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Topological characterization of periodically driven quantum systems
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Topological properties of physical systems can lead to robust behaviors that are insensitive to microscopic
details. Such topologically robust phenomena are not limited to static systems but can also appear in driven
quantum systems. In this paper, we show that the Floquet operators of periodically driven systems can be
divided into topologically distinct (homotopy) classes and give a simple physical interpretation of this classi-
fication in terms of the spectra of Floquet operators. Using this picture, we provide an intuitive understanding
of the well-known phenomenon of quantized adiabatic pumping. Systems whose Floquet operators belong to
the trivial class simulate the dynamics generated by time-independent Hamiltonians, which can be topologi-
cally classified according to the schemes developed for static systems. We demonstrate these principles through
an example of a periodically driven two-dimensional hexagonal lattice tight-binding model which exhibits
several topological phases. Remarkably, one of these phases supports chiral edge modes even though the bulk

is topologically trivial.
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I. INTRODUCTION

Following the discovery of the quantized Hall effect in
1980,! there has been great excitement about the possibility
of observing extremely robust, “topologically protected”
quantum phenomena in solid-state systems.>3 This excite-
ment has been redoubled in recent years with the discovery
of new classes of materials called “topological insulators” in
two- and three-dimensional systems.*”7 A common feature
linking all of these systems, which from a traditional point of
view appear to be mundane band insulators, is the fact that
their ground-state wave functions feature internal structures
characterized by nonzero values of integer topological in-
variants, which distinguish them from conventional, trivial
systems. The existence of such internal structures leads to the
appearance of robust gapless edge modes wherever a non-
trivial material has an interface with a trivial one, such as the
vacuum. Due to their topological origin, these modes cannot
be localized or destroyed by a wide range of perturbations
and give rise to many interesting, robust phenomena. Re-
cently, several groups have proposed a comprehensive
scheme for classifying all possible types of such topological
phases which can arise in band insulating and superconduct-
ing systems.3~10

Meanwhile, a variety of robust topologically protected
phenomena have also been found to occur in the dynamics of
driven quantum systems with time-dependent Hamiltonians.
Such phenomena can roughly be divided into two broad
classes. First, there is a class of phenomena displaying quan-
tized adiabatic pumping,''-'* which can be conceptually
traced to Thouless’ original proposal of quantized adiabatic
transport.'>!6 Second, many groups have studied the possi-
bility of effectively simulating the behavior of the topologi-
cally nontrivial (static) materials described above by apply-
ing periodic driving fields to artificial'’?* or condensed-
matter systems.>>>’ In this paper we provide a unifying
scheme for characterizing these various types of topological
phenomena which occur in the dynamics of periodically
driven systems. Furthermore, from this unified view, we find
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that these two classes of phenomena are not unrelated and
can, in fact, both be realized within a single periodically
driven graphenelike system.

Unlike the case of static (nondriven) systems, periodically
driven systems do not have well-defined ground states which
can be used for classification. Instead, we classify driven
systems in terms of the topological properties of their corre-
sponding “Floquet operators,” i.e., their time-evolution op-
erators acting over one full period of the drive, 7. Each
eigenstate of the Floquet operator, called a Floquet state,
accumulates a phase ¢ over one period of the driving. Ac-
cordingly, to each Floquet state, we associate a “quasien-
ergy” e=¢/T, which is the average phase accumulated per
unit time. For many purposes, the Floquet states and their
associated quasienergies can be regarded in an analogous
way to the eigenstates and corresponding energies of a static
system. However, because the quasienergy is defined as a
phase variable, it is periodic with period 27/ T. This period-
icity introduces an additional topological structure, associ-
ated with the winding of quasienergy, which has no analog in
static systems. As we will discuss below, this property allows
a number of interesting phenomena to occur in driven sys-
tems, such as quantized pumping, and even the existence of
chiral edge modes in a two-dimensional system with topo-
logically trivial bulk bands (i.e., with all Chern numbers
equal to zero).

The mathematical structure which captures these
quasienergy-winding-related phenomena is that of the homo-
topy groups of unitary (Floquet) operators. Throughout the
main text, we will focus primarily on systems with discrete
(lattice) translational symmetry in d dimensions, which are
subjected to spatially homogenous, periodic, time-dependent
driving. In this case, we obtain simple expressions for topo-
logical invariants associated with the first and third homo-
topy groups, written in terms of Floquet operators param-
etrized by the conserved crystal momentum k. The case of
disordered systems is discussed in terms of a “twisted bound-
ary condition” approach'® in Appendix A.

When the homotopy group classification returns a trivial
result, i.e., for systems without quasienergy winding, the Flo-

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.82.235114

KITAGAWA et al.

quet operator can be expressed in terms of a local effective
Hamiltonian Hg through U(T)=e e’ Here one can view
the dynamics as a stroboscopic simulation of the dynamics of
a static system governed by the Hamiltonian H.g. In this
case, the topological characteristics of the driven system can
be classified in terms of symmetry and dimensionality ac-
cording to the schemes laid out for static topological insula-
tors and superconductors in Refs. 8—10. Just as in the static
case, systems characterized by nonzero values of the topo-
logical invariants in these schemes possess robust chiral edge
modes at interfaces with “trivial” regions.>?

The characterization of periodically driven systems in
terms of the topological structure of Floquet operators con-
stitutes the major result of this paper. This approach provides
a natural description of topologically quantized pumping and
reveals a simple and intuitive picture in which to understand
this phenomenon. Furthermore, the general mathematical
structure provides a guide for identifying new classes of to-
pologically protected behavior which may arise in driven
systems. The intuition gained from this approach may help
open new avenues in which to explore topologically robust
behaviors in artificial systems as well as in natural materials,
where experimental realizations are already feasible with
current technology.

