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Quantum critical states and phase transitions in
the presence of non-equilibrium noise
Emanuele G. Dalla Torre1, Eugene Demler2, Thierry Giamarchi3 and Ehud Altman1*
Quantum critical points are characterized by scale-invariant correlations and therefore by long-range entanglement. As such,
they present fascinating examples of quantum states of matter and their study is an important theme in modern physics.
However, little is known about the fate of quantum criticality under non-equilibrium conditions. Here we investigate the
effect of external noise sources on quantum critical points. It is natural to expect that noise will have a similar effect to
finite temperature, that is, destroying the subtle correlations underlying the quantum critical behaviour. Surprisingly, we find
that the ubiquitous 1/f noise does preserve the critical correlations. The emergent states show an intriguing interplay of
intrinsic quantum critical and external-noise-driven fluctuations. We illustrate this general phenomenon with specific examples
describing solid-state and ultracold-atoms systems. Moreover, our approach shows that genuine quantum phase transitions
can exist even under non-equilibrium conditions.

An important motivation for investigating the behaviour of
non-equilibrium quantum states comes from state-of-the-
art experiments in atomic physics. Of particular interest in

this regard are systems of ultracold polar molecules1,2 and long
chains of ultracold trapped ions3. On the one hand, these systems
offer unique possibilities to realize strongly correlated many-body
states, which undergo interesting quantum phase transitions4–6.
However, on the other hand, they are controlled by large external
electric fields, which are inherently noisy and easily drive the
system out of equilibrium7,8. It is natural to ask what remains
of the quantum states, and in particular, the critical behaviour
under such conditions.

The effect of non-equilibrium noise on quantum critical
points is also relevant to more traditional solid-state systems.
Josephson junctions, for example, are known to be affected by
non-equilibrium circuit noise, such as 1/f noise. Without this
noise, a single quantum Josephson junction should undergo a
textbook quantum phase transition9,10: depending on the value
of a shunt resistor, the junction can be in either a normal or a
superconducting state. A phase transition occurs at a universal
value of the shunt resistance Rs=RQ= h/(2e)2, independent of the
strength of the Josephson coupling. This is closely related to the
problem of macroscopic quantum tunnelling of a two-level system
(or q-bit) coupled to a dissipative environment11.

There is a large body of work on 1/f noise as a source of
decoherence for superconducting q-bits (see, for example, refs 12,
13). However, the effect of such noise on the quantum phase
transitions and the non-equilibrium steady states of Josephson
junctions poses fundamental open questions. Do the different
phases (superconducting or normal) retain their integrity in
the presence of the noise? Is the phase transition between
them sharply defined?

In certain cases it was argued that a non-equilibrium drive
may act as an effective temperature14,15. And temperature is
known to be a relevant perturbation, which destroys quantum
criticality16,17. In contrast, we find that the external 1/f noise
is only a marginal perturbation at the critical point in many
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cases of interest. This is exemplified in the section entitled ‘Phase
transition in a noisy Josephson junction’. In the section entitled
‘One-dimensional chains of polar molecules or trapped ions’,
we investigate the potentially richer physics of one-dimensional
systems. These systems form a critical state at T = 0, which can
undergo pinning in the presence of a commensurate lattice or
a single impurity. Pinning occurs as a quantum phase transition
at a critical value of the correlation exponent18 (for application
to ion traps, see ref. 6). Another interesting phenomenon
in ion chains is the zigzag instability19, which is expected
to evolve into a true quantum phase transition in the limit
of long chains.

Again the relevant issue is the fate of these critical states and
quantum phase transitions in the presence of noisy electrodes. Such
noise has been characterized in recent experiments with ion traps7,8,
where it was found to have a 1/f power spectrum and attributed
to localized charge patches on the electrodes. A crucial result of
our analysis is that such noise preserves the critical states, and the
exponents are continuously tuned by it. The fact that the system is
out of equilibrium is betrayed by the linear response to an external
probe, such as light scattering. The energy dissipation function
of the scattered light can become negative for sufficiently strong
external noise, exhibiting gain instead of loss.

The long-wavelength description of the noise-driven steady state
allows us to study its stability to various static perturbations within a
renormalization group framework. In this way we describe pinning
by a static impurity and by a lattice potential. We show that
pinning–depinning occurs as a phase transition driven by interplay
of the intrinsic quantum fluctuations and the external noise. Before
proceeding we note previous work that found modified quantum
criticality in cases where the non-equilibrium conditions were due
to an imposed current20,21.

