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Chapter 1

Resistance in Superconductors
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aPhysics Department, Harvard University, Cambridge MA 02138
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In this pedagogical review, we discuss how electrical resistance can arise in su-
perconductors. Starting with the idea of the superconducting order parameter
as a condensate wave function, we introduce vortices as topological excitations
with quantized phase winding, and we show how phase slips occur when vortices
cross the sample. Superconductors exhibit non-zero electrical resistance under
circumstances where phase slips occur at a finite rate. For one-dimensional su-
perconductors or Josephson junctions, phase slips can occur at isolated points
in space-time. Phase slip rates may be controlled by thermal activation over
a free-energy barrier, or in some circumstances, at low temperatures, by quan-
tum tunneling through a barrier. We present an overview of several phenom-
ena involving vortices that have direct implications for the electrical resistance
of superconductors, including the Berezinskii-Kosterlitz-Thouless transition for
vortex-proliferation in thin films, and the effects of vortex pinning in bulk type II
superconductors on the non-linear resistivity of these materials in an applied mag-
netic field. We discuss how quantum fluctuations can cause phase slips and review
the non-trivial role of dissipation on such fluctuations. We present a basic picture
of the superconductor-to-insulator quantum phase transitions in films, wires, and
Josephson junctions. We point out related problems in superfluid helium films
and systems of ultra-cold trapped atoms. While our emphasis is on theoretical
concepts, we also briefly describe experimental results, and we underline some of
the open questions.

1.1. Introduction

The ability of a wire to carry an electrical current with no apparent dissipation is
doubtless the most dramatic property of the superconducting state. Under favor-
able conditions, the electrical resistance of a superconducting wire can be very low
indeed. Mathematical models predict lifetimes that far exceed the age of the uni-
verse for sufficiently thick wires under appropriate conditions. In one experiment,
a superconducting ring was observed to carry a persistent current for more than a
year without measurable decay, with an upper bound for the decay rate of a part
in 105 in the course of a year.1 However, in other circumstances, as for sufficiently
thin wires or films, or in the presence of penetrating strong magnetic fields, non-zero
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resistances are observed. Over the past fifty years, a great deal of theoretical and
experimental effort has been devoted to obtaining better qualitative and quantita-
tive understanding of how this resistivity arises, and how superconductivity breaks
down, in the variety of possible situations.

Let us first recall how superconductors can exhibit negligible resistance in fa-
vorable situations. In a paper that appeared seven years before BCS, Ginzburg
and Landau (GL) proposed that a superconductor should be characterized by a
complex-valued function of position, Ψ(r), referred to as the superconducting order

parameter. They proposed, further, that one could define a free-energy functional
F , which depends on Ψ(r), and which would be minimized, in the case of a ho-
mogeneous superconductor with no external magnetic field, at temperatures below
the critical temperature Tc, by an order parameter Ψ(r) whose magnitude was a
constant Ψ0 > 0, determined by the temperature T . In order to minimize the free
energy, the phase of the complex order parameter should be independent of posi-
tion, but the value of the free energy would be independent of the choice of this
constant overall phase.

Following BCS, we now understand that the microscopic origin of the GL or-
der parameter is the condensate wave function for Cooper pairs. Except for an
arbitrary normalization constant, this is equal to the anomalous expectation value
〈ψ↑(r)ψ↓(r)〉, where ψ↑(r) and ψ↓(r) are the annihilation operators for an electron at
position r, with spin up and spin down respectively. The existence of this non-zero
expectation value signifies that the superconducting state has a broken symmetry,
namely the U(1) symmetry, commonly referred to as gauge symmetry, associated
with the conservation of charge or electron number.

The GL assumption enables us to understand the phenomenon of persistent
currents. Consider a superconducting ring in a situation where the magnitude of
the order parameter is a constant, but where the phase varies around the ring.
Since the order parameter Ψ must be single-valued at any given position, the net
phase change around the ring must be an integral multiple, n, of 2π. A state with
non-zero winding number n will have an excess free energy, proportional to n2 for
moderate values of n. As we shall see below, it will also carry an electrical current
proportional to n. One finds that in order for the initial state to decay to a state
with a smaller winding number, and hence, a smaller value of the free energy and
a smaller value of the current, it is necessary for the system to pass through an
intermediate configuration of Ψ(r) where the free energy is larger than the free
energy of the initial current carrying state, by an amount ∆F . Because Ψ(r) is the
wave function for a large number of Cooper pairs, the free energy barrier ∆F can be
very large compared to the thermal energy kBT , and the probability to be carried
over the barrier by a thermal fluctuation can be exceedingly small. On the other
hand, by adjusting parameters, including the temperature and the dimensions of
the system, one may reduce ∆F to the point where transitions occur at a small but
measurable rate.
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Quite generally, if we know the minimum value of the free energy barrier ∆F
separating a state with winding number n from a state with n−1, we may estimate
a thermally-activated rate of transitions between the two states as

η = Ω e−∆F/T , (1.1)

where the prefactor Ω depends on details of the system, but is generally a less-
rapidly varying function of the parameters than the exponential factor, in the region
of interest. (We measure temperature in energy units, so that kB = 1.) The most
important step, therefore, in estimating the decay rate of persistent current in a
superconducting loop is to identify the process with smallest barrier and to calculate
∆F as accurately as possible. After that, one must estimate the associated prefactor
Ω.

The most favorable path for a change in winding number, and the corresponding
value of ∆F , can be quite different in different geometries, as we shall discuss below.
However, there are some general considerations. The winding number n may be
defined as (2π)−1 times the integral of the phase gradient ∇φ along a closed path
around the ring, embedded in the superconductor. If we assume that Ψ(r) varies
continuously as a function of position and time, however, the only way that the
accumulated phase can jump discontinuously at some time t, is if Ψ vanishes at
some point on the path. Since Ψ has both a real and imaginary part, the locus of
points (r, t) with Ψ = 0 will generically form a set of co-dimension 2. In the case
of a two-dimensional superconductor, at a fixed time t, zeroes of Ψ should occur at
isolated points, known as vortex points, which are described as positive or negative,
depending on whether the phase changes by ±2π as one winds around the vortex
in a counterclockwise sense. In three dimensions, the vortex core, where Ψ = 0,
becomes a line segment ending at the boundaries of the superconductor, or possibly
a closed loop, embedded within the material. For a given location of the vortex
core, the state of minimum free energy will generally occur when the magnitude of
Ψ returns to its equilibrium value over a healing distance comparable to the BCS
coherence length ξ(T ). The structure of a vortex is depicted in Fig. 1.1.

Consider a superconducting annulus with a given initial phase-winding number
n > 0. One way to change n with the smallest barrier ∆F would be to introduce
a single positive vortex at the outer edge of the annulus, and move it across the
ring until it disappears at the inner edge. Alternatively, we could move a negative
vortex from the inner edge to the outer. In either case, any closed curve around
the ring would have been cut once by the vortex, and the winding number would
have changed by -1. The free energy cost for introducing a vortex into the film
will depend on the details of the material, but will clearly increase with increasing
thickness of the film. The free energy barrier can therefore be made arbitrarily large
by going to a wire of sufficient thickness.
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Fig. 1.1. An illustration of a vortex in a superconducting strip. The height of the function
corresponds to the magnitude of the order parameter Ψ(r) , and the greyscale to its phase φ(r),
mod 2π. The greyscale discontinuity along the line y = 0.5, for x > 0, does not represent a
discontinuity in Ψ, because eiφ is continuous. The coherence length used here is ξ = 0.1 .

In order to go further, it is helpful to make some assumptions about the form
of the free energy functional F (Ψ). The specific form proposed by Ginzburg and
Landau may be written as

F =
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, (1.2)

where A(r) is the electromagnetic vector potential (We use Gaussian cgs units
throughout this chapter). The parameters α,β, γ, are all positive below Tc, but α is
assumed to vanish linearly as T → Tc. If there is no magnetic field present, the free
energy is minimized when |Ψ| = (α/β)1/2, and the resulting free energy reduction
per unit volume is f0 = (α2/4β). The parameters of (1.2) result in a coherence
length ξ and a magnetic penetration depth λ given by

ξ = (γ/α)1/2 , λ = κξ , κ2 ≡
!2c2β

16πe2γ
. (1.3)

We shall be interested primarily in “type II” superconductors, where κ ' 1. The
free energy cost for creating a vortex is typically of order f0ξ2Lv, where Lv is the
length of the vortex.

The free energy (1.2) implies that in a state of stable or metastable equilibrium,
there will be an electrical current (“supercurrent”), whose density is given by

js(r) = −c
δF

δA(r)
=

2eγ

!
|Ψ|2

(

∇φ−
2e

!c
A

)

, (1.4)

where φ(r) is the phase of Ψ(r). Although the specific forms (1.2) and (1.4) are
quantitatively correct only close to Tc, they are qualitatively correct more generally,
and they will serve well for our purposes. The BCS theory gives a prediction for the
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Ginzburg-Landau parameters in terms of microscopic parameters of the material,
such as the electron density of states, the effective mass, the mean-free-path, and
the electron-phonon interaction strength.

The decay rate of a persistent current can be changed dramatically if there is
an applied magnetic field exceeding the threshold Hc1 = hc/2e

4πλ2 lnκ for penetration
into the superconductor. In this case one finds that there are vortices present even
in thermal equilibrium, with a vortex density nv proportional to the magnetic field:

nv = B/Φ0, , (1.5)

where Φ0 ≡ hc/2e is the superconducting flux quantum. Although the vortices
will ideally form a triangular Abrikosov lattice, in practice the lattice is usually
distorted and the vortices tend to be pinned by various types of inhomogeneities in
the material. In this case, since vortices are already present, the free energy barrier
for relaxation of a supercurrent at low temperatures will be the activation energy
necessary for vortices to become unpinned so they can move across the current-
carrying sample.