The paper is structured as follows. In Sec. II, we define
the class of driven systems that we will consider and review
the basic language of Floquet theory. Then in Sec. III we
present the classification of driven systems in terms of the
homotopy groups of their associated Floquet operators. Here
we show that the topological invariant v; associated with the
first homotopy group of the Floquet operator directly mea-
sures the winding of the quasienergy spectrum and describe
how it leads to the quantized average displacement. In Sec.
IV we describe the second scheme of topological classifica-
tion of driven systems based on “effective Hamiltonians,”
which applies in the absence of quasienergy winding. Here
we provide a detailed discussion of the meaning of effective
time reversal and particle-hole symmetries for driven sys-
tems. In Sec. V we demonstrate the appearance of both to-
pological structures described in Secs. III and IV in the dy-
namics within a two-dimensional tight-binding model on a
hexagonal lattice with time-dependent hopping amplitudes.
Strikingly, over a range of parameters, this model exhibits a
phase which features chiral edge modes in the absence of
topologically nontrivial bulk quasienergy bands. We con-
clude in Sec. VL

II. FLOQUET THEORY FRAMEWORK

In this section, we describe the Floquet theory framework
that will be used to analyze the dynamics of driven systems
in this paper. We focus on the driven dynamics of a quantum
system of noninteracting particles in a d-dimensional lattice,
subjected to a periodically varying, time-dependent Hamil-
tonian H(r), which satisfies H(t+T)=H(r). Here T is the pe-
riod of the driving cycle. The behavior is analyzed in terms
of the evolution operator of the system over one full period
of the driving, U(T), defined as
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FIG. 1. Typical schematic instantaneous band structure consid-
ered in this work, illustrated for a one-dimensional system with
crystal momentum k. We consider the case where m low-lying
bands are separated from higher bands by a band gap E; at all times
t during the periodic driving cycle. We assume that the frequency of
driving is much smaller than the band gap E; at each instant, such
that excitations out of the m-fold low-lying band subspace can be
neglected.

u(r) =T loH0, (1)

where 7 is the time-ordering operator. In the theory of peri-
odically driven systems,?® U(T) is called the Floquet opera-
tor. Note that while U(T) implicitly depends on the starting
point of the interval, here taken to be =0, the topological
classification described below is independent of the choice of
the starting point.

Throughout the main text, we assume that the system pos-
sesses discrete (lattice) translational symmetry at each instant
of time. However, topological classification can still be ap-
plied even when the system lacks translational invariance.
The extension to this more general case is discussed in Ap-
pendix A. In the presence of translational invariance, the
crystal momentum Kk is a conserved quantity of the dynam-
ics. Therefore, at each time ¢, the Hamiltonian H(¢) can be
characterized by a band structure as shown schematically in
Fig. 1.

Suppose that at time 7=0, the state of the system lies
entirely within the subspace spanned by the m lowest bands
of the instantaneous Hamiltonian H(0). In this work we con-
sider the situation where the driving always returns the sys-
tem to this subspace after each full period without causing
excitations to other bands. This condition is guaranteed, for
example, when higher energy bands of H(r) are well sepa-
rated from lower energy bands by a large energy gap E, (see
Fig. 1) and the evolution is adiabatic with respect to E, at all
times. In this situation, the evolution operator for one full
period of driving is described by the set of m X m matrices
{Ux(T)}, labeled by the value of the crystal momentum k. In
terms of these operators, the Floquet operator, Eq. (1), pro-
jected onto the low-energy subspace, is given by U(T)
=2, Ux(T)® Py, where P, is the projector onto the
m-dimensional subspace of low-energy states with crystal
momentum k. Note that for intermediate times 0<r<T,
even in the fully adiabatic regime, the evolution operator
Uy (1) will, in general, include mixing of higher bands of the
initial Hamiltonian H(0) and therefore cannot be represented
in the basis of the m lowest bands of H(0). The restriction to
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the lowest m bands of H(0) applies only for complete cycles
of the periodic driving.

In analogy with the energy associated with each eigen-
state of the Hamiltonian of a time-independent system, we
associate a quasienergy & with each eigenstate |¢) of the
Floquet operator of the driven system. The quasienergy is
defined through the phase accumulated by the “Floquet
state” |@) over each full period of driving as U(T)|e)
=e¢®7|p). Note that, unlike real energies which are uniquely
determined, quasienergies are only uniquely defined up to
integer multiples of 27r/T. This property will be crucial to
the analysis below. For systems with discrete translational
symmetry, we index the quasienergies by the crystal momen-
tum k and define a “quasienergy band structure” {ey .},
where « is a band index. In the next section, we will see that
the “winding” property of quasienergy allows for quasien-
ergy band structures, and hence behaviors, which are quali-
tatively different from those found in static systems.

III. HOMOTOPY GROUP CLASSIFICATION OF
EVOLUTION OPERATORS

In this section, we formulate the topological classification
of periodically driven systems in terms of the homotopy
groups of the evolution operators {Uy(7)}. In Sec. III A, we
focus on the topological invariant v, associated with the first
homotopy group of evolution operators. We illustrate many
general properties of the topology in evolution operators
through the study of an example in one dimension. Then in
Sec. III B we discuss generalizations to higher homotopy
groups.

A. Topological invariant v; and quasienergy winding

In one spatial dimension, the set of operators {Uy(T)} de-
fines a map from the Brillouin zone —7=k < to the space
of m X m unitary matrices. Due to the periodicity of crystal
momentum, the Brillouin zone is a circle, and this map traces
out a closed loop in the space of m X m unitary matrices. This
loop can be characterized in terms of a homotopy class,
which identifies all such loops that can be smoothly de-
formed into one another. These homotopy classes are in-
dexed by an integer-valued topological invariant v, that cap-
tures the topology (or winding) of the corresponding maps.

In the presence of translational symmetry, the invariant v;
is defined as

ney- | aeriuaiaum. @

where k is integrated over the first Brillouin zone, and the
trace is taken over the m-dimensional internal space of
the Bloch wave functions.”? We emphasize that a map
characterized by the topological invariant v; can be defined
in a system with spatial dimension d>1 by choosing k in
Eq. (2) to parametrize some closed, noncontractible loop in
the d-dimensional Brillouin zone. For example, consider
the case of a two-dimensional system on a square lattice
with crystal-momentum components k, and k,. Here the
Brillouin zone is a torus and we can construct two invariants
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FIG. 2. (Color online) (a) Quasienergy spectrum of a spin-1/2
particle in a time- and spin-dependent potential, displaying non-
trivial topology characterized by v;=1 (see text). The blue (dark
color) is the quasi-energy spectrum of spin-up and the yellow (light
color) is that of spin-down. The quasienergy is plotted in units of
1/T. The topological invariant v; counts the total winding of the
bands in the quasienergy direction as crystal momentum k is taken
around the Brillouin zone. (b) The total winding number v, is un-
changed when coupling between up and down spin states is
introduced.

v), and v}, associated with two distinct loops on the torus,
kxzconstant,—wsky< m, and —m=k, < w,ky:constant: Vi,
= %Tf’_fﬂdky T Uy (T)7'id; Up(T)] for a fixed k,, and similarly
for v;,. Note that, due to }continuity, vi, (vyy) is independent
of the value of k, (k,). Hence this first homotopy group clas-
sification is not restricted to systems in one spatial dimen-
sion.