Phase transition in a noisy Josephson junction
In our discussion of the Josephson junction, we consider the
standard circuit shown in Fig. 1a. The offset charge eN0 on
the capacitor has random time-dependent fluctuations with a
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Figure 1 | Effects of non-equilibrium noise on the localization quantum phase transition of a single shunted Josephson junction: a, Electronic circuit
relevant to a resistively shunted Josephson junction with charging noise. b, Critical resistance R/RQ as a function of the noise strength F0, in the weak
coupling limit. c, Critical conductance R/RQ as a function of the noise strength F0, in the strong-coupling limit. b and c are related by the duality
transformation R/RQ→ RQ/R and ‘superconductor’↔ ‘normal’. d, Schematic phase diagram at equilibrium (dotted line) and in the presence of
non-equilibrium 1/f noise (dashed line).

1/f spectrum22
〈N ∗0 (ω)N0(ω)〉 = F0/|ω|. This is modelled by the

fluctuating voltage sourceVN(t )= eN0(t )/C .
Consider first the system at vanishing Josephson coupling, which

is then just an RC circuit. Treating the resistor as an ohmic bath in
thermal contact with the system23 results in the Langevin equation
for a damped quantum oscillator:

1
2
c θ̈+ηθ̇ = ζ (t )+

1
2
Ṅ0(t ) (1)

Here c = h̄C/2e2 and η= (1/2π)RQ/R. The random forcing term
ζ (t ) originates from the equilibrium bath, and therefore at T = 0
has the power spectrum 〈ζ ?ωζω〉 = η|ω|. The other random forcing
term is the time derivative of the charge noise. As the charge
fluctuations have a spectrum ∼F0/|ω|, the power spectrum of Ṅ0
is ∼F0|ω|, which mimics the resistor noise. Unlike the resistor,
however, external fluctuations do not have an associated dissipation
term. This is because the noise source is not in thermal contact with
the system. Thus, the fluctuation dissipation theorem is violated in
the presence of the non-equilibrium noise source.

Using the linear equation of motion (1) we can compute the
phase autocorrelation function:

〈cos[θ(t )−θ(0)]〉∼ t−(1+F0/η)/πη (2)

Interestingly, the non-equilibrium noise does not destroy the
power-law scaling, but modifies the exponent. We conclude that a
critical (scale-invariant) non-equilibrium steady state is obtained in
the presence of the external noise.

The important question to address in the context of weak
coupling, is under what conditions the critical steady-state we
just described is stable to introduction of the Josephson coupling
as a perturbation. That is, we should find how the perturbation
transforms under a scale transformation that leaves the critical
steady state invariant. To investigate this we turn to formulation
of the dynamics in terms of the Keldysh action described in the
Methods section. The quadratic action (7) describing theRC circuit
is scale invariant, whereas the Josephson coupling term

SJ = J
∫

dt
[
cosθf (t )−cosθb(t )

]
(3)

is not in general. Here θf (θb) is the field on the forward (backward)
part of the Keldysh contour. From the decay of the correlation
function (2) we can directly read off the anomalous scaling dimen-
sion of the perturbation, which is α = 1− (1+F0/η)/2πη. When
α>0 the perturbation grows under renormalization and ultimately
destabilizes the critical steady state. We therefore predict a phase
transition at a critical resistance R∗/RQ = (

√
8πF0+1− 1)/4πF0,

below which the Josephson coupling term becomes relevant.
Note that we recover the equilibrium dissipative transition at
R∗ = RQ in a ‘quiet’ circuit (F0 = 0). We can tune across the

transition also by maintaining a constant resistance R < RQ and
increasing the non-equilibrium noise ‘power’ F0, as shown in
Fig. 1b.

Within the weak-coupling theory we do not have direct access
to the properties of the steady state at R<R∗. However, because the
Josephson coupling grows under renormalization, it is reasonable to
expect that the junction would be superconducting. To determine
this with more confidence we shall now take the opposite,
strong-coupling viewpoint.

We employ a well-known duality between weak and strong
coupling9,24, under which Cooper pair tunnelling J

∫
dt cos(θ) is

mapped to tunnelling of phase slips across the junction Sg =
g
∫
dt cos(φ). Concomitantly the resistance R/RQ is mapped to a

normalized conductance RQ/R. In the strong-coupling limit of the
Josephson junction J � e2/C , the dual action, with a phase-slip
tunnelling Sg , is at weak coupling. The scaling analysis can proceed
in the same way as above, giving a transition at the value of shunt
resistanceR∗/RQ=4πF0/(

√
8πF0+1−1). ForR<R∗ the phase-slip

tunnelling Sg is irrelevant. Therefore, at asymptotically long times
all phase-slip events are paired, making the superconducting state
stable forR<R∗, at least in the strong-coupling limit.