An analysis of the decay rate for persistent current in a ring can be extended
directly to the onset of resistance in an open superconducting wire carrying a current
between two contacts. Because Ψ(r) represents a wave function for Cooper pairs
of charge 2e, there is a commutation relation between the phase φ and the total
electron number N , given by

[φ, N ] = 2i . (1.6)

Then, because electrical charge is conserved, it can be shown that in a state of local
equilibrium, at any temperature T , the phase φ must evolve in time according to
the Josephson relation

dφ/dt = 2eV/! , (1.7)

where V is the electrochemical potential (i.e., the voltage) at the point r. [Equiv-
alently, (1.7) may be understood as a consequence of gauge invariance.] If the two
ends of a superconducting wire were each in local equilibrium, with their voltages
differing by an amount ∆V (= 0, and if no vortices or phase slips were allowed to
cross the intervening wire, the phase difference between the two ends of the wire
would increase linearly in time, and the resulting supercurrent would increase with-
out limit. In order to reach a steady state with a constant current, there must be a
net flow of vortices or phase slips across the wire, at a rate η that just relaxes the
phase build up due to the voltage, which requires

∆V = πη!/e . (1.8)

If, for a given current, there is a large free energy barrier, so that the rate η given
by Eq. (1.1) is very small, then the resulting voltage will be proportionally small.

In the presence of a non-zero electric field, there can be an additional contribu-
tions to the current from the “normal fluid”, which arises from thermally excited
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quasiparticles. When the phase slip rate η is small, the normal current will be
negligible compared to the supercurrent in a dc measurement, but it can be an
important source of dissipation in ac applications, as discussed in Section (1.4).

Our general considerations may be applied to a variety of situations. In wires
that are thin compared to the coherence length ξ, one may neglect the variation of
Ψ across the diameter of the wire, and consider that the order parameter is only
a function of x, the distance along the wire. In this case, the winding number
can change if the order parameter passes through zero at some location x0 along
the wire. Such events are often referred to as point phase slips. Phase slips can
also occur at weak links, or Josephson junctions, where the free energy has the
form of a periodic function of phase difference across the link, as opposed to the
quadratic function of the phase gradient that is most commonly applicable to a bulk
superconductor or film.

The various geometries and mechanisms for resistance by thermal activation will
be discussed below in Section (1.2), which will concentrate on the effects of thermally
activated phase slips or vortex motion on dissipation, in single Josephson junctions,
thin wires, films, and bulk materials. In Subsection (1.2.4), we also discuss the role
of vortices in the thermodynamic phase transition between the superconducting and
normal states of a thin film. Dissipation arising from vortices induced by an applied
magnetic field will be discussed in Subsection (1.2.6).

In very small Josephson junctions, very thin wires or highly disordered thin films,
at sufficiently low temperatures, the mechanism for relaxation of supercurrent may
be quantum tunneling of phase slips, rather than thermal activation over a barrier.
Quantum phase slips will be discussed in Section (1.3).

While the focus of this chapter is on superconductors, the dissipation mecha-
nisms discussed are common to many other types of systems. Examples can be
found among neutral superfluids such as helium and ultracold atoms (see Refs.2–6

for reviews). For example, theoretical analyses of transport of two-dimensional sys-
tems near a superconducting or superfuid transition were strongly motivated by
experiments on films of 4He.7 Another interesting case, where dynamics of the con-
densate order parameter determines transport properties, can be found in bilayer
quantum Hall systems at the filling factor ν = 1.8 In such systems one expects to
find spontaneous interlayer coherence, which is analogous to exciton condensation,9

so that both interlayer tunneling and antisymmetric longitudinal resistivity are de-
termined by the dynamics of the condensate order parameter. Current research on
systems of ultracold atoms will be briefly discussed in Section (1.5).

The emphasis in this chapter will be on the theoretical concepts necessary to
understand resistance in superconductors. We include only a limited discussion of
experimental results, with limited references to the corresponding literature. We cite
more numerous references containing detailed theoretical analyses and quantitative
calculations, but here too we are far from complete.

It should emerge from the discussions below that while we believe we have a good



May 20, 2010 0:5 World Scientific Review Volume - 9.75in x 6.5in BCS-Resistance-Review

Resistance in Superconductors 7

understanding of the basic mechanisms responsible for resistance in superconduc-
tors, there remain many puzzles and unanswered questions about the interpretation
of experimental data. Particularly in regimes where quantum fluctuations are im-
portant, the subject remains quite active

1.2. Phase slips produced by thermal activation

1.2.1. Phase slips in Josephson junctions

We begin by examining how phase slips arise in a Josephson junction between two
finite superconducting electrodes. Tunneling of Cooper pairs between the electrodes
gives rise to the following junction energy:

U(φ) = −EJ cosφ (1.9)

where φ is the phase difference between the superconudcting electrodes, and EJ

is the Josephson energy (we have assumed here that any magnetic flux through
the junction is negligible compared to Φs). A non-zero value of φ will lead to a
supercurrent across the junction, given by

Iφ = (2e/!)∂U/∂φ = (2e/!)EJ sinφ . (1.10)

For a tunnel junction between two BCS superconductors with an energy gap ∆, EJ

is given by the Ambegaokar-Baratoff formula:

EJ =
!∆

4e2RT
tanh

(

∆

2T

)

, (1.11)

where RT is the resistance of the junction in the normal state right above Tc.
If the superconducting electrodes are thick enough so that there is a large energy

barrier for the order parameter to vanish inside them, then the time dependence of
φ should be given by the Josephson relation Eq. (1.7), with V being the instanta-
neous voltage difference between the electrodes. This voltage may fluctuate in time
because of thermal noise or because of quantum-mechanical fluctuations. Here we
consider only the classical thermal contributions.

The precise dynamics of φ will depend on the way the junction is inserted in an
external circuit. Suppose that the the junction is connected to an ideal constant
current source, with current I. If the phase φ at some instant of time is such that
Iφ (= I, there will be a build up of the charge difference q between the two sides
of the junction, given by dq/dt = I − Iφ. This, in turn, will give rise to a voltage
difference V = q/C, where C is the capacitance of the junction. (We neglect here
the capacitance of the external circuit, which is in most cases small compared to
that of the junction.) The voltage V , in turn, will give a non-zero time-derivative of
φ. If the only current across the junction is supercurrent Iφ, then we have a closed
set of equations for φ and q which we may write in a Hamiltonian form

dφ

dt
=

2e

!

∂H
∂q

,
dq

dt
= −

2e

!

∂H
∂φ

, (1.12)
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H = U(φ) −
!

2e
Iφ+

q2

2C
, (1.13)

These equations suggest that we should identify !q/2e as a momentum canonically
conjugate to φ, which is consistent with the commutation relation [φ, q] = 2ie that
one would expect based on Eq. (1.6).

R

a. b.

C EJI
Ueff

Fig. 1.2. Josephson junction connected to a current source with current I. Panel (b) shows the
RSJ model, where the tunnel junction is shunted by a resistance R and a capacitance C. In
most cases, C is determined by the internal capacitance of the junction, while R−1 may be the
sum of an external shunt conductance and an internal conductance due to tunneling of normal
quasiparticles at non-zero temperatures. Panel (b) shows the “washboard” effective potential,
Ueff (φ) = −EJ cosφ− (!/2e)Iφ, for the phase φ.

If I is smaller than a critical current Ic = 2eEJ/!, the φ-dependent terms in
Heff have the form of a “washboard potential”, illustrated in Fig. (1.2a), with a
local minimum and a local maximum in each unit cell. The local minima are stable
solutions of the equation Iφ = I. If the system is initially placed at such a point,
and it initially has q = 0, then in the absence of external noise it will stay there
forever, with a constant current I and V = 0. If the system is displaced slightly
from one of the minima, it will oscillate forever about this minimum, unless some
additional coupling supplies energy enough to get it the over barrier separating it
from one of the neighboring minima. As long as the system is trapped near one of
the minima, the time-average of dφ/dt will still be zero, so we again have a current
carrying junction with V = 0.

When I = 0, the energy necessary to go over a barrier will be equal to 2EJ ,
regardless of whether the system moves in the direction of increasing or decreasing
φ. When I (= 0, however, the barriers ∆F± for increase or decrease of φ will differ
from each other by an amount −π!I/e. If I/Ic ) 1, one finds simply

∆F± ≈ 2EJ ∓
π!I

2e
. (1.14)

The energy to get over the barrier can come from coupling to thermal fluctu-
ations in the external circuit, or from thermally excited quasiparticles tunneling
across the junction. At non-zero temperatures, in addition to the supercurrent,
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there will generally be a normal current across the junction, due to thermally ex-
cited quasiparticles, when the voltage difference V (t) is different from zero. This
can be represented, at least approximately, by a model in which there is a shunt
resistor, with resistance R, across the Josephson junction, as shown in Fig. (1.2b).
If the external circuit is not an ideal current source, then R−1 should be a sum
of the contribution from the quasiparticles and the differential conductance of the
external circuit. The shunt resistance will lead to an added term, −q/RC in the
equation for dq/dt, which will lead to damping of the coupled oscillations q and
φ. In addition, one must include a white noise term in the equation of motion,
proportional to T/RC, so that for I = 0, the system can reach thermal equilibrium,
with a probability distribution P (φ) ∝ exp[−U(φ)/T ]. If one uses the same white
noise source for I (= 0, one finds a transition rate, in the direction of increasing or
decreasing φ, which may be written in the form

η± = Ωe−∆F±/T , (1.15)

where the prefactor Ω depends, in general on the parameters R and C, as well as
on the Josephson energy EJ . In the limit I/Ic ) 1 one can neglect the difference in
the prefactors for forward and backwards transitions. Then the mean voltage across
the junction, which is proportional to the net difference η = η+−η−, in accord with
Eq. (1.8) is given by

〈V 〉 = (2π!/e)Ω e−2EJ/T sinh(π!I/2eT ) . (1.16)

It the limit of small currents (I ) eT/!) one obtains an effective dc resistance for
the junction:

Reff = 〈V 〉/I = (π!2/e2T )Ωe−2EJ/T (1.17)

When the barrier is large compared to T , so that Reff is small compared to
the shunt resistance or the normal resistance of the junction, then essentially all
of the current through the junction is the supercurrent, and the total current I is
essentially the same as the mean value of Iφ.