The meaning of the topological invariant v; is best illus-
trated through a simple example. Consider a spin-1/2 particle
in a deep one-dimensional, spin-dependent lattice potential.
Here and throughout the paper, we take the lattice constant to
be 1. The potential for the spin-down state is time indepen-
dent while the potential for the spin-up state moves slowly to
the right, such that over the time 7 it shifts by exactly s times
the lattice constant, where s is an integer. If we assume that
the movement is adiabatic, then the Floquet operator re-
stricted to the space of the lowest band of the initial Hamil-
tonian H(0) is given by U(T)=2 |x+s)(x|@ Pi+1@P|,
where P,=|c)(o]| is a projector onto the spin state =1, |
and |x) is a state localized in a single well of the (deep)
lattice potential, with x an integer labeling the unit cell. In
the crystal momentum basis, we have Uy(T)=e ™ ® P;+1
® P|. This evolution is indeed characterized by the nontrivial
value v, =s, as can be checked explicitly using Eq. (2).

We can obtain an intuitive understanding of v; by evalu-
ating Eq. (2) in the basis of Floquet states. This analysis
gives

1 ™ dska
= | anRer, 3
g %zwL dk ®)

where {g ,} are the quasienergy bands labeled by the band
index .’ The integral in Eq. (3) counts the total winding
number of the quasienergy bands as k runs over the first
Brillouin zone.3! This picture of v, is particularly appealing
since it allows the nontrivial topology to be identified
through simple inspection of the quasienergy spectrum. The
quasienergy spectrum for the case s=1 is plotted in Fig. 2(a).
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Note that such winding is only possible due to the periodicity
of quasienergy for a driven system; therefore v;=0 for any
local, static (nondriven) system.

An important physical manifestation of the topology cap-
tured by v, is revealed by Eq. (3). The factor de; ,/dk plays
the role of a group velocity for the Floquet band «. Due to
the periodicity of g, in k and the periodic nature of quasien-
ergy, the average group velocity is quantized: the average
slope of g , must take a value which yields an integer num-
ber of windings over the Brillouin zone.3> Averaged over all
k, the displacement Ax=(de; ,/dk)-T after a full period T is
therefore quantized. In the simple example above, in which
the particle is initially in a uniform superposition of states
with all values of k, this quantization means that over one
period the average position of a particle in the spin-up band
is shifted by exactly s unit cells to the right, while the aver-
age position of a particle in the spin-down band does not
change.

For the case of adiabatic evolution of a filled-band fermi-
onic system, it can be shown that v, is directly related to the
charge current integrated over one period. Therefore, in this
case, the quantization of w»; implies the quantization of
pumped charge first identified by Thouless."> In Appendix B,
we explicitly show this relation. Moreover, as is implied by
the relation between v; and quantized charge pumping, v,
can be directly related to the first Chern number of the Bloch
wave functions of the filled bands. We demonstrate the gen-
eral relation between the topology captured by homotopy
groups of Floquet operators and Chern numbers in Appendix
C.

While the homotopy-class-based topological characteriza-
tion of periodically driven systems given in this paper is
closely related to the Chern-class-based characterization of
adiabatic pumping developed in previous works,'*!> we em-
phasize that our approach provides an intuitive framework
which naturally leads the way to generalizations to systems
in other dimensions or with additional symmetries (see Sec.
III B). Moreover, as illustrated by an example in Sec. V, the
picture based on the winding of quasienergy makes it pos-
sible to identify nontrivial topological behavior of driven
systems in a simple, direct manner.

The integer quantization of v; implies that its value is
robust against various perturbations. For instance, the value
of v, is insensitive to continuous deformations of the
quasienergy spectrum, and to mixing with other, topologi-
cally trivial, quasienergy bands. For the model described
above with quasienergy band structure shown in Fig. 2(a),
such mixing can be introduced, for example, by applying a
spin-rotation pulse during the dynamics. The quasienergy
spectrum in the presence of such mixing is shown schemati-
cally in Fig. 2(b). Note that, even in this case, Eq. (3) for the
net winding number still gives v;=1; hybridization of Flo-
quet bands with trivial and nontrivial topologies does not
change the total winding number.

In the presence of disorder, translational invariance is de-
stroyed. The crystal momentum k is not a good quantum
number, and the definition of v, in Eq. (2) cannot be used.
Nonetheless, the topologically protected phenomena are ex-
pected to be robust against weak perturbations, including dis-
order. Indeed, in Appendix A, we use the method of twisted
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boundary conditions!'® to define a generalization of the topo-
logical invariant v;, which is valid even in the presence of
disorder. This generalized invariant can also be used to clas-
sify the dynamics of periodically driven, gapped, interacting
many-body systems, such as filled-band states of fermions or
Mott insulating states of bosons.!?

B. Higher homotopy groups

In the previous section, we saw that the phenomenon of
quantized adiabatic pumping in one dimension acquires a
simple and intuitive explanation when analyzed in terms of
the topological structure of Floquet operators. We now dis-
cuss how this elegant mathematical framework can guide us
in searching for generalizations of topological pumping in
higher dimensional systems. The key observation is that the
Floquet operators of periodically driven systems with dimen-
sion greater than one can be characterized by topologies as-
sociated with homotopy groups beyond the fundamental
group. Here we describe the general situation in higher di-
mensions and give an explicit expression for the topological
invariant associated with the third homotopy group, which
can be relevant in three-dimensional systems.

For a system in d dimensions, the first Brillouin zone is
topologically equivalent to a d-dimensional torus. By allow-
ing Kk to parametrize an €-dimensional toroidal section of the
Brillouin zone, with € =d, we can use the set of (Floquet)
evolution operators {Uy(T)} to define a map from the
{-dimensional torus to the space of m X m unitary matrices,
U(m). Such maps can be classified using the structure of the
£th homotopy group of U(m), denoted by 7,[U(m)]. Noting
that the homotopy groups are given by 7, [U(m)]=7 for odd
d and m,[U(m)]=1 for even d, with m=(d+1)/2,3* we see
that a new type of topological invariant appears in each odd
dimension. While the dth homotopy group of generic unitary
matrices is trivial when d is even, the Floquet operators of
even-dimensional systems can still possess nontrivial topo-
logical structures either under lower homotopy groups (e.g.,
[U(m)] for a system in d=2), or if the space of allowed
evolution operators is restricted by additional symmetries of
the system.