The combined results of the weak and strong coupling analysis
imply a phase diagram of the form shown in Fig. 1d. At weak
coupling the critical resistance, in the presence of noise, occurs at
R∗ that is smaller than RQ, whereas at strong coupling R∗ is larger
than RQ. The dashed line in this figure shows a simple interpolation
of the phase boundary between the two limiting regimes. However,
we cannot exclude the possibility that new phases, such as a metallic
phase, arise at intermediate coupling.

One-dimensional chains of polarmolecules or trapped ions
We now investigate the interplay between critical quantum
fluctuations and external classical noise in one-dimensional
systems. Good laboratories for studying such effects are ions in ring
or linear Paul traps, as well as polar molecules confined to one
dimension. As a result of the confinement to one dimension, both
systems are affected by quantum fluctuations. On the other hand,
they are also subject to noisy electric fields that can influence the
steady-state correlations.

In ion traps, the fluctuations of the electric potential,
which couples to the ionic charge density, have been carefully
characterized7,8. The noise power spectrum was found to be very
close to 1/f and with spatial structure indicating moderately
short-range correlations. In the molecule system, electric fields
are used to polarize the molecules, and fluctuations in these fields
couple to themolecule density through themolecular polarizability.

Our starting point for theoretical analysis is the universal
harmonic theory describing long-wavelength phonons in the
one-dimensional system25, which is written in terms of the
displacement field φ(x, t ) of the particles from a putative
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Wigner lattice. The long-wavelength density fluctuations
are represented by the gradient of the displacement field,
(−1/π)∂xφ(x,t ). The part of the density with Fourier components
of wavelengths near the interparticle spacing are encoded
by ρ0 cos(2πρ0x + 2φ(x, t )) (refs 18,25), where ρ0 is the
average density. The operator ODW = ρ0 cos(2φ(x, t )) is the
density-wave (or solid) order parameter field of the Wigner
lattice. As in the Josephson junction, we wish to address two
questions. (1) How does the external noise affect the steady
state, which in equilibrium exhibits algebraic correlations. (2)
How does it influence phase transitions, such as the lattice
pinning transition.

We model the external electric noise as a random time-
dependent field coupled to the particle density. In general, the
noise couples to both components of the density through the
terms −f (x, t )π−1∂xφ(x, t ) and ζ (x, t )ρ0 cos(2φ(x, t )). For now
we assume that the noise source is correlated over sufficiently
long distances, so that its component at spatial frequencies
near the particle density (ζ (x, t )) is very small and can be
neglected. In this case the long-wavelength theory remains
harmonic. We shall characterize the noise by its power spectrum
F(q,ω)= 〈f (q,ω)f (−q,−ω)〉. We take this to be 1/f noise with
short-range spatial correlations, that is, F(q,ω)=F0/|ω|.

When the system is irradiated with external noise we expect it
to absorb energy. To stabilize a steady state we need a dissipative
bath that can take this energy from the system. In the Josephson
junction problem, the resistor naturally played this role. Is there
a similar dissipative coupling in the one-dimensional systems
under consideration here?

In the ion traps, there is a natural dissipative coupling because
these systems can be continuously laser cooled. Thus, the system
can reach a steady state, which reflects a balance between the laser
cooling and the external noise (see Supplementary Information).
The polarmolecules do not couple to a natural source of dissipation;
however, a thermal bath can in principle be realized by immersion
in a large atomic condensate26. In the Supplementary Information
we show that the bath generated by a two-dimensional weakly
interacting condensate provides the needed dissipation.

The combined effects of interactions, external noise and
dissipation are described by a quadratic Keldysh action as shown
in the Methods section (8). This is the natural extension from the
single junction (7) to the one-dimensional chain. However, there is
an important difference. The harmonic chain is scale invariant only
without the noise and dissipation terms, which are strictly speaking
relevant perturbations of this fixed point. Indeed, the dissipative
coupling generates a relaxation timescale τ ∼ 1/η, which breaks the
scale invariance. To retain the scale invariance and still drive the
system out of equilibrium we can consider the interesting limiting
regime in which both η→ 0 and F0→ 0, while the ratio F0/η tends
to a constant. Then the correlation function is easily calculated and
seen to be a power law

〈cos(2φcl(x))cos(2φcl(0))〉∼ x−2 K (1+π−2F0/η) (4)

where K is the Luttinger parameter, which determines the decay of
correlations at equilibrium (F0 = 0). The same exponent holds for
the temporal correlations.We see that the dimensionless ratio F0/η,
which measures the deviation from equilibrium, acts as a marginal
perturbation. In practice η and F0 are non-vanishing. Then the
result (4) will be valid at scales shorter than 1/η. Correlations
will decay exponentially at longer scales. Thus, η serves as an
infrared cutoff of the critical steady state. In practice however
the system size or cutoff of the 1/f spectrum may set more
stringent infrared cutoffs.

