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Transport properties are among the defining characteristics of many important phases in condensed-matter physics. In the
presence of strong correlations they are difficult to predict, even for model systems such as the Hubbard model. In real
materials, additional complications arise owing to impurities, lattice defects or multi-band effects. Ultracold atoms in contrast
offer the possibility to study transport and out-of-equilibrium phenomena in a clean and well-controlled environment and can
therefore act as a quantum simulator for condensed-matter systems. Here we studied the expansion of an initially confined
fermionic quantum gas in the lowest band of a homogeneous optical lattice. For non-interacting atoms, we observe ballistic
transport, but even small interactions render the expansion almost bimodal, with a dramatically reduced expansion velocity.
The dynamics is independent of the sign of the interaction, revealing a novel, dynamic symmetry of the Hubbard model.

In solid-state physics, transport properties are among the key
observables, the most prominent example being the electri-
cal conductivity, which, for example, allows one to distin-

guish normal conductors from insulators or superconductors.
Furthermore, many of today’s most intriguing solid-state phe-
nomena manifest themselves in transport properties, examples
including high-temperature superconductivity, giantmagnetoresis-
tance, quantum-Hall physics, topological insulators and disorder
phenomena. Especially in strongly correlated systems, where the
interactions between the conductance electrons are important,
transport properties are difficult to calculate. In general, predicting
out-of-equilibrium fermionic dynamics represents an even harder
problem than the prediction of static properties such as the nature
of the ground state. In real solids further complications arise
owing to the effects, for example, of impurities, lattice defects and
phonons. These complications render an experimental investiga-
tion in a clean and well-controlled ultracold-atom system highly
desirable. Although recent years have seen dramatic progress in
the control of quantum gases in optical lattices1–3, a thorough
understanding of the dynamics in these systems is still lacking.
Genuine dynamical experiments can not only uncover newdynamic
phenomena but are also essential to gain insight into the timescales
needed to achieve equilibrium in the lattice4,5 or to adiabatically
load into the lattice6,7.

Using both bosonic and fermionic8–10 atoms, it has become
possible to simulate models of strongly interacting quantum
particles, for which the Hubbard model11 is probably the most
important example. A major advantage of these systems compared
with real solids is the possibility to change all relevant parameters in
realtime by, for example, varying laser intensities ormagnetic fields.
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Although first studies of dynamical properties of both bosonic
and fermionic12–14 quantum gases have already been performed,
a remaining key challenge, however, has been the presence of
additional potentials on top of the periodic lattice potential: these
will lead to confining forces or, in the absence of interactions, to
Bloch oscillations15–19 that dominate transport.

In this work, it was possible to study out-of-equilibrium
dynamics and transport in a homogeneous Hubbard model
by allowing an initially confined atomic cloud with variable
interactions to expand freely within a homogeneous optical
lattice (Fig. 1) without further potentials. Monitoring the in situ
density distribution during the expansion led to several surprising
observations: already small interactions cause a drastic reduction
of mass transport within the expanding atomic cloud and change
its shape; for strong interactions the core of the atomic cloud
does not expand, but shrinks; and, surprisingly, we find that
only the magnitude but not the sign of the interaction matters:
the observed dynamics is identical for repulsive and attractive
interactions despite a large difference in total energy.

The experiment starts with the preparation of a band-insulating
state of fermionic potassium in a combination of a blue-detuned
three-dimensional optical lattice and a red-detuned dipole trap
(Methods). The applied lattice-loading procedure includes a hold
time in a deep lattice with strongly reduced tunnelling, during
which the interaction between the two used hyperfine states can
be controlled using a Feshbach resonance. Combined with a strong
harmonic confinement, this hold time causes a dephasing between
different lattice sites and leads to a localization of the atoms to single
lattice sites. This loading procedure results in a cloud of localized
atoms with a constant density distribution, which is independent of

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1

http://www.nature.com/doifinder/10.1038/nphys2205
mailto:ulrich.schneider@lmu.de
http://www.nature.com/naturephysics


© 2012 Macmillan Publishers Limited.  All rights reserved. 