For systems in three dimensions, d=3, we consider the
topological invariant v; associated with the third homotopy

group

d*k
vy= f 2228 P U DU 3, U (U 3 U],

(4)

where £*87 is the antisymmetric tensor, «, 3, y=x,y,z, and k
is integrated over the first Brillouin zone. Note that v; can
only be nonvanishing if the dimension of Uy(T) is larger than
1 so that multiplication can be noncommutative. The search
for physical realizations and the manifestations of this topo-
logical invariant will be interesting subjects for future work.

The phenomena associated with nontrivial topology of
Floquet operators under the homotopy groups are unique to
periodically driven systems. For a system governed by a
static Hamiltonian Hg, the eigenstates of the Floquet operator
Ug(T)=e™MsT and the associated quasienergies for any
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choice of T coincide with those of Hg. Because the energy
eigenvalues Ey, of any local Hamiltonian Hg are smooth,
periodic functions of k, the corresponding quasienergy ei-
genvalues gy, cannot wind and there must exist a gap in the
quasienergy spectrum. It can be shown that a ‘“gapless”
quasienergy spectrum, in which there is at least one eigen-
state for every quasienergy —m/T=e<<w/T, is a necessary
requirement for nontrivial topology under any homotopy
group.* An example of such a gapless spectrum is shown in
Fig. 2. Therefore the Floquet operator of any local, static
system is trivial under all homotopy groups. For a periodi-
cally driven system with driving period 7, however, the
quasienergy spectrum associated with the evolution operator
U(T) need not have a gap. Hence, as demonstrated by the
example above, periodic driving can produce evolution op-
erators with nontrivial topology under the homotopy groups.

IV. TOPOLOGICAL INVARIANTS OF GAPPED
EFFECTIVE HAMILTONIANS

So far, we classified the dynamics of periodically driven
systems with discrete translational symmetry through the
generalized windings of their Floquet evolution operators as
identified by the homotopy groups of unitary matrices. How-
ever, even when there is a gap in a system’s quasienergy
spectrum and its Floquet operator is thus trivial under all
homotopy groups, its dynamics may possess other topologi-
cal characteristics associated with an effective Hamiltonian
Heff

U(T) = Te . SHOE — =it T )

When viewed in this way, evolution under the periodically
varying Hamiltonian H(r) stroboscopically simulates the
evolution of a system with a static Hamiltonian H_ g at inte-
ger multiples of the driving period 7.

When H,g has a band structure with a band gap, the pre-
viously introduced classification schemes®~'° for static insu-
lators and superconductors can be directly applied to Hy.!”
In these schemes, systems are categorized into distinct topo-
logical classes based on dimensionality and on the presence
or absence of the (discrete) time-reversal and particle-hole
symmetries. In a periodically driven system, these symme-
tries must be considered at the level of the effective Hamil-
tonian, or equivalently, of the Floquet operator U(T), as we
now describe.

At the level of the Floquet operator U(T), time-reversal
symmetry is defined by the existence of a unitary operator Q
which has the action QH.;Q"=H i or

QU(T)*Q"=U(T)". (6)

Here H. is the complex conjugate of H.y. The operator Q
satisfies QQ*= * 1, where the sign + or — distinguishes the
cases with integer or odd-half-integer spin, respectively. A
sufficient, although not necessary, condition for the presence
of time-reversal symmetry is satisfied if the time-dependent
Hamiltonian possess a special point #, such that
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OH(t+1)* Q" =H(~t+1,). (7)

We give a detailed proof of this statement in Appendix D.
Note that condition in Eq. (7) can be satisfied even if the
instantaneous Hamiltonian H(z) is not time-reversal invari-
ant, such as when the system is subjected to magnetic fields.
Conversely, even if H(f) instantaneously has time-reversal
symmetry for each r, the condition in Eq. (7) is not necessar-
ily satisfied, and H.; need not be time reversal invariant.
This latter situation arises in the example which will be ex-
plored in Sec. V.

Similarly, particle-hole symmetry is defined at the level of
the Floquet operator by the existence of a local unitary op-
erator P satisfying

PU(T)*P" = U(T) (8)

with PP*= = 1. Any Bogoliubov-de Gennes Hamiltonian de-
scribing the dynamics of superconducting quasiparticles pos-
sesses this symmetry (with PP*=1), even if a time-
dependent perturbation is added.

Many results from the study of topological properties in
static systems can be directly translated to periodically
driven systems with the understanding that the topologically
protected phenomena apply to the behaviors of Floquet
states. For example, the edge of a static two-dimensional
system characterized by a nonzero Chern number is known
to host chiral edge states. In Sec. V, we study dynamics in a
driven two-dimensional tight-binding system and show that
driving can induce nonzero Chern numbers in the bands of
the effective Hamiltonian. The edge of such a system hosts
chiral Floquet edge states which propagate unidirectionally
when viewed at integer periods of the driving. Analogously,
the edge of a system with a time-reversal-invariant effective
Hamiltonian can host helical Floquet edge states.?’

V. DYNAMICALLY INDUCED TOPOLOGICAL PHASES IN
A HEXAGONAL LATTICE

In this section, we study single-particle dynamics in a
two-dimensional hexagonal lattice tight-binding model,
where the hopping amplitudes are varied in a spatially uni-
form, but time-dependent, cyclic fashion. Here we choose
the hexagonal lattice but expect that similar physics can be
realized in other lattices as well. In different parameter re-
gimes, the system can support topological phases of either
the Floquet operator homotopy type or of the effective
Hamiltonian type. For weak driving, there is no winding of
the quasienergy bands (v;=0), but the driving induces non-
trivial topology characterized by nonzero first Chern num-
bers in the two bands of the effective Hamiltonian (see be-
low). For larger driving amplitudes, the Chern numbers
associated with each of the two bands become zero. While
the bulk topology given by the Chern number is trivial, the
invariant v; becomes nonzero in a system with edges.

We start from a tight-binding model Hamiltonian on a
hexagonal lattice
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FIG. 3. (Color online) Hexagonal lattice structure. Sublattice A
is marked with filled circles and sublattice B is marked with open
circles. J; for i=1,2,3 represent the hopping amplitudes between
the sites.