The density–density correlations can be measured directly
by light scattering. The (energy integrated) light diffraction

pattern in the far-field limit gives directly the static structure
factor S(q) = 〈ρ−qρq〉 of the sample. In particular, the power-
law singularity in S(q) near wave vector q0 ∼ 2πρ0 is just
the Fourier transform of the power-law decay of the Wigner
crystal correlations (4).

We can also compute the decay of phase correlations
〈cos[θ(x)−θ(0)]〉, which in the system of cold molecules may
be measured by interference experiments27. By considering the
dual representation of the harmonic action (8) we find a decay
exponent (1+F0/η)/2K .

At equilibrium both crystalline and phase correlations are
controlled byK alone: reducingK (by increasing interactions) leads
to a slower decay of density-wave correlations and concomitantly
faster decay of phase correlations. This duality, a consequence
of minimal uncertainty between phase and density in the
harmonic ground state, is violated in the presence of noise.
Increasing the noise leads to a faster decay of both the density
and phase correlations.

Response
Under the non-equilibrium conditions, the fluctuation dissipation
theorem does not hold in general and we should consider response
functions separately from the correlations. Here we discuss the
Fourier transform of the density–density response function, which
gives the linear response of the system to a weak periodic potential
with wave vector q, oscillating at a frequency ω. This is the response
function probed by Bragg spectroscopy28–30.

The combined response at small wave vectors q� q0 = 2πρ0 is
unmodified by the noise. This is because the probe field couples
linearly to φ through the smooth part of the density ∼ ∂xφ. As the
system is harmonic, any two perturbations that couple linearly to
the oscillator field simply add up independently. Hence, we have
χ ′′(q,ω)=K |q|2(ω)δ(ω−q) as in equilibrium. On the other hand,
the response at wave vectors near the inverse interparticle distance
involves a nonlinear coupling through the component of the density
ρq0(x,t )= cos(q0x+2φ). We calculate this exactly and obtain (see
Supplementary Information)

χ ′′(q,ω) = C (K ,K?)(ω2
−δq2)K?−12(ω2

−δq2)

C(K ,K?) =
1

402(K?)
sin(πK )
sin(πK?)

(5)

Here 0 is the Gamma function, δq≡ q− q0 and we have defined
K?≡K (1+π−2F0/η).

The response near q = 0 and q = q0 is shown in Fig. 2. By
comparing the plot in Fig. 2a, showing the case of vanishing noise,
to Fig. 2b where F0/η = 4π2, we see that the noise turned the
divergent response at q = q0 to a power-law suppression. What
betrays the fact that the spectrum (Fig. 2b) stems from non-
equilibrium conditions and not just weaker interactions? Consider
the relation between the response and the energy dissipation
functions Ė(q,ω) = ωχ ′′(q,ω), that is the rate by which the
probe is doing work on the system. Inspecting the pre-factor
C(K ,K?) in equation (5) we find, that for sufficiently strong noise
F0/η>π2(1−K )/K (for K <1), the energy dissipated by the probe
can become negative, which would be strictly prohibited if the
system was at equilibrium.

The situation is analogous to a laser, where gain is achieved by
pumping the medium out of equilibrium to ‘population inversion’.
Here the external 1/f noise plays the role of the pump. In contrast
to a laser the gain spectrum is continuous and reflects the critical
properties of the many-body steady state. Equation (5) implies
a commensurability effect between the noise and the intrinsic
interactions that leads to oscillations between gain and loss as a
function of the noise power.
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Figure 2 | Effects of non-equilibrium noise on the response to Bragg
spectroscopy. a, Imaginary part of the response function χ ′′(q,ω) in a
one-dimensional system with K=0.5, at equilibrium (F0=0). b, The same
plot as in a, in the presence of a strong 1/f noise with F0/η=4π2.

Non-equilibrium phase transitions
We have seen that by changing the 1/f noise one can continuously
tune the critical exponent associated with the power-law decay of
correlations in one-dimensional quantum systems. As in the case of
the Josephson junction, we can ask if it is possible to use the new
knob to tune across a phase transition.