It should be noted that the barrier ∆F+ tends to zero as I → Ic. Thus, even if
EJ/T is quite large, so that phase slips are negligible for I/Ic ) 1, there may be a
regime close to Ic where thermally activated phase slips become important.

The prefactor Ω can actually be calculated for the RSJ model. In the absence
of damping, a junction near a minimum of the cosine potential U(φ) will oscillate
about it at the Josephson plasma frequency

ΩJC ≡
1

!

(

2e2EJ

C

)1/2

. (1.18)

Then for an underdamped junction, where ΩJCRC is larger than 1, (but not larger
than EJ/T ), in the limit I → 0, the pre-factor, may be written10,11 Ω = ΩJC/2π.
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For an overdamped junction, with ΩJCRC ) 1, one finds in the limit I ) Ic,
that11

Ω =
e2EJRC

π!2
. (1.19)

1.2.2. Thermal phase slips in a thin wire close to TC.

When a superconducting wire is narrow compared to the coherence length ξ(T ), it is
generally correct to neglect variations in the order parameter across the diameter of
the wire, and to treat Ψ, at any time t, as as a function of a single position variable
x, the distance along the wire. A vortex, in this case, degenerates to a single point
where Ψ(x) = 0, and a phase slip event is an isolated point in space and time, where
Ψ passes through zero and the phase difference along the wire jumps by ±2π.

For temperatures relatively close to Tc, one may use the Ginzburg-Landau func-
tional (1.2) to calculate the free energy barriers ∆F± for creation of a phase slip
in the wire. In analogy to our treatment of the Josephson junction, if the wire
is connected to an external current source with a current I, we must add to the
GL functional a term −(!/2e)I∆φ, where ∆φ is the difference in the phases φ(x)
measured at the two ends of the wire. (We may assume that Ψ (= 0 at the two ends,
so that the phases at the ends may be defined to be continuous functions of time.)
Alternatively, one may calculate the free energy barrier to produce a phase slip in
a closed superconducting loop that carries a current I.

The free energy activation barrier for phase slips in a wire was first worked out,
using the GL theory, Langer and Ambegaokar.12 For a wire loop of length L , with a
specified phase change 2πn, the order parameter configuration that leads to a local
minimum of the free energy functional has a uniform phase gradient k = 2πn/L
and a constant magnitude of Ψ, with

Ψk(x) =
√

α/βeikx(1 − ξ2k2)0.5. (1.20)

A phase slip will reduce k by 2π/L. For that to occur, however, the order parameter
must go through an intermediate state Ψs(x) which is a saddle point of the G-L free
energy, where at some point x0 in the wire, the order parameter nearly vanishes. The
unwinding of the phase is concentrated close to x0, and the magnitude of the order
parameter is depressed in a region of lengnth ξ about that point. point. An explicit
solution for Ψs(x), for arbitrary current, was given by McCumber and Halperin.13

Once the order-parameter configuration reaches the saddle-point configuration Ψs,
the configuration can evolve with a continuously decreasing free energy through the
actual phase slip event, where the order parameter passes though zero at some point
on the line.

Roughly speaking, the free energy cost of reaching the saddle point is the cost
of suppressing the order parameter in the phase slip region. More precisely, in the
limit of zero current, the barrier is found to be

∆F0 = K0Aξf0 (1.21)
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where A is the cross-sectional area of the wire, K0 = 8
√
2/3, and f0 = α2/4β is

the condensation energy per unit volume. (The quantity f0 is related to the critical
field Hc by f0 = H2

c /8π.) The barrier ∆F0 decreases ∝ (Tc − T )3/2 when T → Tc.
For currents that are non-zero but small compared to the critical current, i.e.,

k ) ξ−1, the barriers for forward or backwards phase slips have the form ∆F± =
∆F0 ∓ π!I/2e, as was found for the single Josephson junction. Then, if we assume
that the rate of phase slips has an activated form similar to Eq. (1.15), we obtain
a voltage drop 〈V 〉 identical to (1.16), with the zero-current activation energy 2EJ

replaced by ∆F0.
In order to calculate the pre-exponential factor Ω(T ), one must make additional

assumptions about the dynamic equations of motion for the order parameter. This
was done by McCumber and Halperin13 using the simplest possible model, the time-
dependent Ginzburg-Landau (TDGL) theory. In this model, the order parameter
obeys an equation of motion of the form

1

Γ

∂Ψ

∂t
= −

δF

δΨ∗
+ η(t) (1.22)

where η(x, t) is a Gaussian white noise source with correlator 〈η(x, t)η(x′, t′)〉 =
2kBT Γ−1δ(t− t′)δ(x− x′), and

δF

δΨ∗
=
γ

2

(

∇+
2ie

!c
A

)2

Ψ−
α

2
Ψ+

β

2
Ψ |Ψ|2 . (1.23)

The constant Γ is temperature-independent near Tc, and is chosen so that Γα =
8kB(Tc − T )/π! ≡ 1/τGL. With these equations, one finds that in the absence of
a current, the function Ψ(x) will have an equilibrium distribution P{Ψ} ∝ e−F/T ,
and that an initial state close to equilibrium will relax to it at a rate 1/τGL, which
goes to zero as T → Tc.

The explicit calculation of the activation rate from the TDGL equation uses not
only of the values of F at the minimum and the saddle point, but also the eigen-
values of the second derivative matrices at the two points. The positive eigenvalues
contribute entropy corrections, which modify the numerical value of Ω, while the
negative eigenvalue at the saddle point determines the overall time scale. For a
translationally invariant system, such a calculation always results, up to a factor
of order unity, in the product of the number of “independent” phase-slip configu-
rations (e.g., where along the wire phase slips can occur), the inverse of the TDGL
time constant, and the square root of the free-energy cost of the saddle configura-
tion divided by the temperature.14 In the limit I → 0, the explicit result for the
prefactor, obtained by McCumber and Halperin, is

Ω(T ) =
0.156

τGL

L

ξ

(

∆F0

T

)1/2

, (1.24)

where L is the length of the wire. For T → Tc, the prefactor varies as (Tc −
T )9/4. The electrical resistance is resistance is given by R = (π!2/e2T )Ωe−∆F0/T ,
in analogy to (1.17), using (1.21) and (1.24).
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Above Tc, the order parameter fluctuations predicted by TDGL theory give
a temperature-dependent contribution to the electrical conductivity, in one, two
and three dimensions, which was first calculated by Aslamazov and Larkin. An
interpolation between this regime and the McCumber-Halperin formula therefore
gives a prediction for the entire temperature dependence near Tc, within the TDGL
theory.

The McCumber-Halperin formula for the resistance of a wire seems to work
surprisingly well in fitting resistivity data on thin wires close to Tc (see, e.g.,15), and
even at lower temperatures16 . Nevertheless, the formula comes with some caveats.
The TDGL theory is derived by integrating out the fermionic degrees of freedom,
and assuming that they can respond rapidly to changes in the order parameter.
This is probably a good assumption for calculating time-dependent fluctuations in
the order-parameter at temperatures slightly above Tc. However, its use below
Tc is problematic. One problem is that the energy gap of most superconductors
becomes rapidly bigger than kBT , at a small distance below Tc. Even where this has
not occurred, there can be some very long relaxation times associated with small
rates for inelastic scattering of quasiparticles, restoration of “branch imbalance”,
etc. In principle, these effects could lead to a very large reduction in the value
of the prefactor, which could change considerably the interpretation of the data.
Even above Tc , there are additional contributions to the electrical conductivity in
addition to the Aslamazov-Larkin term which may be important in the experiments.
The overall situation remains to be sorted out.

1.2.3. Planar geometries.

For a thin film superconductor, whose thickness d is small compared to the pen-
etration depth λ, we can generally neglect the effects of magnetic fields produced
by currents in the film. Therefore we can take A to be the vector potential due
only to an applied external magnetic field. In the absence of such a field, we may
drop A from the equations. Moreover, if d is small compared to ξ, we may neglect
variations in Ψ over the thickness of the film. One may then look for the planar
configuration Ψ(x, y) that minimizes (1.2) subject to the constraint that there exist
a pair of vortices of opposite sign, with a given separation 2D, which we choose to
be large compared to the coherence length ξ but small compared to the distance to
the nearest boundary. The resulting free energy, relative to the free energy of the
ground state without the vortices, is

δF = 2πKd[log(D/ξ) + 2εc] , K = γα/β , (1.25)

where εc is a constant of order unity. If there is a non-zero background supercurrent
density j, however, resulting from a uniform gradient of the phase φ, one finds an
additional term in the free energy of the form

δFj = −(π!/e)jD⊥d , (1.26)
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where D⊥ is the component of the separation perpendicular to the current. This
additional term may be derived by adding a term −(!/2e)I∆φ to the effective
Hamiltonian, in analogy to the our treatment of the Josephson junction and one
dimensional wire where ∆φ is the phase difference between the two ends of the film
and I is the total current, integrated across the width of the sample. Minimization
of the free energy in the presence of a pair of vortices leads to an incremental change
in ∆φ which is equal to 2πD⊥/W , where W is the width of the film. The additional
term may also be understood as arising from the magnus force on a vortex, , which
is proportional to the circulation of the vortex and the background current, and is
perpendicular to both. Similar formulas apply to a single vortex interacting with
its own image charge near an edge of the superconductor, except that in this case
the right hand sides of (1.25) and (1.26) must be divided by two, while D is the
distance to the edge. In either case, we see that if the displacement D is increased
in the direction of the magnus force, the free energy will eventually decrease, as
the linear term will win out over the logarithm. The free energy maximum occurs
when D⊥ ≈ 2eK/j!. The free energy barrier for nucleating a vortex at one edge of
a sample, and freeing it from its image charge, is thus found to be, for small js,

∆F ≈ πKd log(2eK/j!ξ). (1.27)

At low temperatures, T ) Kd, this results in a dissipative response which gives a
voltage of the form

V ∝ e−∆F/T ∝ jx(T ). (1.28)

where x(T ) ≈ πKd/T . A more accurate analysis, which includes the contribution
to the pre-exponential factor arising from the entropy associated with the position
of the vortex, predicts that17,18

x(T ) ≈ 1 + πKd/T (1.29)

Thus vortex nucleation processes produce dissipation in a superconducting strip
at any finite temperature and current. However, if x(T ) is large, the differential
resistance arising from Eq. (1.28) vanishes as a large power law as the supercurrent
approches zero. We shall see that the exponent is always larger than 3 in the
superconducting phase.