H=> ckAckB)H(k)< )
k kB

H(K)=— 2 Ji(D[cos(b; - k)a, +sin(b;-k)a,],  (9)

where A and B label the two sublattices of the hexagonal
lattice, {J;} are the hopping amplitudes from B sites to the
neighboring A sites in the three directions i=1,2,3 (see Fig.
3), and {b} are the vectors given by b;=(-1/2, \3/2) b,
=(-1/2 —\3/2) and b;=(1,0). Here clLa is the creation op-
erator for a Bloch state with crystal momentum k on sublat-
tice a=A,B. Expressed in terms of local (site-speciﬁc) cre-
ation operators {c! _}, we have ck ==E ¢l e™®% where N

X X a
is the number of ilnlt cells in the system Here and in the
following, the distance between any site and its nearest-
neighboring sites in the hexagonal lattice is taken to be 1.

We consider a driving protocol where the hopping ampli-
tudes {J;(¢)} are modulated cyclically in time according to
(see Fig. 4)

(1) Ji=NJ; JpJzs=J for nT<t=nT+T/3,
() Jy=N; JyJy=J for nT+T/3<t=nT+2T/3,
(3) Js=N; JyJy=J for nT+2T/3 <t=nT+T.

In the following, we consider the cases A=1. Notice that
when A=1, the Hamiltonian describes hopping on a time-
independent hexagonal lattice with uniform hopping ampli-
tudes. Just as in graphene, in this case the spectrum is gap-
less with two inequivalent Dirac points. We focus on the
high-frequency limit, J/w<<1, where w=2x/T is the angular
frequency of the drive. Note that for small values of A—1, the
drive can be considered as a small perturbation to the static
system with A=1. In this limit, all states within the two
bands are far from resonance, and the graphenelike band
structure provides a good zeroth-order approximation to the
quasienergy spectrum.?

We are interested in the topological properties of the dy-
namics when \ is increased from 1. For A > 1, we obtain the
effective Hamiltonian through
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nT<t<nT+T/3

J J J
(%] J
nT+T/3<t<nT+2T/3 nT+2T/3<t<(n+1)T

FIG. 4. Driving cycle considered in the text, in which the hop-
ping amplitudes {J;} are varied in a cyclic fashion. Here we consider
only N=1, where the hopping amplitude along one of the three
bond types is uniformly increased relative to the other two during
each stage of the cycle.

—iTHefp =

e e

~iHATI3 =il 113 =il T13 (10)
where H; is the Hamiltonian during the time n7+(j—1)7/3
<t=nT+jT/3 (see protocol above). For A > 1, gaps open at
the Dirac points in the quasienergy spectrum of H.y. For
small (\—1)<<1, the size of the gap is given by V3[(A
—1)J]*T. Because H.y is a two-band Hamiltonian, we can
write®

He(K) = e(k)n(k) - o, (11)

where o=(0o, gy, 0.) is a vector of Pauli matrices acting in
the sublattice space and n(Kk) is a three-dimensional unit vec-
tor. When e(k) # 0, 7/ T for all k, each quasienergy band of
the effective Hamiltonian can be characterized topologically
by the first Chern number. The first Chern number is a topo-
logical number employed to characterize two-dimensional
band insulators such as the integer quantum Hall systems,
and the direct relation between the Chern number and Hall
conductivity has been used to explain the quantization of
Hall conductance.’” The first Chern numbers for the two
bands are given by

I+

1

m

D
1]
|

f n-(&an O')k n)dzk. (12)
FBZ * 4

~

Here, the k integration is taken over the first Brillouin zone.
This topological number has a simple meaning of the number
of times the mapping n(k) from the first Brillouin zone to a
unit sphere wraps around the sphere. The explicit expression
above calculates the area of a sphere covered by the map
n(k) in the first Brillouin zone, divided by 4.

We numerically calculate the Chern numbers C. from
Eq. (12) using a fixed ratio J/w=% between the hopping
strength J and the frequency w. We find C.=*1 for 1<\
<\, where A\.=3.3 is the critical coupling where a topo-
logical phase transition occurs. At A=\, the quasienergy gap
at e=* /T closes for the states at k=0. For N>\, the
Chern numbers of both bands become zero until another
phase transition point A=\, where \/~8.7 is reached.*®

235114-6



TOPOLOGICAL CHARACTERIZATION OF PERIODICALLY...
a)

g

L«
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i

-1r/3 /3

kx

FIG. 5. (a) The strip geometry considered in the text, with finite
extent in the y direction, and armchair edges running parallel to x.
(b) Spectrum of the (static) armchair ribbon shown in panel (a) with
a width of 100 lattice sites in the y direction. Energy is plotted in
units of J.

Energy(J)

Thus we see that the time-dependent driving within a hex-
agonal lattice tight-binding model can induce nonzero Chern
numbers in the effective Hamiltonian.

A consequence of nonzero Chern number in a system with
boundaries is the existence of chiral Floquet edge states. For
example, a system with a “strip” geometry [see Fig. 5(a)] is
expected to have two counterpropagating chiral edge modes
localized on the upper and lower boundaries. In the follow-
ing, we consider the strip geometry with edges of armchair
type.

In Fig. 6, we plot the quasienergy spectrum of the driven
strip as a function of the crystal momentum parallel to the
strip for several values of N\. When A=1, the Hamiltonian is
independent of time, and the quasienergy spectrum is identi-
cal to the true energy spectrum of a graphene ribbon with
armchair edges. For A=3, chiral edge states are visible
within the gap centered at quasienergy £=0. The states are
color coded such that states which are localized at the upper
edge are shown in red (dark color) and those at the lower
edge are shown in green (light color). Although the results
are shown for an armchair-type edge, analogous edge states
are formed for other edge types.’’

At A=\, the quasienergy gap closes at e= * 77/T. Since
the gap centered at e=0 remains open at this point, the chiral
edge states cannot be removed as A is increased through A..
Remarkably, the system supports topologically protected chi-
ral edge states for N>\, despite the fact that the Chern
numbers of both bulk bands are zero. The chiral edge states
in the quasienergy spectrum for A=4 >\, are shown in Fig.
6(d). Isolating the two edges, note that each edge state has a
winding structure which resembles that shown in Fig. 2(a).
This suggests that these edge modes may be characterized in
terms of the topological invariant v; studied in Sec. IIT A.

