reducinga
has no effect on thep resonance but completely destroys t
RPA peak. From the analysis carried out in this subsect
we conclude that the RPA peak might be the result of ov
estimating the AF instability, while thep peak is robust
against vertex corrections.

FIG. 4. Rex irr and Rex0 vs v. The dotted line represents th
line of 1/2J.

FIG. 5. Imx irr and Imx0 vs v.
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B. Robustness of thep peak against variations
of the superconducting gap

Another way of suppressing AF instability within RPA o
SCLR formalism is to choose a larger dSC energy gap
Fig. 8, we compare the results of SCLR calculations for
spin correlation function for two choices ofD0. The smaller
one D050.0094t corresponds to the self-consistent~mean-
field! value, and the bigger one was taken asD050.05t. In
these calculations, we takeJ50.6t andm520.3t as before,
but with VQ522J, the bare value (a51).

We observed in the previous subsection that two pe
~RPA andp! coexist with the choice of the mean-field valu
for D0 and a bare value forVQ . Figure 8 shows that taking a
larger dSC gap removes the RPA peak and increases
spectral weight of thep peak. This has an even strong
effect than we saw in the previous section by reducing
AF exchange constant. The latter one, as we found, o
removes the RPA peak without affecting thep resonance. It
is also interesting to find that for the larger gap there is
increase in the energy of the resonance.

A tenacious effect of the large dSC gap is explained
Fig. 9. Here the choice of parameters is the same as in
previous figure withD050.05t. By looking at x irr in this
case of largeD0, we find that the RPA peak in the real pa
(v'22m) has completely disappeared. For the mean-fi
value of D0, there was only a suppression of this peak.
contrast to that, the only effect of taking a largerD0 on thep
peak in Rex irr was to make it broader. This broadening e
plains the increase in the total weight of thep peak inxSCLR
~the slope of Rex irr at the crossing point with 1/2J deter-

FIG. 6. ImxSCLR and ImxRPA vs v

FIG. 7. ImxSCLR vs v for two different values of vertex correc
tion parametera.
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mines the total weight of thep resonance inxSCLR; see more
on that in Sec. IV!. Also note an enormous suppression
imaginary part ofx irr for energies belowv0 in this case of
largeD0.

In Fig. 10, we show theq and v dependence o
ImxSCLR(q,v). This plot has been done forD050.05t, a
51 and for computational reasons we took a largerG
51022t, which leads to considerable smearing. Howev
the general picture of theq dependence of ImxSCLR(q,v)
may be seen quite clearly. We have an incommensu
structure at low frequencies, which is followed by a co
mensuratep peak. Right after the peak, there is a missi
spectral weight at the commensurate wavevector. Qua
tively this picture is similar to what is seen in inelastic ne
tron scattering in YBa2Cu3O61x .5 ~The incommensurate
peaks in that case will be rotated by 45° due to a differ
band structure. Calculations for the YBa2Cu3O61x band
structure will be published elsewhere.51!

IV. ANALYTICAL DERIVATION OF THE p RESONANCE

In the previous section, we showed numerically that at
energy of thep excitation,x irr possesses a sharp peak in t
real part and a dip in the imaginary part. In this section,
study the origin of these properties analytically.45 When
looking at the structure of the expressions in Eq.~24!, one
encounters very often analogous integrals that only differ
a factorgp

2 in the p summation. To simplify the following
analysis, we make an approximation that this factor may
replaced by its average value of 1. A similar assumption

FIG. 8. ImxSCLR vs v for different values ofD0.

FIG. 9. x irr andx0 vs v for the case whenD0 is larger than its
BCS value.
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been used in Ref. 22 to obtain approximate SO~5! algebra. It
is important to realize that one should take the average ogp

2

not over the whole Brillouin zone but over a narrow ba
around the Fermi surface, since in most of these express
the other factors in the integrals restrict the important dom
of integration to this region.

We introduce

I 1~v!5(
p

gp
2

12v2p
2 2vp1Q

2

v22npQ
2

,

I 2~v!5(
p

gp

up1Qvp1Q2u2pv2p

v22npQ
2

, ~33!

and use some identities for the BCS coherence factors
the approximationgp

2;1 to express all the factors in Eq.~24!
as

t11524mI 1~v!,

t12522vI 1~v!,

t225
12n

m
2

v2

m
I 1~v!, ~34!

m1522mI 2~v!,

m252vI 2~v!,

x05
2

3J
1

v224m2

2D0
I 2~v!.