In a film of finite width, the logarithmic increase of ∆F will be cut off when
the current is so small that D⊥ reaches W/2. Also, if one takes into account
the magnetic field produced by a vortex, the increase in ∆F if D⊥ exceeds the
length scale λ⊥ = 2λ2/d for magnetic screening in a film (also known as the Pearl
penetration length). Thus for sufficiently small currents, one should recover a linear
voltage-currrent relation, with a small value of the resistivity.

1.2.4. Thermally excited vortices and the BKT transition

At temperatures comparable to the phase stiffness Kd of a superconducting film,
vortices may arise as thermal excitations. In an infinitely thin film, these vortices are
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described as an interacting gas of Coulomb particles, i.e., with an interaction that
depends logarithmically on distance (in a film with a finite thickness the logarithmic
interaction will prevail at distances shorter than the Pearl penetration length of
λ⊥ = 2λ2/d. The bare fugacity of the vortices is dictated by their core energy,
Ec = 2πKdεc, and is given by:

ζ ≈
1

ξ2
e−2πKdεc/T , (1.30)

which may be taken as a rough estimate for the total density of vortices in a film.
The intervortex interaction leads to a subtle vortex-pairing transition, known

as the Berezinskii-Kosterlitz-Thouless transition.19–21 At high temperatures, the
vortices behave as a charged, but unbound, plasma. As the temperature drops
under a critical value, TKT , vortices form neutral vortex and anti-vortex bound
pairs. The temperature where this transition occurs can be obtained by simple
thermodynamic consideration.22 If we consider a finite, but large, system of size
L, we can compare the energy cost of adding an uncompensated vortex with its
entropy gain. The energy increase due to an uncompensated vortex in a film of side
L follows from Eq. (1.25), and is given by ∆U = πKd[log(L/ξ)+2εc]. On the other
hand, such a vortex has an entropy which is roughly ∆S = ln(L2/ξ2) = 2 lnL/ξ.
The net increase of free energy through the nucleation of a vortex is thus:

∆F ≈ (πKd− 2T ) lnL/ξ (1.31)

where we ignore the film-size independent core energy. We see that this free energy
cost diverges in the thermodynamic limit, if T < TKT , defined by

TKT =
πKd

2
. (1.32)

Vortices are then logarithmically confined into neutral pairs, and free vortices do
not exist. The system is still a superfluid, though the value of ρs, and hence of
K will be somewhat reduced because of the polarizability of bound vortex pairs in
the presence of a current. [It is this temperature-dependent renormalized value of
K that should be used in (1.32) to determine TKT .] For T > TKT , single vortices
would proliferate and form a free plasma. As free vortices should have a finite
diffusion constant, they would move in response to an arbitrarily small electrical
current, giving a non-zero resistivity.

Another perspective on the BKT transition is obtained by considering the spa-
tial correlations of the superconducting order parameter in thin films. Because two
dimensions is the lower critical dimension for the U(1) superconducting order pa-
rameter, there is not true long range order at non-zero temperatures. Instead, the
correlation function in the superfluid phase is predicted to decay slowly at large
distances, according to the power law,

〈ei(φ(r)−φ(0))〉 ∼
1

rT/πKd
. (1.33)
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(The exponent here is necessarily < 1/4 in the superfluid phase.) For T > TKT the
correlation function falls off exponentially with a decay length ξ+(T ).

A proper analysis of the BKT transition makes use of a renormalization group
(RG) approach, in which one repeatedly integrates out the effects of pairs separated
by a distance smaller than a running cutoff of form al = ξel, and keeps track of the
renormalization of K and the vortex fugacity ζ. For T > TKT the renormalization
must be stopped at a length scale where the density of vortices is comparable to a−2

l ,
and the correlation length ξ+ is identified with this value of al. The RG analysis
predicts specifically that ξ+ should diverge at TKT with an essential singularity:

ξ+ ∼ e−a/
√

|T−TKT |, (1.34)

where a is a constant. The confinement length of the bound vortex pairs should
diverge in a similar manner for T → T−

KT . Because the correlation length diverges
so rapidly above TKT , there should only a very weak essential singularity in the
specific heat at the BKT transition point itself: all derivatives of the free energy
should be continuous there.

The linear resistivity for T > TKT , should be proportional to the density of free
vortices ∼ 1/ξ2+. For T < TKT , the resistivity vanishes in the the limit j → 0,
but finite currents can cause disassociation of bound vortex pairs, producing a non-
zero voltage. For small currents, this voltage should be described by the power
law (1.28). Comparing (1.29) with (1.32), we see that the exponent x(T ) is > 3
for T < TKT , and it approaches 3 for T → T−

KT . One also predicts17,18 that for
T = TKT , the induced voltage should have the universal dependence V ∝ j3.

The BKT transition as presented above applies equally well to these films of su-
perfluid 4He as to thin-film superconductors. Indeed the theory has been supported
by a number of beautiful experiments in the helium case.7 An important feature
of the superconductor, however, is that for a bulk sample, the thermal variation of
the superfluid density and other parameters is very well given by a mean field the-
ory, such as the BCS or Ginzburg-Landau theories, except in an extremely narrow
range near the bulk transition temperature Tc0. The transition temperature TKT

in a film is far enough below Tc0 that the mean field theory may be used to esti-
mate the bare parameters of the RG analysis. The parameter a in (1.34), as well
as the pre-exponential factors, can be estimated from the mean field parameters
and the measured normal conductivity σn.17 Similarly, using the time-dependent
Ginzburg-Landau theory, one may estimate quantitatively the enhancement of the
conductivity above σn due to incipient superconducting fluctuations for a range of
temperatures above TKT .

A number of experiments on thin superconducting films have indeed observed
the predicted forms of the resistivity.23,24 However, there are also experiments,
particularly involving cuprate superconductors, which have been fit to different
functional forms. A detailed analysis by Strachan. Lobb, and Newrock25 suggests
that the apparent discrepancies may be due to a combination of uncertainties in
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the choice of the mean-field Tc and problems where the vortex separation length
D⊥ may be exceeding λ⊥ or the film width. The reader is referred to that article
for a detailed discussion, as well as for citations to the experimental and theoretical
literature.

1.2.5. dc Resistance in bulk superconductors without magnetic fields

Bulk superconductors support a more robust superconducting state, and dissipative
effects in them are much more suppressed than in lower-dimensional superconduc-
tors. We first consider a wire that is thick compared to the coherence length ξ, but
thin compared to the magnetic penetration depth λ, which is possible in an extreme
type II material. Then the mechanism for producing dissipation the presence of a
supercurrent density j is the thermal nucleation of vortex rings, which can expand
across the diameter of the wire, and change the phase by 2π. When the vortex ring
is small, the line tension due to the vortex energy will try to collapse the ring, but
eventually, for a large vortex, this will be overcome by the Magnus force due to the
current, which will favor expansion of the ring.

The rate of vortex loop formation is thus inhibited by an energy barrier, which
thermal fluctuation may overcome.26 Following the same logic that led to Eq.
(1.28), we note that the energy of a vortex ring of radius R is:

Ering ≈ 2πREc − πR2jΦ0, (1.35)

with Ec being the vortex energy per unit length. Note that Ec also contains a slowly
varying contribution ∼ ln(R/ξ) when ξ < R < λ; this does not affect the scaling
behavior we discuss. The vortex-ring energy has a maximum at Rmax = Ec/jΦ0

with energy EB ≈ πE2
c /jΦ0. From this energy barrier we infer that the finite-

current resistivity of a bulk superconductor should vary as ρ ∼ e−JT /j with:

JT =
πE2

c

TΦ0
. (1.36)

This leads to a rapidly vanishing linear resistivity in the limit of j → 0 as expected.
In practice, this exponential behavior is so strong, that there would typically be a
threshold, say JT /30, below which no voltage drop could be measured in practice.

At sufficiently high current densities, when j exceeds the Ginzburg-Landua crit-
ical current JF ∼ Ec

Φ0ξ
, superconductivity would break down not due to thermal

fluctuations, but due to the mean-field energy cost of the current, according to
the G-L free-energy functional, Eq. (1.2). (JF is also the current density where
the energy-maximum radius would be comparable to the coherence length, ξ, so
vortex rings stop being a useful concept). The condition JT < JF , occurs only
extremely close to Tc, in the Ginzburg fluctuation regime where mean field theory
breaks down, and even the condition JT /30 < JF for measurable dissipation due to
formation of vortex rings may be difficult to achieve.

For a superconducting wire that is thicker than the magnetic penetration depth,
the situation is more complicated because the current is confined to a skin depth λ.
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This can make it even more difficult for a vortex ring to expand across the interior
of the wire, where the current density is small. Again, if the current is sufficiently
low, one can easily enter the regime where dissipation rates are unmeasurably small,
in the absence of applied magnetic fields.

1.2.6. Resistance in an applied magnetic field

For a bulk type II superconductor, when the applied magnetic field exceeds the
lower critical field Hc1 of the material, the magnetic field will penetrate the super-
conductor, giving rise to a finite density of vortices, even in thermal equilibrium. If
there is also a non-zero macroscopic electric current flowing in the superconductor,
the vortices will feel a magnus force, which tries to move them in the direction
perpendicular to the current flow. If the vortices can move in response to this force,
there will be an induced voltage, proportional to the density of vortices and their
mean velocity of motion, which will lead to dissipative resistance.