 

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS2205

Strongly interactingNon-interacting

Initial state

Free expansion in lattice

Figure 1 | Expansion of fermionic atoms after a quench of the trapping potential. First a dephased band-insulator is created in the combination of an
optical lattice and a strong harmonic trap. Subsequently the harmonic confinement is switched off and the cloud expands in a homogeneous Hubbard
model. The observed in situ density distributions demonstrate the strong effects of interactions on the evolution.

the chosen interaction (see Supplementary Information for details).
Subsequently, the expansion is initiated by suddenly eliminating
all confining potentials in the horizontal direction (Fig. 1). The
resultingmass transport is not driven by an external potential but by
density gradients. The applied preparation scheme guarantees that
all interaction effects arise only during the expansion because the
initial state is independent of the chosen interaction.

Non-interacting case
For non-interacting atoms, we observe that the symmetry of the
cloud changes during the expansion from the rotational symmetry
of the initial density distribution to a square symmetry that is
governed by the symmetry of the lattice (Fig. 2).

In the absence of collisions and additional potentials the
Hubbard Hamiltonian consists only of the hopping term HJ =

−J
∑
〈i,j〉 ĉ

†
i ĉj , which describes the tunnelling of a particle from

one lattice site to a neighbouring site with a rate J/h̄ (ĉ †
i

(ĉi) denotes the fermionic creation (destruction) operator). This
Hamiltonian gives rise to a ballistic expansion where each initially
localized particle expands independently with a constant quasi-
momentum distribution. As a localized single-particle state (a
Wannier function) is an equal superposition of all Bloch waves
within the first Brillouin zone, the velocity distribution inherits the
square symmetry of the Brillouin zone. This leads to the observed
change in symmetry, as the density distribution after an evolution
time t is given by the convolution of the initial density distribution
(spherical) with the velocity distribution (square) of the individual
atoms (classically: r(t ) = r(0) + vt ; v: possible velocity of an
individual atom, r: corresponding position). In the experiment,
the width of a single-particle wavefunction (Fig. 2, dark blue dots),
which is extracted from the images by deconvolving the observed
cloud size with the initial cloud size, grows linearly with expansion
time, thereby confirming the ballistic expansion. The extracted
mean expansion velocity vexp =

√
〈v2〉 agrees very well with the

quantum-mechanical prediction (solid line) vexp =
√
2d (J/h̄)alat

(d : dimension, alat: lattice constant), that is the averaged group
velocity of the Bloch waves (see Supplementary Information). This
expansion can be seen as a continuous quantum walk20–24. For
comparison, classical (thermal) hopping of a particle (for example
of a thermalized atom on the surface of a crystal) would result in a
random walk, where the width of the resulting density distribution
would scale as the square root of the expansion time (dashed
lines). For very long expansion times, residual corrugations in the
potential become relevant and can distort the square symmetry (see
Supplementary Information).

Interacting case
The ballistic expansion observed for non-interacting atoms is in
stark contrast to the interacting case, where a qualitatively different
dynamics is observed: Fig. 3 shows in situ absorption images taken
after 25ms of expansion in an 8Er deep lattice.

The observed dynamics gradually changes from a purely ballistic
expansion in the non-interacting case into an almost bimodal
expansion for interacting atoms: on increasing |U |, larger and larger
parts of the cloud remain spherical (clearly seen in Fig. 1) and
only a small fraction of atoms in the tails of the cloud exhibits
a square distribution. Here U denotes the strength of the on-site
interaction between different spin components (HI=U

∑
i n̂i,↓n̂i,↑).

The spherical shape is a consequence of frequent collisions between
the atoms in the centre of the cloud, which, for the range of
interactions considered here, drive the system to be close to local
thermal equilibrium25,26: within the rather large clouds used in the
experiment, gradients are small and the dynamics in the centre can
be described by coupled nonlinear diffusion equations27 for density
n(r,t ) and local energy e(r,t )

∂tn=∇D(n)∇n (1)

where n = (n, e) and D(n) is a 2 × 2 matrix of diffusion
constants. Note that in the optical lattice frequent Umklapp
scattering prohibits convective terms in the hydrodynamic equation
(equation (1)). Because the diffusion equation is rotationally
invariant, a diffusive dynamics can directly account for the observed
spherical shape of the high-density core.