Substituting these expressions into Eq.~30! and using the
identity 24mD0I 2(v)5(12n)1(4m22v2)I 1(v) which
holds within the approximation described above, we get

x irr5
1

VBCS
1

I 2~v!

2D0

~v22v0
2!~v224m2!

v22v0
21D0JI2~v!~v222mv0!

,

~35!

where VBCS comes from the gap equation(pgpupvp
5D0 /VBCS @Eq. ~16!#, andv0522m1(J/2) (12n). In the
mean field analysis of thet-J model, VBCS53J/2. Since
I 2(v),0 for v;v0, the denominator of the expression~35!
vanishes when the frequency is larger thanv0 but very close

FIG. 10. ImxSCLR(q,v) for q5(q,q).
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to it ~the energy separation is proportional toD0
2). This ex-

plains the peak in Rex irr , and the factorv22v0
2 in the nu-

merator explains the dip in the imaginary part.
Expression~35! allows us to estimate the integrated spe

tral weight of thep excitation in the spin-spin correlatio
function. For simplicity, we neglect a small imaginary part
x irr nearv0. Then a pole inxSCLR occurs when

Rex irr52
1

VQ
. ~36!

ExpandingxSCLR around this frequencyv* we find that

xSCLR5
x irr

VQ ~]x irr /]v!
U

v
*

1

v2v* 1 i0

5
1

VQ
2 ~]x irr /]v!uv

*

21

v2v* 1 i0
. ~37!

Earlier we introduced two distinct energies in our syste
The BCS couplingVBCS and the AF couplingVQ522J. If
we consider ahypotheticalsituation whenVQ52VBCS, we
can see that the condition~36! is satisfied exactly atv0 and
a simple calculation givesxSCLR(v)5 2D0

2/VQ
2 (12n)

@21/(v2v01 i0)#. If we take hereVQ to be VBCS53J/2,
we have for the intensity of thep resonance

I p5
1

pEv02n

v01n8
dvxSCLR9 5

8D0
2

9J2~12n!
. ~38!

The right-hand side is equal to the expression derived in
Appendix as a lower bound. In Eq.~38!, n andn8 character-
ize the width of thep resonance aroundv0, and we intro-
duced a factor 1/p since the Lehmann representation of E
~27! is given by Imx(Q,v)5p(nu^nuSQ

1u0&u2d(v2vn0).
This definition ofI p is the same asA(T) of Refs. 2 and 46.
Expression~38! is also what we obtained for the intensity
the p resonance in Ref. 7 using aT-matrix analysis.47

If we take realistic values ofJ5120 meV, D (p,0)540
meV ~this corresponds toD0528.3 meV! and 12n515%
and substitute them into Eq.~38!, we getI p50.32. For the
t-J model, uVQu.VBCS, and the energy satisfying the con
dition ~36! is lower thanv0 and the slope]x irr /]v is smaller
than the above estimate~see Fig. 4!. This will be partly can-
celled with the increse ofVQ , and we expect Eq.~38! gives
a semiquantitative estimate forI p .

V. COMPARISON WITH THE SO „5… EQUATIONS
OF MOTION

We now study the Heisenberg equations of mot
~EOM! for the p and spin operators

ppQ
1 5cp1Q↑

† c2p↑
† ,

ppQ
2 5c2p2Q↓cp↓ , ~39!

SpQ
1 5cp1Q↑

† cp↓ ,

using Eq.~14! as a Hamiltonian. A closed set of equatio
may be obtained by taking commutators of the operators~39!
-

.

e

.

with the Hamiltonian and then factorizing the results in ter
of the occupation numbers for the electronsvp

25^cps
† cps&

and BCS anomalous averagesupvp5^c2p↑cp↓&. As shown
by Anderson and others,31 this procedure recovers the mod
fied random phase andT-matrix approximations.

@H,ppQ
1 #5~ ẽp1Q1 ẽ2p!ppQ

1

1
J

2
~12vp

22vp1Q
2 !(

k
pkQ

1 h~p2k!

2
3J

2
~SpQ

1 1S2p2QQ
1 !(

p
ukvkh~p2k!

14Jupvp(
k

SkQ
1 , ~40!

@H,SpQ
1 #5~ ẽp1Q2 ẽp!SpQ

1 12J~vp1Q
2 2vp

2!(
k

SkQ
1

2
3J

2
~ppQ

1 2ppQ
2 !(

k
ukvkh~p2k!

2
J

2
upvp(

k
~pkQ

1 2pkQ
2 !h~p2k!, ~41!