In order to understand the origin of these features, it is
helpful to consider the limit J— 0 while keeping NJT/3
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A=1 =5
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-1/3
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FIG. 6. (Color online) Quasienergy spectrum of Hg in a finite
strip of width 100 lattice sites in the y direction with armchair edges
along the x direction. Here we choose JT=/16, and M\
=1,3,3.3,4. For A=3, the two bands of H. are characterized by
nonzero Chern numbers, which are manifested in the presence of
chiral edge modes. The lines corresponding to these modes are col-
ored such that the mode on the upper edge is shown in red (dark
color) and the mode on the lower edge is shown in green (light
color). Close to A=3.3, the gap of H.g at quasienergy /T closes,
and then opens again as \ is increased further. At A=4, the Chern
numbers associated with each of the bands are zero, yet the nanor-
ibbon clearly still supports chiral edge states.

=1/2 nonzero. In this limit, during each of the three stages
of the cycle, only sites connected by the bold lines in Fig. 4
are coupled. The amplitude of hopping between the two lat-
tice sites of a dimer is chosen such that after a time period of
T/3, a particle is transferred with certainty from one lattice
site to its neighbor. The dynamics in this limit is depicted in
Fig. 7, where the red and green solid lines show the propa-
gation of particles along the upper and lower edges, respec-
tively, and the blue dotted line shows the propagation of

FIG. 7. (Color online) Dynamics under the driving cycle shown
in Fig. 4, in the limit J—0, N—o with NJ(T/3)=/2. The red
(green) solid line shows the unidirectional propagation of a particle
initially localized on the B (A) sublattice along the upper (lower)
edge. As indicated by the blue dotted line, all bulk states are local-
ized. A particle initially localized at any site in the bulk returns to its
original position after a time 27.
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particles in the bulk. Note that all the Floquet states in the
bulk are localized: a particle starting at any site in the bulk
comes back to the starting site after two complete driving
periods. On the other hand, a particle which starts at the
upper (lower) edge on sublattice B (A) propagates unidirec-
tionally along the edge to the left (right). Therefore, the bulk
and edge states are clearly separated.

In the limit described above, it is straightforward to con-
firm that the Floquet evolution operators {UkX(T)} restricted
to the space spanned by sites on sublattice B (A) of the upper
(lower) edge, yield »;=1(—1). These chiral Floquet edge
states cannot be removed unless the bulk quasienergy gap
closes. Thus, for any other values of J and A which can be
reached from this limit without closing the bulk gap, the
existence of chiral Floquet edge states is guaranteed. This is
indeed the case for A=4 and JT=m/16, whose quasienergy
spectrum is shown in Fig. 6. We note that away from the
special limit J—0, \— oo with NJ(T/3)=m/2, quasienergy
winding numbers for the chiral edge states cannot be defined
because the edge states are absorbed into the continuum for
some values of the crystal momenta. Nonetheless, the topo-
logical origin of the chiral edge states observed in Fig. 6 for
A=4 can be traced to the nontrivial quasienergy windings
studied in Sec. I A, as we have argued above.

Recently, there have been several proposals to induce to-
pological phases with ac electromagnetic fields.>>~%7 In spirit,
these models are similar to ours in the small (A—1) limit,
where the bulk bands possess nontrivial topology (in our
case and in Ref. 25 characterized by the first Chern number
and in Refs. 26 and 27 characterized by a Z, invariant). In
particular, all of these models support robust chiral or helical
Floquet edge states. However, the existence of chiral edge
modes without nontrivial topological bulk quasienergy bands
is a unique feature of our model, which displays a nontrivial
winding of quasienergy.

VI. DISCUSSION

We have presented a unified framework for the topologi-
cal classification of periodically driven systems. Such sys-
tems are characterized in terms of their Floquet operators,
i.e., their unitary evolution operators acting over a full period
of driving. Nontrivial topology can arise on two levels. First,
we characterize the topological structure of the Floquet op-
erator in terms of the homotopy groups of unitary matrices.
Here, topologically distinct classes of dynamics are identi-
fied by the values of (generalized) “winding numbers,” v,
and v; for the first and third homotopy groups. Explicit ex-
pressions for v; and v; are given for systems with discrete
translational symmetry in Egs. (2) and (5), and in terms of a
more general twisted boundary condition formulation in Egs.
(A2) and (A3). Within this framework, the well-known phe-
nomenon of quantized charge transport!> obtains a natural
and intuitive explanation in terms of the winding of quasien-
ergy. Systems with topologically nontrivial Floquet operators
in this homotopy sense can exhibit interesting features, such
as a chiral dispersion in one dimension or protected edge
states in two-dimensional systems with topologically trivial
bulk band structures. Such phenomena cannot be realized in
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systems governed by local, static (time-independent) Hamil-
tonians.

When the Floquet operator is trivial in this homotopy
group sense, then the long-time dynamics of the system can
be described in terms of a local, time-independent effective
Hamiltonian. In this case, the standard classification schemes
of time-independent topological phases can be applied.’-19
Therefore, analogous phases to those of topological insula-
tors and superconductors can be found in dynamically driven
systems. Proposals such as those of Refs. 25-27, in which
topologically nontrivial states are induced dynamically in
otherwise trivial systems, belong to this class.

This work opens many avenues for future exploration. In
particular, it will be interesting to search for experimental
manifestations of quasienergy winding in artificial and natu-
ral systems. Using quantum walks, it is already possible to
realize topological phases in one dimension,'” and we expect
that more complex examples will soon be accessible. Addi-
tionally, the prospect of dynamically inducing topological
states in naturally occurring, topologically trivial, materials
is particularly intriguing.

In this paper, we have focused on single-particle dynam-
ics in noninteracting systems. As shown in Appendices A
and D, the results can also be applied to the adiabatic dy-
namics of gapped many-body systems. It is interesting to
extend this work to more general many-body systems and to
open systems subject to decoherence. These extensions could
pave the way to finding new methods of robust quantum
control in many-body systems.
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APPENDIX A: TOPOLOGICAL CLASSIFICATION IN THE
PRESENCE OF DISORDER

Topological properties of physical systems are expected to
be robust against a broad range of perturbations. In Secs.
IIT A and III B, we studied the topological properties of evo-
lution operators characterized in terms of homotopy groups.
Nontrivial topology in this homotopy group sense is associ-
ated with the winding of quasienergy in the Brillouin zone.
In all the cases considered so far, the topological invariants
were defined under the conditions of (discrete) translational
invariance. In particular, Egs. (2) and (5) are written in terms
of the conserved crystal momentum which is associated with
this symmetry. Below, we generalize the invariant v; to non-
translationally invariant situations, using the idea of twisted
boundary conditions.'® The value of the generalized invariant
7, defined in Eq. (A2) below, gives the same value as v,
Eq. (2), in the absence of disorder. An analogous generaliza-
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FIG. 8. The generalized topological invariant 7, see Eq. (A2),
counts the net winding of quasienergy in one dimension as the
twist-angle 6 is taken from O to 2. Here, for each 6, we plot the
mL quasienergy eigenvalues of the evolution operator.

tion of the invariant v; to the disordered case can be
achieved in a similar manner.