If the current is not too large, and if the temperature is low, the net rate of
vortex motion can be extremely small, as the vortices will tend to be pinned by
imperfections in the material. The origin of pinning can be point-like crystal de-
fects due to interstitial atoms, impurities or vacancies, or due to extended defects
such as grain boundaries, twin boundaries, or dislocations. Variations in material
composition or crystal structure could also cause pinning. In a thin film, variations
in the film thickness could lead to variations in the core energy which could lead
to pinning. For applications of superconductors as high current transmission lines
or in superconducting magnets, one wants to have pinning forces that are as strong
as possible, to prevent the motion of vortex lines and to suppress dissipation. For
this reason, pinning sites are often added by adding impurities or by cold work-
ing. Pinning is most effective when the pinning objects have size comparable to the
coherence length ξ, which is the size of the vortex core.

In the absence of disorder, vortices in a bulk superconductor in a magnetic field
will tend to form a triangular array, known as an Abrikosov vortex lattice.27 Since
the interactions between vortices try to keep them in a regular array, vortex motion
in the presence of a macroscopic current is actually the result of the competition
between the magnus force, the lattice stiffness, and the random pinning potential.
This interplay was qualitatively discussed by Larkin and Ovchinnikov28 [LO] under
the assumption that the pinning is caused by a large density np of pinning objects,
each having a weak effect on the vortex lattice. The energy gain for a pinning
site inside a vortex core was assumed to have a value u for a site at the center of
the core, falling to zero smoothly over the core radius. Then the root-mean square
pinning force exerted by a pinning at a random position is given by fp ≈ u/a, where
a ≈ (Φ0/B)1/2 is the distance between vortices in the Abrikosov lattice. LO assume
that the lattice is fragmented into domains where the lattice order is maintained,
while the lattice distorts slightly to accomodate the random pinning potential, and
they estimate the domain size and shape that will optimize the free energy gain due
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to the pinning potentials. They find that the optimum domain volume Vc and the
pinning energy δFp for each domain are given by:1

Vc ≈
C2

tiltC
4
shearξ

6

n3
pf6

p
, δFp ≈ −

n2
pf

4
p

CtiltC2
shearξ

2
(1.37)

where Ctilt = BH/4π is the tilt modulus of the Abrikosov lattice, and Cshear ≈
(1−B/Hc2)2BHc1/16π is its shear modulus. LO assume that the maximum pinning
force per unit volume ≈ fp(np/Vc)1/2 determines the critical current Jc for the onset
of vortex motion at zero temperature, which leads to the result

JcB ∼
n2
pf

4
p

CtiltC2
shearξ

3
. (1.38)

Following the same arguments for a superconducting film yields:

JcB ∼
npf2

p

Cshearξd
. (1.39)

It is interesting to note that according to this logic any amount of pinning would
render a superconductor dissipationless for sufficiently low currents. However, in
the LO weak pinning limit, the stiffer the vortex lattice, the smaller is the critical
current. This is different from the case of a small density of very strong pinning
sites, where the lattice stiffness could enhance the effects of pinning.

At finite temperature vortex motion may arise below Jc due to thermal fluctua-
tions. Even a qualitative understanding of these effects is difficult since it requires
understanding not only the characteristic forces that vortices encounter, but the
shape of the collective pinning potential as a function of current. Early collective
flux pinning theories proposed by Anderson and Kim29 suggested that the maxi-
mum potential barrier for a vortex to depin is U(j) ∝ (1 − j/Jc). A more modern
approach26 emphasizes the fact that the potential barrier, due to collective effects,
actually diverges near J → 0 as:

U(j) ∼ U0

(

Jc
j

)µ

, (1.40)

where µ is an exponent ≤ 1. The voltage drop V in a superconductor with current
density j should then be proportional to the Boltzmann factor, giving

V (j) ∼ exp

(

−
U0

T

(

Jc
j

)µ)

. (1.41)

This modified Arrhenius law leads to a vanishing linear resistance in the limit of zero
current, but any finite current at a finite temperature will experience dissipation.
Combining this with the Anderson-Kim model near j ∼ Jc, Eq. (1.40), leads to the
prediction that a superconducting loop that initially carries a current close to Jc
will experience a current decay which becomes slower and slower with time, with a
form

j(t) ≈ Jc

(

1 +
µkBT

U0
ln(1 + t/t0)

)−1/µ

, (1.42)
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where t0 is a microscopic time scale.
If disorder is sufficiently strong, it may obliterate the Abrikosov lattice alto-

gether. In this case it is thought that at low temperatures a vortex glass phase
replaces the Abrikosov lattice phase.26 The properties of this phase, which has
many concequences for high Tc cuprate superconductors, lie beyond the scope of
this review. An exhaustive review article on the rich topic of vortex pinning and
motion has been given by Blatter et al.30

For currents larger than Jc at low temperatures, and even for weak currents
close to Tc if the disorder is small, the vortex lattice may be unpinned from the
defects, and may flow freely under the Magnus force of the current. We would then
expect to find a vortex drift velocity vd proportional to the current density j, with a
coefficient η−1

v that depends on the temperature and the material at hand, but may
be relatively insensitive to the quantity of defects. (We are concerned here only with
the component of motion parallel to the Magnus force, which means perpendicular
to j.) This gives an electrical resistivity, in the flux flow regime, given by

ρ =
π!B

ηveΦ0
=

B

ηvc
. (1.43)

A crude estimate of ηv was obtained by Bardeen and Stephen, who modeled the
vortex core as a region of normal fluid, and estimated the rate of energy dissipation
in the core of a moving vortex by calculating the normal current induced by an
effective field proportional to product of the drift velocity and an effective magnetic
field of Φ0/πξ2. This led to an estimate

ηv ≈ σnΦ0/πξ
2c, (1.44)

where σn is the electrical conductivity of the normal metal. Using the relation
between ξ and the upper critical field Hc2 and ξ, we find an approximate form for
the flux-low resistivity:

ρ ≈
B

σnHc2
. (1.45)

Despite the crude approximations involved, this formula seems to work surprisingly
well in many cases.

1.3. Quantum fluctuations in junctions, wires, and films

In mesoscopic superconducting devices, phase slips may occur due to quantum
flucutations rather than thermal fluctuations. As mentioned above, the phase of
the superconducting order parameter is canonically conjugate to the charge density,
or Cooper pair density. Therefore charging terms in the Hamiltonians describing
such superconducting devices will produce fluctuations of the phase variable, and
lead to dissipation. In superconducting wires and higher dimensional arrays the
competition between charging effects and the Josephson coupling terms may give
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rise to a zero-temperature quantum phase transition, and not just to finite current
dissipation. In this section we will touch upon these effects.

1.3.1. Quantum phase slips in Josephson junctions

Let us return to the model of a capacitative Josephson junction connected to an
ideal constant current source, considered in Section (1.2.1). For the moment we
assume there is no shunt resistor or other sources of dissipation, so that the sys-
tem may described by the Hamiltonian H defined in (1.13 ), with the previously
stated commutation rule [φ, q] = 2ie. We shall now treat the problem quantum
mechanically, however, rather than taking the classical limit. It is convenient to
think about wave functions which depend on the variable φ, so that q is represented
by the operator q = −2ei∂/∂φ.

In a capacitatively shunted Josephson junction, quantum mechanics has several
effects. We shall focus on the case were EJ > EC where EC = 2e2/C is the Cooper
pair Coloumb blockade energy, and we shall first consider the situation where the
external current I = 0. Suppose that the system is initially trapped near the
cosine minimum at φ = 0, so that −EJ cosφ ≈ 1

2EJφ2 − EJ . The approximate
Hamiltonian is now that of a harmonic oscillator, with resonance frequency given
by Eq. (1.18), ΩJC = (EJEC)1/2/!. Quantum mechanics predicts a series of energy
levels, separated by !ΩJC , near the bottom of each cosine well.

The second quantum effect is the possibility for φ to tunnel between two adjacent
wells. This process is a quantum phase slip, and its amplitude can be estimated
from a WKB calculation:

ζ ∼ ΩJC

√
Se−S (1.46)

where the action barrier S is given by14

S = −
2π
∫

0

dφ

(

EJ(1− cosφ)

EC

)1/2

= 4
√
2
√

EJ/EC . (1.47)

For a Josephson junction consisting of two superconductors separated by an
insulating layer of fixed thickness, the coupling energyEJ will be proportional to the
area A of the junction, while EC ∝ A−1. Thus the frequency ΩJC is independent of
A, while the action S is proportional to A. We shall be interested in small junctions,
where S is larger than unity but not so large that the tunneling rate is completely
negligible.

We can now ask at which temperatures does the quantum tunneling process
become more pronounced than the thermal phase slip, whose rate is given by (1.14)
and (1.15). We see that quantum tunneling should become more important than
thermal slip processes when e−2EJ/T < e−S , which means that T should be less
than the crossover temperature TQ = !ΩJC .

To treat the tunneling more quantitatively, we may use the analogy with a
particle in a periodic potential. When I = 0, the eigenstates of the Hamiltonian
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(1.13 ) may be characterized by a “wave vector” k in the first Brillouin zone, which
is equal to the charge q modulo 2e. For energies less than EJ we find a series of
narrow tight binding bands, of width 4ζ , separated from each other by energy gaps
≈ !ΩJC . For the lowest energy band we have

Ek ≈ −EJ +
1

2
!ΩJC − 2ζ cos(2πk/2e) (1.48)

For energies above EJ , we find free running bands, separated by narrow energy gaps
at the Brillouin zone boundaries k = ±e and at the zone center, k = 0.

If we now connect the junction to an ideal current source with current I (= 0,
we must take into account the term proportional to I in (1.13). We thus obtain
the Hamiltonian for a quantum particle in a tilted washboard potential, like that
shown in Fig. (1.2a).