For a theoretical description it is essential to realize that the
diffusion equation (equation (1)) is highly singular. As the diffusion
constant is proportional to the scattering time, it diverges as 1/n
for small densities, D(n)∼ 1/n, as the probability to scatter from
other atoms is linear in n for small densities. Such highly singular
‘superfast’ diffusion equations have been extensively studied in the
mathematical literature28. Remarkably, they predict a completely
unphysical behaviour in large dimensions (d ≥ 2): the particle
number is not conserved, as particles vanish at infinity with
a constant rate (for d = 2). Owing to this breakdown of the
hydrodynamic approach, the expansion is not governed by the
diffusion equation but instead by the physics in the tails of the
cloud where no local equilibrium can be reached. In this regime, the
densities are low and atoms scatter so rarely that their motion again
becomes ballistic. Therefore the tails of the cloud show the square
symmetry characteristic for freely expanding particles (Fig. 3).
This initial fraction of ballistically expanding atoms decreases for

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

http://www.nature.com/doifinder/10.1038/nphys2205
http://www.nature.com/naturephysics


© 2012 Macmillan Publishers Limited.  All rights reserved. 

 

NATURE PHYSICS DOI: 10.1038/NPHYS2205 ARTICLES

1 ms 8 ms
 

10 ms
 

12 ms
 

14 ms
 

16 ms
 

18 ms
 

20 ms 

24 ms 28 ms
 

300 λ/2

C
lo

ud
 s

iz
e 

(a
la

t)

a dcb

e hgf

i j k

40

80

0
0 20 40

Expansion time (h/J)

Figure 2 | Expansion of non-interacting fermions. a–j, In situ absorption images (column density in a.u.) of an expanding non-interacting cloud in a
horizontally homogeneous square lattice with lattice depth 8Er (1 ms≈ 1.8h̄/J). The expansion changes the symmetry of the cloud from the rotational
symmetry of the harmonic trap to the square symmetry of the lattice Brillouin zone. k, Fitted cloud size R(t) (light) and deconvolved single particle width
Rs(t)=

√
R(t)2−R(0)2 (dark) extracted from phase-contrast images. Solid lines denote the quantum mechanical prediction and the dashed lines a

corresponding classical random walk.

increasing interaction strengths. During the expansion the density
gets reduced and, in the limit of infinite expansion times, all
atoms are expected to become ballistic. This crossover into ballistic
behaviour for small densities leads to a breakdown of the diffusive
behaviour and regularizes the otherwise singular diffusion equation.

To describe both the diffusive and the ballistic regime, we
use numerical simulations based on the semi-classical Boltzmann
equation in the relaxation-time approximation:

∂t fq+vq∇rfq+F(r)∇qfq=−
1
τ (n)

(
fq− f 0q (n)

)
(2)

This equation describes the evolution of a semi-classical momen-
tum distribution fq(r,t ) as a function of position and time in the
presence of a force F. Here, the transport scattering time 1/τ (n),
which describes the relaxation towards an equilibrium Fermi dis-
tribution f 0q for given energy and particle densities, is determined
from a microscopic calculation of the diffusion constant for small
interactions (see Supplementary Information for details). The
Boltzmann equation describes qualitatively and semi-quantitatively
the observed cloud shapes, see Fig. 3b.

The core width Rc(t ), which measures the size of only the
high-density core, is extracted from phase-contrast images by
determining the half-width at half-maximum (HWHM) of the
density distribution (see Supplementary Information). By fitting

the evolving core width to Rc(t )=
√
R2
c,0+v2c t 2, we extract the core

expansion velocities vc, which are shown in Fig. 4. Surprisingly, they
decrease dramatically already for interactions much smaller than
the bandwidth 8 J, which highlights the strong impact of moderate
interactions on mass transport in these systems. We observe the
same behaviour irrespective of the sign of the interactions.

For interactions larger than |U/J | ∼>3, the dynamics of the high-
density core changes qualitatively: the core starts shrinking instead
of expanding and the core expansion velocities vc become negative.
In this regime, the expansion of the diffusive core is strongly
suppressed and the essentially frozen core dissolves by emitting
ballistic particles and therefore shrinks in size, similarly to amelting
ball of ice. This feature is also recovered by our simulations based on
the Boltzmann equation (red line in Fig. 4). The slight asymmetry
at large interactions can be attributed to interaction-dependent
losses caused by light-assisted collisions during the preparation
sequence. Note that the suppressed expansion is not related to
any self-trapping arising from the interaction potential29, as we
have checked by switching off the corresponding forces in our
numerical simulations.