@H,ppQ
2 #52~ ẽp1Q1 ẽ2p!ppQ

2

2
J

2
~12vp

22vp1Q
2 !(

k
pkQ

2 h~p2k!

1
3J

2
~SpQ

1 2S2p2QQ
1 !(

p
ukvkh~p2k!

24Jupvp(
k

SkQ
1 . ~42!

Hereh(p)5cospx1cospy and the bare dispersion is reno
malized intoẽp5ep2 (3J/2) (kvk

2h(p2k). The latter cor-
responds to a trivial rescaling oft which we will disregard.

The operator of the collective excitation in thep1 chan-
nel is pQ

15(pg(p)ppQ
† . Then from Eq.~40! we have

@H,pQ
1#5v0pQ

11
JD0

VBCS
SQ

1 , ~43!

whereSQ
15(pSpQ

1 andVBCS has been defined earlier. Analo
gously,

@H,pQ
2#52v0pQ

22
JD0

VBCS
SQ

1 . ~44!

We can see that in the SC state the EOM forpQ
6 no longer

close on themselves. The third and the fourth terms in E
~40! and ~42!, that come from anomalous self-energy a
scattering correspondingly, do not cancel each other exa
This may be contrasted to theh excitation in the negative-U
Hubbard model,34 where exact cancelation of such terms o
curs.

The collective mode in theSchannel may be obtained b
summing Eq.~41! over differentp’s.
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@H,SQ
1#52

2JD0

VBCS
~pQ

12pQ
2!. ~45!

In order to derive this result, we had to disregarded the fi
term of Eq. ~41!. In the language of our earlier SCLR ap
proach, this means neglectingx0 in comparison withDx. In
the close vicinity ofv0, this is a justifiable assumption, be
cause at these frequenciesDx is strongly peaked and is th
dominant part ofx irr . However, it is less so at other freque
cies, where the incoherent continuum is more importa
Thus the meaning of going from Eq.~41! to Eq. ~45! is a
single mode approximation, which captures collective
grees of freedom only. How good is this approximation? O
can see from the numerical results of Sec. III that forD0
around 0.1J the p peak already became a dominant featu
of the SQ

1 spectrum. Some estimates of the realistic value
D0 find it to be close to 0.2J. In this case, such a single mod
approximation will truly be a good one.48

It is instructive to compare our microscopic EOM’s wi
the SO~5! EOM’s in the SC state.22 We have

2 i ṗa
656~B15pa

61g^n5&na!, ~46!

2 i ṅa52
1

2x1a
^n5&~pa

†2pa!, ~47!

with pa
65L1a6 iL 5a and we assumed dSC ordering alo

n5. Equation~46! is the analog of Eqs.~43! and~44!, and Eq.
~47! corresponds to Eq.~45!. This comparison of Eqs.~43!,
~45!–~47! is very revealing in that it gives a deeper unde
standing of the nature of thep excitation. Usually the exis-
tence of the sharp resonance is not coincidental but is rel
to some symmetry present in the system. In our case it i
approximate SO~5! symmetry of thet-J model that gives rise
to such pronouncedp resonance. The agreement between
equations of motion derived from the SO~5! quantum non-
linear s model22 and the microscopict-J model is a key
result of this section. It demonstrates that the SO~5! quantum
nonlinears model can be used as an effective low-ene
Hamiltonian to describe thep resonance.

VI. SUMMARY

We have presented detailed analytical and numerical
culations for the contribution from thep resonance to the
spin correlation function in the dSC state. The results
these calculations support our earlier interpretation of
resonant neutron-scattering peak in terms of thep-p collec-
tive mode in thep channel. Various approximations we
used in the calculations presented in this work, some of th
are model dependent and may not be well controlled. Th
fore, it is important to summarize here the main points le
ing to our conclusion.

~1! From general model-independent sum rules on vari
correlation functions, one can conclude that the contribut
from thep correlation function to the dynamic spin correl
tion function is of the order ofuDu2/(12n), in excellent
agreement with the two key experimental observatio
namely, the vanishing of the sharp mode aboveTc and the
doping dependence of its intensity.