The current term acts like a force which changes continuously the quasi-
momentum k. If I is not too large, a particle initially in a low energy state with
k ≈ 0 will accelerate until it reaches the Brillouin zone edge, k = e and then will
be back-scattered by a reciprocal lattice vector, into k = −e. (This is the origin of
Bloch oscillations, where pulling on an electron in a periodic potential produces an
oscillatory motion back and forth, in the absence of dissipation.) Physically, when
the charge on the capacitor plates reaches e, a Cooper pair is transmitted through
the junction and makes the charge −e, and the process of charging repeats.31–33

During this process the phase φ oscillates back and forth, but there is zero average
voltage drop, while the time-average supercurrent is equal to the input current I.

There is, however, another type of energy eigenstate, where the particle starts
out with an energy above the top of the cosine potential and then accelerates to
larger and larger velocities, with increasing value of φ. Moreover, a particle that is
initially trapped in a low-energy Bloch-oscillation state will eventually tunnel out,
by a series of Zener processes through higher tight binding bands into the runaway
states. The time scale for this will be very long, if I is sufficiently small, but
eventually it should happen, if the system is truly described by the dissipationless
washboard model. In the runaway state, the voltage steadily increases as the charge
q builds up continuously on the capacitor plates, while the time average supercurrent
through the junction is zero. Thus the Josephson junction has become an insulator.

1.3.2. Resistively shunted Josephson junction

The case of a junction shunted only capacitatively is clearly a rather pathological
limit. In fact, the situation changes radically if we add a shunt resistor in parallel
to the junction. The resistor provides a damping force which, depending on its size,
can either stabilize the system in state of localized φ, where it carries a supercurrent
with vanishing voltage drop, or can stabilize a modified form of the runaway state,
where φ increases linearly in time, giving rise to a finite voltage drop V , but with
vanishing time-average supercurrent. In this latter case, the current I is carried
entirely by the shunt resistor, so that the Junction itself is essentially an insulator.
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A systematic way of modeling the resistively-shunted Josephson junction (RSJ)
is provided by the Caldeira-Legett model, to be described below. However, we
shall first try to understand qualitatively where a transition might occur between
an insulating and superconducting state in the limit of low currents. Essentially,
the phase of the junction is determined by the extent of uncertainty in the phase
of the junction. Since we are considering the limit of low currents, let us ignore
the current source altogether, and consider what happens when a Cooper pair is
transferred accross the junction. The charge 2e creates a voltage imbalance which
leads, in turn, to a current through the resistor, until the imbalance is relaxed. As
current flows through the resistor,there is a voltage drop V = I(t)R = !φ̇/2e across
the system, which causes the phase φ to wind. The total winding amount is:

∆φ =

∫

dtφ̇ =

∫

dt2eI(t)R/! =
(2e)2

!R
. (1.49)

If the phase winding as a result of a Cooper-pair tunneling is higher than 2π, we
expect that the phase coherence can not be maintained. Thus we may conclude
that for R larger than some critical value, of order

RQ =
h

4e2
= 6.45kΩ (1.50)

the junction will be in its insulating phase in the limit of zero current. The quan-
tity RQ is the “quantum resistance” associated with Cooper pairs. One can con-
struct a dual argument and caculate the amount of charge that gets transferred
across the resistor in case of a phase slip. This yields by an analogous calculation
∆Q = 2eRQ/R, and therefore indicates that for R < RQ we can have a supercon-
ducting phase, since the charge fluctuations are larger than a Cooper pair. Analysis
of the Caldeira-Legget model indicates that in the limit of zero temperature and
current, there is indeed a sharp transition between superconducting and insulating
states, and that this transition occurs precisely at R = RQ. This transition was
originally predicted by Schmid34 (see also Refs.35,36) and for a related system by
Chakravarty.37

The Caldeira-Leggett model, for EJ ' EC is described by the imaginary time
action:

SRSJ =
1

!
T
∑

ω

[

1

2EJ

!2

4e2
|qω|2ω2 +

1

2
|ω||qω|2R

]

+
1

!

∫

dτζ cos 2π
q

2e
, (1.51)

where the sum is over Matsubara frequencies ω = 2πn/T! and the integral is over
imaginary times τ . The first term is the inductive energy in the Josephson junction
due to a current. The last term describes the hopping between two tight binding
states of the junction at φ = 2πn and φ = 2π(n ± 1). The middle term is the
Caldeira-Leggett term,38 which imitates a term describing the damping force due
to a resistor. Caldeira and Leggett constructed the dissipative term by considering
the Junction coupled to many oscillators, with a frequency distribution chosen to
give the correct damping rate , and integrating out the oscillators..
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The partition function of the RSJ, calculated as a path integral over all imaginary
time trajectories with a Boltzmann factor exponential in the action (1.51), can be
understood by expansion in powers of ζ. This yields the partition function of a
one-dimensional (imaginary time) gas of interacting phase slips, with ’charge’ ±1
indicating the phase-slip’s direction. The “interaction” between phase-slips with
charges p1 and p2 at times τ1 and τ2 give a contribution to the action of

G(τ1, τ2) = 2p1p2
RQ

R
log (Ω|τ1 − τ2|) , (1.52)

As we found previously for vortices in a film, the logarithmic interaction between
phase slips induces a phase transition between a superconducting state where phase
slips are bound in neutral pairs , and a resistive state with unpaired phase slips.
This transition, however, is a quantum transition between two zero-temperature
ground states. The depairing transition occurs when the action to add an additional
uncompensated phase slip matches its ’quantum entropy’ in imaginary time:

RQ

R
logΩLT − logΩLT = 0 (1.53)

Therefore when the shunt has R > RQ, the junction itself is insulating, and all
current is forced to go through the shunt. Quite generally, the interaction strength
between two phase-slips is 2RQ divided by the combined shunt dissipation. This is
a useful principle for a quick analysis of quantum Josephson junction systems.

A combination of a renormalization group analysis similar to that for the
Kosterlitz-thouless transition and heuristic arguments provide us with the resistance
of the RSJ as a function of temperature. The phase slip fugacity renormalization
is:

dζ

d4
=

(

1−
RQ

R

)

ζ (1.54)

where the upper frequency cutoff is set at e−lΩJC . The initial value ζ0 (ζ at l = 0)
is given by Eq. (1.46). If we carry out the RG flow until the point l = l∗, where
2e−lΩJC ∼ T/!, we can obtain an expression for the resistance due to quantum
phase slips. If ζ → ΩJC during any stage of the RG flow, then superconductivity in
the junction breaks down. Otherwise, the probability rate of a phase-slip occuring
is:

pps ∼
(

ζl∗

ΩJC

)2

(1.55)

The rate r of occurrence of phase slips of either sign, is given by the product of this
probability and the renormalized frequency scale: r = e−l∗ΩJCpps. In the presence
of a non-zero current I, the potential drop V is determined by the difference of the
rates for forward and backward phase slip rates, which is a product of r and the
factor sinh(hI/2eT ), as in Eq. (1.16), if we assume !I ) eT . These arguments



May 20, 2010 0:5 World Scientific Review Volume - 9.75in x 6.5in BCS-Resistance-Review

24 Bertrand I. Halperina, Gil Refaelb, Eugene Demlera

lead to a linear resistance of the Josephon junction (to be understood as parallel to
the shunt resistor):39

R(T ) ∼ RQ (ζl∗/ΩJC)
2 ∼ RQ (ζ0/ΩJC)

2 1

T 2(1−RQ/R)
. (1.56)

Note that the qualitative behavior of a Josephson junction in the quantum
regime depends crucially on the properties of the external circuit through the shunt
resistance R. In general, if the temperature is far below the energy gap of the
superconductors on either side of the junction, there should be no contribution to
the shunt conductance from tunneling of excited quasiparticles across the junction.
This contrasts with the results in the classical regime, where the external circuit
was found to influence the pre-exponential factor but not the activation energy for
resistance in the junction. Experimentally, a superconductor to insulator quantum
phase transition in a single Josephson junction tuned by resistance of the external
circuit has been demonstrated in Ref.40

We have seen that even a small shunt resistance or dissipative coupling can have
major effects on the dc conductance of a Josephson junction in the quantum regime.
However, in high-frequency experiments, it may be possible to ignore dissipation,
if the latter can be made sufficiently small. This is the driving principal in designs
to use superconducting circuits as elements to construct a quantum computer.41–46

Although the general subject is outside the scope of this review, we mention one
recent experiment where, after embedding a small Josephson junction in a super-
conducting circuit with high kinetic inductance, it was possible to observe coherent
quantum tunneling between two adjacent wells of the cosφ potential, with Rabi
oscillations at a frequency 350 MHz.47 (This is much smaller than the classical
oscillation frequency within a well, ΩJC/2π ≈ 13.5 GHz.)

Before concluding this section we would like to discuss another perspective on the
interplay of quantum fluctuations and dissipation in Josephson junctions. Consider
first the case of an underdamped junction in the limit where EJ ) EC which is
opposite to the regime we have been considering so far. Since the shunt resistance is
large compared to RQ, the junction will be in the usual Coulomb blockade regime,
where there is an energy gap EB ≈ EC for electrical transport. The vanishing
of the linear conductance of the Josephson junction in this regime appears quite
natural. RG analysis, however, predicts insulating behavior of Cooper pairs for
underdamped junctions even in the limit EJ ' EC , when one would naively expect
Coulomb blockade effects to be suppressed. The RG argument can be formulated as
follows: in the underdamped regime the probability of quantum phase slips increases
with lowering the temperature as ∼ T−2(1−RQ/R). However the prefactor in this
expression involves ζ0, the probability of QPS at the microscopic scale ΩJC (see
eq. (1.56)). The latter is given by equation (1.47) and is exponentially small. Thus
observing insulating behavior of underdamped Josephson junctions in the regime
EJ ' EC requires working at exponentially low temperatures and currents.40,48

We remark that non-linear transport at non-zero voltages can be quite complicated
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in this regime and we shall not attempt to discuss this here. Results depend on
many details of the environment.