In the following, we consider a weakly disordered one-
dimensional system of a finite length La, where a is the
lattice constant of the “unperturbed” translationally invariant
system in the absence of disorder. Disorder is weak in the
sense that the energy eigenvalues of the instantaneous
Hamiltonian H(z) at each time ¢ remain separated into bands
which can be associated with the bands of the unperturbed
Hamiltonian. We assume, as before, that the evolution over
one full period T only mixes a finite number, m, of these
bands of the initial Hamiltonian, H(0), and seek to charac-
terize the topological properties of the finite-dimensional
mL X mL evolution operator U(T).

To probe the topological properties of U(T), we impose
twisted boundary conditions parametrized by an angle 6,
such that all wave functions must satisfy (x=0])
=e!%x=L|). In principle, for each value of 6, one can find
the corresponding twisted boundary condition eigenstates of
the Floquet operator U(T), and their associated quasiener-
gies. However, the inconvenience of dealing with twisted
boundary conditions can be eliminated by studying the trans-
formed Floquet operator

Ug(T) - e—[fH/LU(T)eif(‘)/L’ (Al)

where Uy(T) acts on states with periodic boundary condi-
tions.

In terms of the twist angle 6, we define the generalized
topological invariant 7; as

1 o
b= by J _ﬁd& T ULT) iU y(T)], (A2)

where the trace is taken over all states in the mL-dimensional
low-energy subspace (with periodic boundary conditions).
Notice that expression (A2) for 7, is analogous to that of v,
Eq. (2), with the phase twist 6/L playing the role of the
crystal momentum. In this way, the entire disordered system
of length L plays the role of one giant unit cell of a much
larger, periodic system with mL bands. As above, ¥; counts
the net winding of quasienergy as 6 is taken from O to 27
(see Fig. 8).

Similarly, the analogous generalization of v; for a finite
system in three dimensions is given by
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4’0
ne | [ ] s
X TH{(Uy' 9, Ug)(Up 99,U)(Uy' 35 Ug).  (A3)

where «,B,7 label the Cartesian directions {x,y,z}, 0
=(6,,0,,0.) is a vector of twist angles for the boundary con-
ditions in each of the three spatial directions, and the inte-
grals are taken over —7m= 6, <.

The generalized topological invariants ¥, and 73, defined
in terms of twisted boundary conditions, can also be applied
to many-body systems, as long as there is a finite gap be-
tween the ground state and the rest of the spectrum through-
out the driving period. In particular, it can be applied in the
case of band insulators. In these cases, ¥; and 75 are mean-
ingful even in the presence of many-body interactions.'®

APPENDIX B: RELATION BETWEEN QUANTIZED
CHARGE PUMPING AND QUASIENERGY WINDING

In this appendix, we study the topological structure of
quantized adiabatic pumping, first proposed by Thouless,!?
as described in terms of the winding number v;. Consider
spinless fermions moving in a periodically varying, one-
dimensional lattice potential. We assume that, at any time ¢,
the m lowest bands of the instantaneous Hamiltonian H(z)
are filled, i.e., the system forms a band insulator. This is the
case if the rate of change in the potential is slow enough such
that the evolution is adiabatic with respect to the band gap at
all times, and no particle-hole excitations created. Thouless
proved that, under these circumstances, the number of par-
ticles transported through the system over one driving period
is quantized as an integer.'> Here, we show that this quan-
tized transport can be naturally understood as a consequence
of the winding of quasienergies of the corresponding evolu-
tion operator, as captured by the v; invariant. In fact, such
quantized charge transport amounts to a realization of the
quantized average velocity (or displacement) discussed in
Sec. IIT A.

We begin by relating v; to the charge current integrated
over one period of the dynamics. Assuming that the particles
do not interact, we study the properties of the single-particle
dynamics. For simplicity we assume translational invariance,
but for interacting or disordered systems, pumping of the
many-body state can be studied using the twisted boundary
condition method described in Appendix A.

It is useful to work in the basis of cell periodic states
lug, @)y=e"* |k, a), where |k,a) is the Bloch wave func-
tion with crystal momentum % and band index «. The

corresponding transformed Hamiltonian is given by H,(7)
=e ™ H()e’™ and the evolution operator is given by
U ()= U(r)e™™. The Floquet evolution operator U,(T),
which acts on the wave functions {|u;,a)} with periodic
boundary conditions, only mixes the filled bands due to the
adiabaticity condition of the dynamics. Therefore, when re-
stricted to the manifold of filled bands and projected onto the

subspace with a particular crystal momentum k, U,(T) re-
duces to U(T) as defined in the main text.
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The instantaneous pumped current in the many-body in-
sulating state can be expressed as

T dk 9x(1)
QEEOCC. f_ﬂ- 2ﬂ_<uk’a| ot |Mk,(1>

J(©)

dk ~ ~ -
> f ;(uk’ a| U (0) ™ iLH (), £1U 0 [, @)

dk ~ ~ -
E J 2_<’4k, a|U()™ (aH () U0y, @),
ae0CC. ™

where we have used the Heisenberg representation and the
summation of « is over the occupied bands. Using the rela-
tion U (1) == [T U(T-1)[idH(1)]U,(1)dt, the total pumped
current integrated over one period is

T
f (= 2,

0 aeocc.

™ dk ~ -
f 2_<Mk, a|U(D) ' [ia,U(T)uy, ).
g 2T

(B1)

Equation (B1) is equivalent to the expression of »; in Eq. (2)
with the understanding that the trace is taken only over the
occupied bands. As pointed out in Sec. Il A, v; counts the
winding number of the quasienergy bands; hence the total
pumped charge can take only integer values.

To demonstrate the quasienergy winding of a system that
displays quantized pumping, we consider the following ex-
ample:

-2
H(t) = 2= 4\ cos(2ms — 1), (B2)
2m

where we have taken the lattice constant to be 1. The cosine
potential is used for concreteness, although the following
argument applies to any moving periodic potential V(27<
—wt). The (real) momentum is denoted by p, which should
not be confused with crystal momentum k.