~2! Within model-dependent calculations, there is a we
st
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definedp mode in thep-p channel in the normal state, an
this mode couples to thep-h spin channel in the dSC state
where it remains as a sharp excitation. The energy of
mode is not directly related to the dSC gap, but is direc
related to the dopingx. In the underdoped materials, the dS
gap increases slightly as doping is reduced, while the neu
resonance peak energy decreases withx. This important ex-
perimental finding shows that the neutron resonance pea
not simply a ‘‘2D ’’ phenomenon, and our interpretation i
terms of thep resonance naturally resolves this appar
paradox. The doping dependence of both energy and in
sity of the neutron resonance peak were predicted7,22 before
the experiments in the underdoped superconductors w
carried out.4,3

~3! Many approximations within our current calculation
are not completely controlled. However, the main behav
can be verified in the case where exact knowledge is av
able. First of all, detailed exact diagonalization studies h
been carried out both for thet-J and the Hubbard
models.21,20 It is clearly seen that thep mode in the
p-pchannel exists in all doping range, and it has a lo
energy peak where both the energy and intensity scale
x, in agreement with ourT-matrix calculation. In contrast to
thep correlation function, the spin correlation function do
not have sharp peaks in the high doping range. In the dop
range where there are dSC fluctuations, thep peak coincides
with the spin peak. From these results, one can conclude
the p mode is a genuine collective mode. We can also co
pare our approximations with the exact SO~5! models,23

where thep operators are exact eigenoperators of the Ham
tonian. The manipulations presented in this work lead to
sults consistent with the exact SO~5! Ward identities. Thep
resonance is an exact excitation of the SO~5! models, and it
has exactly the same doping dependence of the mode en
and intensity as obtained here.

~4! The distinction between the ‘‘RPA peak’’ and the ‘‘p
peak’’ in the dSC state will be a model-dependent one. In
dSC state, they share the same quantum numbers, and
are based on approximate calculations. The origin of
RPA peak may be related to the overestimate of the magn
instability and we see that it may not be robust against va
tions of the vertex corrections or variations of the gap, b
of which diminish AF instability. On the other hand, th
SCLR treatment of thep peak is more robust against the
variations. One can test these two approximate sche
within the exact SO~5! models. Only SCLR treatment includ
ing the ‘‘p’’ process agree with the exact answer in this ca
Therefore, calculations including thep process is a bette
approximation than the simple RPA calculation.

~5! Within our approximations, the spin spectrum consi
of an incommensurate structure at low frequencies, a sh
commensurate peak arising from the triplet excitation in
p-p channel~the p peak!, and a missing spectral weight a
commensurate wave vector at higher frequencies. These
tures are in overall agreement with experiments. The p
dicted weight of thep resonance agrees quantitatively wi
experiments.

Therefore, while each of the above arguments are
complete on their own, the combination of them makes
strong overall case. From the interpretation of the neut
resonance peak in terms of thep mode, we hope to learn a
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PRB 58 5729p EXCITATION OF THE t-J MODEL
general principle, rather than a specific model for fitting
specific experiment. In strongly correlated systems, most
grees of freedoms are strongly coupled, and most spectra
incoherent. Usually, only a symmetry principle can forb
the decay of a collective excitation. In the case of the re
nant neutron-scattering peak, we believe that it is the SO~5!
symmetry principle at work, and thep mode is the pseudo
Goldstone boson associated with this spontaneous symm
breaking. In this paper, we have shown that such an inter
tation is consistent with the key experimental facts, bu
may not be the only possible interpretation. Its utility lies
the simplicity and generality of the principle, which can
applied to other related experiments and lead to new exp
mental predictions.
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APPENDIX: MODEL-INDEPENDENT ESTIMATE
OF THE p CONTRIBUTION TO THE

SPIN SUSCEPTIBILITY

A spectral function for any two operatorsA andB is de-
fined as

rA,B~v![
1

2p i
@DA,B

ret ~v!2DA,B
adv~v!#

5(
n

@^0uAun&^nuBu0&d~v1E02En!

2^0uBun&^nuAu0&d~v2E01En!#, ~A1!

whereDA,B
ret (v) andDA,B

adv(v) are retarded and advanced r
sponse functions, respectively,un& ’s are eigenstates of th
system Hamiltonian with energyEn , and u0& is the ground
state with energyE0. If we restrict the above summatio
only to intermediate states that have nonzero overlap w
pa

† u0&, then such a quantity
n

,

n,

v.
e-
are

-

try
e-
it

ri-

.
ri-

s
e
-
.

-

th

rA,B
pa ~v!5 (

n:^0upaun&Þ0
@^0uAun&^nuBu0&d~v1E02En!

2^0uBun&^nuAu0&d~v2E01En!# ~A2!

may be regarded as the contribution of thep excitation to the
full spectrumrA,B(v). We can introducev-integrated spec-
tral weight as

@rA,B
pa #v1

v25E
v1

v2
dvrA,B

pa ~v!. ~A3!