.49

In the discussion above Ohmic dissipation was introduced in the form of a
Caldeira-Leggett heat bath of harmonic oscillators. This is the simplest quan-
tum mechanical model which produces the correct classical equations of motion.
One may also consider more realistic microscopic models of dissipation, such as
quasiparticle tunneling (see e.g. ref.50). These models are more challenging for
theoretical analysis and result in a richer set of phenomena and more complicated
phase diagrams (see e.g. Ref51).

1.3.3. Quantum phase slips in wires: the quantum K-T transition

As we saw in Section (1.2.2), thin superconducting wires, like mesoscopic Josephson
junctions, will have a finite phase-slip related resistance at any non-zero temperar-
ture. One may also ask, however, about the possibility of phase-slip events caused
by quantum tunneling processes, which might be important at sufficiently low tem-
peratures. According to our current theoretical understanding, as discussed below,
an infinitely long wire of superconducting material can show a phase transition at
zero temperature, as a function of wire thickness, in which superconductivity is
destroyed by unbinding of phase slips in the space-time plane, analogous to the
finite-temperature Kosterlitz-Thouless transition in a two-dimensional film, or the
zero-temperature phase transition in a single junction connected to a shunt resistor.

The simplest way to understand the phase-slip proliferation transition in a wire
is to think of it as a chain of superconducting grains with self-capacitance, that
are connected via Josephson junctions. Each grain roughly represents a segment of
length a ∼ ξ(0) of the wire, and the Lagrangian describing the wire is then:

Li =
1

2
Ca

(

!

2e

∂φi
∂τ

)2

+
J

a
cos (φi+1 − φi) , (1.57)

where C is the capacitance per unit length, and J is proportional to the one-
dimensional superfluid density in the wire (We have assumed here that the capac-
itance to ground is more important than the capacitance between grains at the
wavelengths of the important fluctuations). The effective impedance shunting a
given Josephson junction is calculated by assuming that the other junctions are
perfectly superconducting, and therefore behave as inductors for small fluctuations
in the current. The effective impedance of two semi-infinite telegraph line (one on
each side of the junction) with per-length capacitance C and inductance !2/4e2J is

Z = 2
√

!/2eJC. (1.58)

As we discuss below, the superconductor-insulator transition happens when Z =
RQ/2, where the extra factor of 2 is due to the entropy arising from the spatial
degree of freedom of phase slips.52



May 20, 2010 0:5 World Scientific Review Volume - 9.75in x 6.5in BCS-Resistance-Review

26 Bertrand I. Halperina, Gil Refaelb, Eugene Demlera

A more quantitative analysis of the wire can continue along the lines of the
single junction analysis. The partition function of a wire, like a single junction,
can be written as that of a neutral gas of interacting phase slips in space-time with
a logartihmic interaction.53,54 The strength of the interaction is determined by
the effective dissipation of the chain, given in Eq. (1.58), and for two phase slips
separated by a space-time vector (x, τ) it is:

G(x, τ) = p1p2
√

JC/4e2 log
(

Ω
(

x2/v2MS + τ2
)1/2

)

. (1.59)

where v2MS = (4e2/!2)J/C is the Mooij-Schoen mode: the speed with which phase
fluctuations propogate in the superconducting wires. By thinking of the imaginary
time direction τ as a second space direction, we see that this Lagrangian coincides
with the energy density of films, Eq. (1.4). Phase slips are clearly the space-time
analog of vortices in 2d films. Since we now have the restriction |τ | < T/!, a
quantum chain at finite T corresponds to the classical behavior of a film of finite
width.

If we use y = vMSτ , the dimensionless stiffness K of the film is relaced by

KQ =
√

JC/4e2. (1.60)

With this classical-quantum mapping, we can infer all properties of the wires. We
can use an RG analysis to describe the flow of the plasmon-interaction strength KQ,
and a phase-slip fugacity ζ, as we integrate out modes of the phase φ with large
frequencies and wave vectors, and rescale both space and time. Skipping technical
details, the flow equations one obtains are

dKQ

dl = −π
2K

2
Qζ

2

dζ
dl = ζ

(

2− KQ

2

) (1.61)

If we expand about the transition point KQ = 4, these equations have the same
form as the Kosterllitz-Thouless flow equations. At T = 0, if the initial value of
KQ is sufficiently large, and ζ is small, one flows to a point on a “fixed line”, with
ζ = 0 and KQ > 4. This implies that the wire is a superconductor at T = 0, with a
renormalized value of the superfluid density, or equivalently of J , which is related
to KQ by Eq. (1.60) For temperatures that are non-zero but sufficiently small, one
finds a resistivity that decreases with T according to the power law

ρ(T ) ∼ TKQ−3. (1.62)

If at some point in the RG flow, the value of KQ becomes smaller than 4,
the fugacity ζ will begin to increase, and KQ will then decrease to zero. (This
can happen if the wire is too thin.) The wire will then be an insulator at T =
0. Mirroring the behavior of ζ, one predicts that for wires that are slightly on
the insulating side of the transition, the resistivity should first decrease and then
increase with decreasing temperature, eventually diverging as T → 0. Figure (1.3)
shows the traces of resistance vs. temperature according to the K-T RG picture.
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Fig. 1.3. Resistivity of a superconducting wire as a function of temperature in the vicinity of
a Kosterlitz-Thouless zero-temperature phase slip unbinding transition. The parameter K takes
the values K = 3, 3.2, 3.4, . . . , 4.2 wiht K = 4 being the quantum critical point. The grey lines
correspond to the insulating phase of the wire, but, interestingly, they initially show a reduction
in resistance as temperature decreases, and only at the lowest temperatures their resistivity curves
up. In experiments, such effects will give rise to non-monotonic behavior of the resistivity.

1.3.4. Experiments on nanowires

Superconductivity and quantum phase slips in ultra thin quantum wires was inves-
tigated in several experiments recently.55–58 Particularly germane to the discussion
above were the nanowire experiments done by the Tinkham and Bezryadin groups
on MoGe amorphous nanowires (see ref.59 for a review). These experiments fol-
lowed the resistance as a function of temperature for wires of varius lengths (100nm
to 1µm) and widths (5nm to 25nm). Figure 1.4 summarizes some of these experi-
ments.

The MoGe nanowire experiments clearly showed a transition between weakly in-
sulating behavior and superconducting behvior at low temperature. Furthermore,
the persistant resistance of the wires at low temperatures indicated that this tran-
sition is driven by quantum fluctuations. As Fig. 1.4 shows, the location of the
transition is consistent with a global transition at RN = RQ = 6.5kΩ for short
wires (L < 200nm), where the wires behave like single shunted junctions, and with
a local infinite-wire like transition for longer wires. This behavior is expected on
the basis of phenomenological two-fluid models,60–62 and provides support to the
theory of quantum phase-slip proliferation.
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Fig. 1.4. MoGe nanowires experiments, taken from Ref.58 (a) Resistance vs. temperature of
superconducting samples. (b) Resistance vs. temperature of insulating samples. (c) Phase diagram
of all wires in a and b in terms of the normal state resistance (the resistance just after the leads turn
superconducting, indicated by the ’knee’ in the R(T ) curves) and the conductivity. The dashed
line corresponds to RN = RQ, and the dashed dotted line is added by here as the suggested
long-wire critical conductance.

Nevertheless, a point of controversy is the detailed temperature dependence of
the resistance on the temperature. The measurements of Bezryadin, in particular,
show a rapid decay of resistance with decreasing temperature for short supercon-
ducting nanowires,16 contrary to the expectation of a power-law decay [Eq. (1.56)].
In Ref.63 it is shown that taking into account a finite density of phase slips in
short wires in a self consistent way, by modifying the effective shunting resistance
to be Reff = RN +αζ2, with ζ being the pahse slip fugacity, indeed produces sharp
declines of the resistance with decreasing temperatures in good agreement with the
experiments.

While it is beyond the scope of this review, we would like to emphasize that
several other attmepts to describe the behavior of MoGe nanowires were made. In
particular, Refs.64 showed that if pair-breaking effects which give rise to dissipation
in the nanowires exist, one can describe the nanowires using the Hertz-Millis field
theory which gives rise to a universal conductance at the superconductor-insulator
transition point. It was later shown by Vojta’s group65 that any amount of disor-
der would drive this field theory into an infinite-randomness phase, which implies
exotic scaling properties not yet compared to experiment. Additionally, we must
mention that quantum effects are also expected to affect the mean-field transition
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temperature (neglecting quantum phase slips) of thin superconducting wires. The
theory for this suppression was developped by Finkel’stein and Oreg, and shows
good agreement with experiment.66

1.3.5. Quantum phase transitions in films

The study of superconductivity in thin films at low temperatures is of particular
contemporary interest. Quantum effects may drive thin superconducting films into
a resistive and even insulating states at low temperatures. Similarly, disorder, which
is always present in experimental realizations of thin films, plays a crucial role in
the fate of superconductivity in films.

Roughly speaking, films from superconducting materials undergo two classes of
superconducting-insulating transitions: magnetic field induced, and disorer induced.
In both cases the transition is between a superconducting phase with a vanishing
resistance at T → 0, and an insulating phase with a diverging resistance as T → 0.
Furthermore, a rough separation is made of films that undergo such a transition
into two classes: granular and amorphous films. We leave the review of the observed
phenomena in films to the review article by A.M. Goldman,67 also included in this
collection. Below we will briefly recount some of the guiding principles in this topic.

The disorder effects on the superconducting state in amorphous films is observed
as a suppression of the critical temperature Tc as the the thickness of the film is
reduced.33,68,69 By and large, this phenomenon is explained by Finkelstein’s analysis
of the mean-field transition in a thin diffusive metallic film.66,70 The main idea is
that Coloumb interactions suppress the transition to the superconducting state
more efficiently in diffusive thin films since the time by which charge fluctuations
can relax is shorter. For a review see.70

In granular films, and in films in a finite magnetic field, it is expected that Cooper
pairs form, but fail to establish phase coherence due to phase fluctuations induced
by disorder and Coulomb interactions.71 These phase fluctuations would give rise
to a transition between a superconducting state at low fields or when disorder is
weak, and an insulating state at the opposite limits. Some examples of disorder
induced transitions are given in Refs.72 The magnetic field induced transitions
occur in materials such as InO73,74 and TiN,75,76 and produces insulating states
with a staggering resistance in excess of R! ∼ 1GΩ.