A textbook18 phase transition in one-dimensional quantum
systems is that of pinning by a commensurate periodic lattice
potential. In equilibrium it occurs below a universal critical value
of the Luttinger parameter Kc= 2, regardless of the strength of the
potential. In the context of the real-time dynamics, the periodic
potential is added as a perturbation to the action (8)

Sg = g
∫

dxdt cos(2φ(x,t )) (6)

The scaling of the perturbation (6) in the critical steady state is
determined with the help of the correlation function equation (4).
We find that the action of the periodic lattice has the scaling
dimension αp = 2−K (1+ π−2F0/η). This implies an instability,
which signals a phase transition to a pinned state for F0/η <
π2(2K−1−1). In particular for F0 = 0 we recover the equilibrium
pinning (or Mott) transition at the universal value of the Luttinger
parameterKc=2. Note that forK >2 the system is always unpinned
because F0 is non-negative.

A pinning transition can also occur in the presence of a single
impurity31. The main difference from the previous case is that
this perturbation is completely local and therefore its scaling
dimension is reduced by 1 relative to the periodic potential:
αi = 1− K (1+ π−2F0/η). Accordingly the depinning transition
occurs at a lower critical noise F0/η=π2(K−1−1) than in the case
of the periodic potential.

Discussion and conclusions
Wedescribed a new class of non-equilibriumquantumcritical states
and phase transitions, which emerge in the presence of external
classical noise sources. Physical examples include a Josephson
junction and one-dimensional chains of trapped ions or polar
molecules coupled to 1/f noise. In contrast to thermal noise, which
destroys quantum criticality, the 1/f noise preserves the algebraic
decay of correlations and thus acts as a marginal perturbation at the
quantum critical point in these systems. A noise that deviates from
1/f at low frequencies, for example 1/f 1+ε , is relevant (irrelevant)
for ε > 0 (ε < 0). However, for |ε|� 1 the critical correlations will

be maintained below the crossover scale t∗∼ t0exp(1/|ε|), where t0
is the short-time cutoff.

The critical exponents associated with both phase and density
correlations are varied continuously by the noise, which also
destroys the well-known duality between the two. An even more
pronounced effect of the non-equilibrium conditions is betrayed
by the dissipative response of the critical steady state to an
external probe field, which for strong noise can change sign and
turn from loss to gain.

Quantum phase transitions, such as pinning of the crystal by
an impurity or by a commensurate lattice potential, can take
place in the presence of the external, non-equilibrium noise. In
particular the system can be tuned across the depinning transition
by tuning the noise power.

It would be interesting to extend these ideas to higher-
dimensional systems, such as one- or two-dimensional arrays
of coupled tubes of polar molecules. The natural phases in
equilibrium are the broken-symmetry phases, either superfluid
or charge-density wave. The intriguing sliding Luttinger liquid
phase, which retains the one-dimensional power-law correlations
despite the higher-dimensional coupling, is expected to be stable
only in a narrow parameter regime32. As the 1/f noise acts to
suppress both the phase and density correlations it will act to
stabilize this phase in a much wider regime. It would also be
interesting to consider the effect of the noise on more complex
phase transitions, such as the zigzag instability of ion chains19 as
well as Josephson junction arrays33.

Methods
Keldyshactionof thequantumJosephson Junction. The linear quantumLangevin
equation (1) is equivalent to the quadratic Keldysh action34

S0=
∑
ω,q

(θ∗cl θ̂
∗)
(

0 1
2 cω

2
− iηω

1
2 cω

2
+ iηω −2iη|ω|−2iω2 F0

|ω|

)(
θcl
θ̂

)
(7)

Here θcl and θ̂ are the ‘classical’ and ‘quantum’ fields. As usual they are
defined as the symmetric and antisymmetric combinations, respectively, of
the fields associated with forward and backward time propagation of operators:
θcl= (θf +θb)/2, θ̂=θf −θb. The Josephson coupling (3) is added to this action.

We note that the contribution of the non-equilibrium noise has the same
scaling dimension as the terms coming from the resistor ∝ |ω|. In contrast the
capacitive term ∝ω2 is irrelevant, at low frequencies. As a result, the fixed-point
action, governing the exponent of equation (2), does not depend on c .

Keldysh action for one-dimensional systems. The Keldysh action that describes
the long-wavelength density fluctuations, coupled to the external noise and the
dissipative bath is given by

S0=
∑
ω,q

(φ∗cl φ̂
∗)
(

0 1
πK (ω

2
−q2)− iηω

1
πK (ω

2
−q2)+ iηω −2iη|ω|−2i q

2

π2
F0
|ω|

)(
φcl
φ̂

)
(8)

Here F0/|ω| is the power spectrum of the external noise. The factor of q2/π2 in
front of this term appears because the noise couples to (1/π)∂xφ, the smooth
part of the density. η denotes the dissipative coupling, which is derived in the
Supplementary Information.
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