All of the above spectral functions~or spectral weight! are
bilinear with respect toA and B, and have the property
rA,A†>0 for v>0 or v2>v1>0. Therefore, the Cauchy
Schwarz inequality holds provided that the same freque
condition is satisfied:49

rA,A†rB,B†>urA,B†u2. ~A4!

Here rA,B† can be either of rA,B†(v), r
A,B†
pa (v) or

@r
A,B†
pa #v1

v2.

In Sec. I we derived two sum rules*dvr
pa ,p

a
†

pa (v)51

2n and *dvr
pa ,N

a
†

pa (v)5 iD. If most of thep spectrum is

accommodated in an interval (v02n,v01n8) on the posi-
tive real axis and around thep-resonance energyv0, we can
write

@r
pa ,p

a
†

pa #v02n
v01n8;12n, @r

pa ,N
a
†

pa #v02n
v01n8; iD. ~A5!

Equation~A4! then immediately gives us

@r
Na ,N

a
†

pa #v02n
v01n8*

uDu2

12n
. ~A6!

The left-hand side of this equation represents the contr
tion of the p mode to the spin excitation spectrum~e.g.,
Imxzz/p) and the right-hand side gives its lower bound50

This is a model-independent result.
Noting that Imx1252 Imxzz, we obtain Eq.~12!. When

applying this result to the present analysis of thet-J
model, where D05VBCSD5 (3J/2) D, we have I p

*(8/9J2)@ uD0u2/(12n)#. The analysis in this appendix ca
be generalized to finite temperatures by considering the s
tral function

rA,B~v!5
1

Z(
n,m

~e2bEn2e2bEm!^nuAum&^muBun&

3d~v1En2Em!. ~A7!
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41An exact diagonalization study of the Hubbard model~Ref. 29!
supports the idea that thep excitation survives strong Hubbar
repulsion.

42D0 is the energy gap, which is related to the order parameteD

defined earlier by the relationD05VBCSD with VBCS53J/2.
43In principle, the symmetry of the interaction leads to response

the p-h channel that differ from Eq.~17! by the possible sym-
metry factorsSq

a5(papcp1q↑
† cp↓ , where ap may be (sinpx

6sin py) or (cospx6cospy). SuchSqv
a fields provide intermedi-

ate states that the spin fluctuations can be scattered into. In
eral this can modify the amplitude of the inducedSqv field.
However, it turns out that for theq’s of interest nearQ
5(p,p), the effect of suchSqv

a fields is negligible.
44To avoid the problem of the system being unstable against o

parameter fluctuations when the value of the dSC gap is
creased from its mean-field value, one may think of the p
posed procedure as preserving the self-consistency condi
but taking a bigger value for the BCS coupling constantVBCS,
while keeping all the other constants to have the same va
This may be achieved by adding an appropriate interaction to
original t-J Hamiltonian.

45We restrict this analysis to the caseq5Q5(p,p).
46For unit convention, see Appendix B of Ref. 2.
47Note a factor ofA2 difference in the definitions ofD0 here and in

Ref. 7,D0(present)5A2D0 ~Ref. 7!.
48However, this approximation seems to overemphasize the im

tance of the anomalous scattering terms in the energy of thp
excitation. The anomalous self-energy tends to increase the
ergy of the resonance, whereas the anomalous scattering
creases it@see Eqs.~40!, ~41!, and ~42!, for example#. In Secs.
III and IV, we saw that in the complete calculations, the res
nance energy in the SC state turns out to be above its valu
the normal state. However, from Eqs.~43!, ~44!, and ~45!, we
find that the resonance energy in the SC state is decreasedvs

2

5v0
22(2JD0 /VBCS)

2.
49This may be proved as follows. From bilinearity and~semi! posi-

tivity, we have 0<rA1lB,A†1l* B†5rA,A†1lrB,A†1l* rA,B†

1ulu2rB,B† for any complex numberl. Definingu as the phase
of the mixed correlation function asrA,B†5rB,A†* 5urA,B†ueiu,
and choosing l5xeiu (2`,x,`), we have rA,A†

12xurA,B†u1x2rB,B†>0. Since this inequality holds for any
real numberx, the inequality~A4! should hold.

50The ~near! equality holds if and only if there exists suchl that
^0upa1lNaun&50 for all eigenstatesun& satisfying ^0upaun&
Þ0. For example, exact equality holds whenp operator is an
exact eigenoperator and hence there is only one energy ei
state which satisfieŝ0upaun&Þ0.

51H. Kohno, E. Demler, and S.C. Zhang~unpublished!.