One illuminating, albeit only qualitative, picture for the quantum-fluctuations
induced transition is given in terms of vortices. A neutral gas of vortices describes
quantum fluctuations in the zero-field limit, and in a finite normal magnetic field,
there must be a net density of vortices. A formal duality maps the field theory of
a bosonic gas (e.g., the Cooper pairs) to a field theory of a gas of vortices, which
are also considered bosonic.77 Since the two theories are suspected to have similar
universal properties with regards to a formation of a condensed state, it also suggests
that at the superconducting transition the resistance per square of the film should
be of order RQ = h/4e2 (assuming a small Hall angle).78
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To roughly see how it comes about, let us discretize the film into an array
of Josephson junctions. Qualitatively, the film can be described either in terms
of the number of bosons (Cooper pairs) in each grain and their conjugate phases
(n(CP )

i , φi) or in terms of the number of vortices in each plaquette and their con-

jugate phases (n(V )
i , θi). The transition between the Cooper-pair superfluid and

insulator is also a transition between a localized-vortex phase and a vortex super-
fluid. At the transition, both bosonic gases are diffusive, and their diffusion times
should also be similar. If we consider the resistance of the film, we can also concen-
trate on a single representative bond (the 2d geometry guarantees that this would
also be the resistance per square). The current across such a junction is I = 2e/τCP

with τCP the time for a Cooper pair to cross the junction. Alternatively, in terms
of vortex motion, the voltage across the junction is V = !

2e
d∆φ
dt ≈ !

2e
2π
τV

, with τV
the time constant for vortex motion across the junction. If vortices and Cooper
pairs are close to being self dual at the transition, then we expect τV ∼ τCP , and
therefore:

Rc =
V

I
=

!

2e

2π

τV

τCP

2e
≈

h

4e2
. (1.63)

Let us write the Cooper-pair Hamiltonian, and its dual, the vortex Hamilto-
nian, explicitly. For simplicity, we will assume there is no disorder in the dis-
cretized model, and that the Cooper-pairs only experience short range repulsion.
The Cooper-pair degrees of freedom in a granular array have the Hamiltonian:

H = −
∑

<ij>

J cos(φi − φj + Φij) + U(ni)
2 (1.64)

J is the (nearest neighbor) Josephson coupling, Φij accounts for the (physical)
vector potential between the grains, U is the charging energy of each grain. This
Hamiltonian can be recast in terms of the vortex density, n(V ) = 1

2π∇×∇φ, and an
angle θi which is conjugate to the vortex density. Note that in the vortex context
the index i refers to plaquettes bounded by Josephson junctions. The Hamiltonian
is found to be

HV ≈ −
∑

<ij>

t(V ) cos(θi − θj) + U (V )δn(V )
i δn(V )

j ln(ri − rj) (1.65)

where δn(V )
i ≡ n(V )

i − H/Φ0. The first term in (1.65) describes the hopping of
vortices between adjacent plaquettes, with hopping strength t(V ); the stronger the
charging interactions (and, in principle, disorder) in the sample are, the larger is
tV . The vortex-interaction parameter is roughly U (V ) = πJ

The vortex Hamiltonian (1.65) and the Cooper-pair Hamiltonian (1.64) are both
bosonic, but their details differ. Thus the Cooper-pair - vortex duality is not an
exact self-duality. Nevertheless, it is thought that the two actions are sufficiently
similar that the resistance of films at the superconductor insulator transition should
be close to the value RQ that an exact self-duality would indicate.
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The superfluid-insulator transition in 2d systems is still not fully understood,
and the vortex-Cooper-pair duality is so far a guiding principle more than a theory.
The experimental situation is made even more complicated due to some samples
exhibiting resistance saturation in parameter regimes between the superconducting
and insulating regimes, as the temperature sinks below T ∼ 100mK,73,74,79,80 which
by some is thought to be an intervening exotic metalic phase81,82 whose origins are
unknown. While our discussion above was referring to superconducting films, it
mostly applies to superfluid Helium films as well. Like superconducting films, the
appearance of superfludity in Helium on strongly disordered substrate such as vycor
is still not fully clarified. (See, e.g.,83,84).

1.4. ac conductivity

As was mentioned in the introduction, At non-zero temperatures, in the presence of
a non-zero potential gradient, there will be a contribution to the electrical current
from the motion of thermally excited quasiparticles. This normal fluid contribution
will be negligible compared to the supercurrent in a dc measurement, if the phase
slip rate η is sufficiently small, since the potential gradient itself will be vanishingly
small in this circumstance. In an ac experiment, however, the supercurrent will be
accompanied by a non-zero reactive voltage even in the absence of vortex motion,
and this voltage will lead to a non-zero normal current with associated dissipation.

In the absence of vortex motion, we can write the current j induced by a weak
electric field E at frequency ω as j = σ(ω)E, where

σ(ω) =
iρs
mω

+ σ̃n(ω) (1.66)

where ρs is the superfluid density, m is the electron mass, and σ̃n is the conductivity
of the normal fluid, which approaches a non-zero real constant for frequencies below
the scattering frequency of the quasiparticle excitations. The superfluid density is
related to the previously defined quantity K by ρs/m ≡ (2e)2K. The first term in
(1.66) defines a “kinetic inductance” for the superconductor.

The combination of the Cooper-pair inductance, and the normal electrons’ dis-
sipation has important consequences for electronic applications such as resonators
and microwave cavities. The dissipated power per unit volume in a superconducting
material with an ac current density j is given by ρj2, where the ac resistivity ρ is
defined by ρ = Re[1/σ(ω)] ≈ ω2σ̃nm2/ρ2s.

In microwave cavities made of a superconducting material, the normal fluid
will be responsible for losses on its surface. The skin depth δ of the radiation
≈ (mc2/4πρs)1/2 which is independent of ω, and since since the total ac current
per unit area of the surface for a given intensity of the incident microwave power
is also independent of ω , the ratio between the power absorbed in the surface and
the incident power is proportional to ω2σ̃n.

In standard BCS superconductors, the minimum energy to create a quasiparticle
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is given by the energy gap ∆. The value of σ̃n is proportional to the number of
excited quasiparticles, which goes to zero as e−∆/T at low temperatures. However,
one can also have superconductivity without an energy gap, as in the presence of
magnetic impurities. In such cases, the normal fluid conductance will not vanish
exponentially at low temperatures, and a more complicated analysis is necessary.
See, e.g., Refs.85,86 Of course for frequencies larger than 2∆/! there would be power
absorption even at T = 0.

1.5. Systems of Ultra-Cold Atoms

Recent experiments with ultracold alkali atoms have opened a new chapter in the
study of nonequilibrium dynamics of superfluids. Two features of such systems make
them particularly suitable for studying dynamical phenomena: complete isolation
from the environment and characteristic frequencies of the order of kHz, which are
readily accessible to experimental analysis. Dynamics of atoms in optical lattices87

has particularly close connection to the issues that we discussed earlier in the context
of superconductors. Here we restrict our discussion to bosonic atoms although
interesting experiments have also been done with fermions (see e.g. Ref.88).

Optical lattices are created using standing waves of laser beams that provide
an artificial periodic potential for the atoms. The strength of the optical potential
can be controlled and atomic systems can be tuned between the regimes of a weak
lattice, where kinetic energy dominates, and strong lattice, where repulsive inter-
actions between atoms play the dominant role.87,89 In the former case one finds
BEC of weakly interacting atoms and a macroscopic occupation of the state with
quasimomentum k = 0. In the latter case the system is in the Mott insulating state
which has no long range phase coherence and strongly reduced number fluctuations.
The transition between the two phases is an example of the quantum fluctuations
driven phase transition which we discussed in Sections 1.3.3 and 1.3.5. Such a tran-
sition was first observed by Greiner et al.90 by measuring momentum occupation
numbers in the so-called time-of-flight experiments.

Experimentally, one can also prepare cold atoms systems moving with respect
to the optical lattice and study the decay of the current. Such experiments are very
similar in spirit to the critical current measurements in the case of superconductors.
In the weakly interacting regime one expects the critical current to be determined
by the inflection point of the single particle dispersion.91–93 Beyond the inflection
point the effective mass becomes negative, which is equivalent to a change of inter-
action from repulsive to attractive, so small density fluctuations become amplified
making the system unstable to fragmentation. Close to the Superfluid to Mott
transition we expect the critical current to go to zero continuously. So the question
is how to connect the two regimes. This was analyzed both theoretically94 and
experimentally,95–97 and direct signatures of both thermal and quantum phase slips
have been observed.
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1.6. Conclusion

We have seen that the mechanisms for production of resistance in superconduct-
ing materials are understood in broad outline. However, there remain many open
questions, particularly at very low temperatures, when quantum fluctuations are
important. In such situations, the dynamics of phases slips or vortex motion will
be sensitive to couplings to sources of dissipation, internal or external, possibly at
multiple frequencies, and we have only a limited understanding of how this occurs
in actual experiments. Open questions exist even for presumably classical problems,
such as the resistance of a superconducting wire close to near Tc, where the simple
time-dependent Ginzburg-Landu model seems to work much better than it should.

There are many open questions regarding the role of disorder in the classical as
well as quantum regimes. We understand only partially the collective pinning that
results from the interplay of disorder and vortex-vortex repulsion for a type-II super-
conductor in a strong magnetic field. Issues of how to increase pinning and decrease
flux creep are of great importance for practical applications of superconductors in
the areas of power transmission and high field magnets.

Review articles and books, as well as articles in the original literature, point to
open issues in the field. Among the helpful examples are Refs49,54,59,98–101
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