This pronounced dependence of the dynamics on small
interactions enabled us to measure the zero crossing of the
scattering length (B(a = 0) = 209.1± 0.2G), which corresponds
to a width of the Feshbach resonance of w = 7.0± 0.2G, see
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Figure 3 | Expansion of interacting fermions. a, Experimental in situ absorption images for different interactions after 25 ms expansion in a horizontally
homogeneous lattice. The images show a symmetric crossover from a ballistic expansion for non-interacting clouds to an interaction-dominated expansion
for both attractive and repulsive interactions. Images are averaged over at least five shots and all scales are identical to those in Fig. 2. b, Simulated density
distributions using a 2D Boltzmann equation.

Supplementary Information. In contrast to the high interaction
limit, where the exponentially long lifetime5 of excess doublons
leads to two independent dynamics of doublons and single atoms,
we observe thermal equilibrium between doublons and unpaired
atoms, as shown in detail in the Supplementary Information.

We have shown that the observed transport properties can be
qualitatively predicted by the semi-classical Boltzmann equation
(equation (2)). However, the full quantum dynamics is certainly
more complex and includes, for example, the formation of
entanglement between distant atoms30 as well as the existence of
bound or repulsively bound states. Although the expansion can be
modelled in 1D (ref. 31) usingDMRGmethods32, so far nomethods

are available to calculate the dynamics quantum-mechanically in
higher dimensions. The separation between ballistically expanding
atoms carrying high entropy and the high-density core in the
centre could be used to locally cool the atoms via quantum-
distillation processes33.

Surprisingly, we observe identical density profiles and expansion
rates for repulsive and attractive interactions of the same strength
(Figs 3, 4). Whereas scattering cross sections are proportional to
U 2 for small U , the interaction energy and density gradients
give rise to forces linear in U : repulsive interactions create
a positive pressure, which in free space would lead to an
increased expansion rate, whereas an attractive interaction is
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Figure 4 | Core-expansion velocities. a, Measured core-expansion
velocities versus interaction for various lattice depths in a 2D situation
(vertical lattice depth 20Er). The red line denotes the result of a numerical
calculation (see text) and the error bars indicate the 1σ statistical fit
uncertainty. The insets i–v show the numerically calculated quasi-
momentum distribution after 40 ms of expansion for U/J=−8,−2,0,2,8,
respectively. b,c, 1D energy dispersion (red line) and group velocity (green
line) together with schematic sketches of the relative occupations (yellow:
initial state (b) and U=0, red: U>0 (c), blue: U<0 (c)): although the
quasi-momentum distribution is different for U and−U, the resulting
group-velocity distribution (shaded) is identical.

expected to slow down the expansion, in contrast to the observed
behaviour in the lattice.

The identical evolution of the density for positive and negativeU
is the consequence of an exact dynamical symmetry of the Hubbard
model, which relies on two facts: first, if both the initial state
and the observable are invariant under time reversal symmetry,
the dynamics of the observable is necessarily unchanged by the
transformation H →−H . Second, as εq =−2J

∑
i cos(qid) is the

kinetic energy of the Hubbard model, the sign of the hopping J can
be changed, J→−J , by shifting all momenta q→ q+ (π,π,π)/d .
When now both the initial state and the observable are invariant
under both time reversal and the above shift of momenta, one
necessarily obtains the same evolution for U and −U . This is the
case in our experiment, initially all particles are localized and all
momenta are therefore equally occupied while the density operator
is time-reversal symmetric and momentum independent. A formal
proof of this argument is given in the Supplementary Information.

During the expansion, when the density of atoms is reduced,
interaction energy is converted into kinetic energy. Initially the
kinetic energy of the localized particles is zero. For U < 0, the total
energy is therefore negative and low momentum states become
more populated during the expansion. For U > 0, in contrast,
the total energy is positive, implying an enhanced occupation of
higher momentum states. More precisely, the two momentum
distributions for U and −U are shifted by (π,π,π)/d , as can be
seen in the insets i–v in Fig. 4. In free space, where εq ∼ q2, larger
momenta imply larger group velocities vq = (1/h̄) dεq/dq∼ q and
the cloud expands faster for repulsive interactions. For theHubbard
model, in contrast, the group velocities for q and (π,π,π)/d−q are
the same, v iqi ∼ sinqid , leading to the same expansion of the cloud
for U and−U , see Fig. 4b,c.