The evolution operator under the time-dependent Hamil-
tonian above can be exactly obtained by a Galilean transfor-
mation to the comoving frame. It is straightforward to check
that the following evolution operator satisfies the equation of
motion id,U(r)=H(r)U(¢):

U(l‘) — e_iwtﬁ/(Zﬂ')e_iHOt. (B3)

2 s

Here, H, is the static Hamiltonian Hy=2~-22+\ cos(27x).

The evolution operator after one period can be written as
U(T) = e™Pe~ o, (B4)

where T=2m/ . Let {|k, a)} be the Bloch eigenstates for H,,
where k is the crystal momentum and « is the band index. By
definition, |k,a) is an eigenstate of the shift operator e~ih
with eigenvalue e, Therefore, we may write

UW(T)

k,a) = e7* e Eral |k, ), (B5)

where E; , is the energy of the Bloch state |k, ). Since E; ,
is a periodic function of k, it is clear from this expression that
each quasienergy band of U(T) is characterized by a winding
number of 1.
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Note that in the example above, the adiabaticity condition
was not used—the quasienergy winding is a straightforward
consequence of the Galileian invariance of the system. Even
if Galileian invariance-breaking perturbations, such as a
small time-independent potential, are added, as long as the
adiabaticity condition is imposed (0 <AE,, where AE, is a
typical band gap), particles cannot be excited from one band
to the other during the dynamics. Therefore, the quasienergy
winding of each band cannot change.

APPENDIX C: RELATION BETWEEN THE
TOPOLOGICAL INVARIANTS OF EVOLUTION
OPERATORS AND CHERN NUMBERS

The Chern numbers have been used intensively to classify
insulators and superconductors. The first Chern number is
defined in two dimensions and was used to explain the quan-
tization of the Hall conductance in integer quantum Hall
systems.’” More recently, Qi et al.'® have shown that topo-
logical invariants of two- and three-dimensional topological
insulators are closely related to the second Chern number in
four dimensions.

In this paper, we have shown that periodically driven sys-
tems can be characterized by the invariants v; and v;, which
are written entirely in terms of evolution operators. Through
dimensional reduction,!? we establish a connection between
v, and v3, and the first and second Chern numbers in two and
four dimensions, respectively.

Qi et al.'? classified a family of 2n—1-dimensional insu-
lators indexed by a compact parameter € through Chern
numbers defined in 2n dimensions by regarding the param-
eter @ as an additional component of crystal momentum. In
this way, they have shown that the first and second Chern
numbers defined for a family of one- and three-dimensional
insulators are given by

1 P (6
= ao??. (1)
2 a6
1 dP5(6)
Cy="—>Pdo : C2
N 16712?1; a0 (€2)
where
P1(0)=fdk Trla,(6.k)],
P5(0) = f dPke’* Tr|:(fij_ é[di,aj]> -ak], (C3)
and
alf’ﬁ( 0.K) = (= i){uy, 6, a|(?ki|uk, 0,5), (C4)
fﬁﬁ( 0,k) = &kiafﬁ - z?kjaflﬁ +i[a;a;]", (C5)

where &¥ is the antisymmetric tensor and the k integration
extends over the first Brillouin zone. Here {|uy, 6, @)} is the
set of filled states of the system, which satisfy |uy,q, 0, @)
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=|uk, 0, a), where G is a reciprocal lattice vector. Note that
the Berry connection a; is a matrix indexed by the internal
state labels, @ and B. The trace is taken over the filled bands.

For periodically driven systems, we interpret the paramet-
ric dependence of Bloch states on € as coming from the
evolution of the states under the periodic Hamiltonian. Then,
it is possible to write the Chern numbers in Egs. (C1) and
(C2) entirely in terms of the evolution operator of Bloch
wave functions after one period, U,(T). We identify the cy-
clic parameter 6 with the time variable r and write the Chern
numbers as

C= 5P~ P, (O)], (C6)

1

Cy= 16_71'2[P3(T) - P5(0)]. (C7)
Therefore, the Chern numbers have the meaning of the
change in the “polarizations” P; and P; after one period.

The polarizations P;(T) and P5(7T) at time =T are related
to P;(0) and P;(0) at time t=0 through the evolution of
the Bloch states. If the Hamiltonian changes slowly com-
pared to the band gap, it does not mix the occupied states
with states above the gap. Each occupied state |uy,0,a) at
time t=0 evolves into a typically different occupied state
lug, T, ) at time t=T, given by |uy,T,a)=U(T)|uy,0,a)
=3 UR(T)|uy,0,8), where Uy(T) is the evolution
operator for crystal momentum k and UP*(T)
=(uy, 0, BlUx(T)|uy,0, ). The evolution of the Bloch states
is characterized by a non-Abelian Berry connection ai“ﬁ(T),
see Eq. (C4), with 6 replaced by T

af(T) = ai*(0) = iy, 0, | Up(T) ™' U (D]1uy, 0, B).

Substituting this relation into the definitions of the two po-
larizations, it is now straightforward to show that the Chern
numbers in Egs. (C6) and (C7) are expressed in terms of
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evolution operators Uy (T) and give the topological invariants
of evolution operators v, and v in Egs. (2) and (5).

This construction shows the connections between driven
dynamics in 2n—1 dimensions and nth Chern numbers for
n=1,2. We emphasize that the dynamics is not necessarily
adiabatic with respect to the separation between the low-
lying bands. The only condition of the applicability of v, and
vs is that the dynamics is adiabatic with respect to a band gap
which separates the low-lying bands from all higher states
(Fig. 1), and therefore only the low-lying bands are mixed
after one period.

APPENDIX D: TIME-REVERSAL SYMMETRY IN
PERIODICALLY DRIVEN SYSTEMS

In this appendix, we prove that if the time-dependent
Hamiltonian H(z) of a periodically driven system satisfies
OH(t+1y)*" Q" =H(~t +1,), (D1)
where Q is a unitary operator and ¢, is an arbitrary time, then
the evolution operator of the system over one period is time-
reversal symmetric [in the sense of Eq. (6)] and so is the
effective Hamiltonian, Eq. (5). To show this, we write the
evolution operator in the form

U(T,0) = lim ¢ AHT-A0 | p=iAtH(O0)

N—x

(D2)

where U(t,1,) is the evolution operator from time #; to 1,
and Ar=T/N. Using Eq. (D1), and the fact that H(t+T)
=H(r), one can show that

QU(T,0)"Qf = U2ty + T,21,)". (D3)
Then, defining Q= U(0,21,) 0, we get that
QU(T,0)' Q"= U(T,0)", (D4)

which is Eq. (6).
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