As large parts of the cloud are expected to be in local equilibrium
in the interacting case, one can define local temperatures: for
U < 0 the system cools down while expanding and positive local
temperatures 0<T (r)<∞ are obtained. ForU >0, in contrast, the
exact dynamical symmetry implies that the local temperatures have
to be negative, as exp[−H/kBT ] = exp[−(−H )/(−kBT )]. This has
also been confirmed by our numerical calculations (Supplementary
Fig. S3). Negative temperatures describe equilibrated systems with
population inversion and are well defined for systems such as the
Hubbard model where the energy has an upper bound34. They have
been observed in spin systems35 and localized ultracold atoms36.
Assuming local thermalization, the observed U ↔−U symmetry
directly implies negative temperatures for repulsive interactions at
long expansion times.

Conclusion
Ultracold fermions in optical lattices offermany unique possibilities
to study non-equilibrium dynamics, as they allow for a full
real-time control of almost all relevant parameters, including
quantumquenches, where theHamiltonian of the system is changed
instantaneously. We studied the expansion of a cloud of initially
localized atoms in a homogeneous Hubbard model following a
quench of the trapping potential and observed the crossover from
a ballistic expansion at small densities or vanishing interactions
to a bimodal expansion in the interacting case. We observed
identical behaviour for both attractive and repulsive interactions,
highlighting the high symmetry of the kinetic energy in theHubbard
model. The surprisingly large observed timescales of mass transport
set lower limits on the timescales needed both to adiabatically
load the atoms into the lattice and to cool the system in the
lattice37 and are therefore of paramount importance for all attempts
to create complex, strongly correlated many-body states such as
Néel-ordered states in these systems.

The method of directly measuring the expansion dynamics
can be used to detect complex quantum states, including Mott-
insulating states10, or to possibly distinguish pseudogap8 from
superfluid states in the attractive Hubbard model. In addition,
the effects of various disorder potentials on the two-dimensional
dynamics can be studied. The extension to a Bose–Fermi mixture
could enable studies on ohmic transport, where the bosons assume
the role of the phonons.

Methods
Experimental sequence. We use a balanced spin mixture of the two lowest
hyperfine states |F ,mF 〉= |9/2,−9/2〉 and |9/2,−7/2〉 of fermionic potassium 40K
with N = 2−3×105 atoms at an initial temperature of T/TF = 0.13(2). Starting
in an harmonic trap, the atoms are loaded into a combination of a blue-detuned
three-dimensional optical lattice with lattice constant alat = λ/2= 369 nm
and a red-detuned dipole trap, using a sequence similar to the one applied in
ref. 10. Once in the lattice, tunnelling is strongly reduced by increasing the
lattice depth to 20Er (recoil energy Er = h2/(2mλ

2)) and the interactions can be
controlled via a Feshbach resonance without affecting the density distribution
(see Supplementary Information). To initiate the expansion, the lattice depth is
lowered again and the harmonic confinement (see Fig. 1a) along the horizontal
directions is eliminated by reducing the strength of the dipole trap by more than
90%, such that along the horizontal directions the remaining dipole potential
precisely compensates the anti-confinement produced by the lattice beams (see
Supplementary Information).

Whereas any vertical motion is expected to be strongly suppressed by
gravity-induced Bloch oscillations (oscillation amplitude 2 J (mg)−1 < 2 d), the
atoms are exposed to a homogeneous Hubbardmodel without additional potentials
in the horizontal directions. The evolution of the density distribution during the
following expansion was monitored by in situ imaging along the vertical axis of the
cloud, thereby integrating over any vertical dynamics. Absorption images of the
resulting dynamics are shown in Fig. 2 for the case of non-interacting particles and
in Fig. 3 for various interactions.

For a quantitative analysis (Figs 2k and 4; Supplementary Information),
vertical tunnelling of the atoms during the expansion was further suppressed by
increasing the depth of the vertical lattice to 20Er, thereby realizing several layers
of independent two-dimensional Hubbard models. All quantitative analyses were
performed using phase-contrast images.
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