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We investigate theoretically soliton excitations and dynamics of
their formation in strongly correlated systems of ultracold bosonic
atoms in two and three dimensional optical lattices. We derive
equations of nonlinear hydrodynamics in the regime of strong
interactions and incommensurate fillings, when atoms can be trea-
ted as hard core bosons. When parameters change in one direction
only we obtain Korteweg–de Vries type equation away from half-
filling and modified KdV equation at half-filling. We apply this
general analysis to a problem of the decay of the density step.
We consider stability of one dimensional solutions to transverse
fluctuations. Our results are also relevant for understanding non-
equilibrium dynamics of lattice spin models.
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1. Introduction

Solitons are conspicuous manifestations of nonlinear interactions in a variety of physical systems
(see e.g. [50,71]). Originally introduced in hydrodynamics of classical fluids, they were later observed
in a variety of other systems, including plasma physics, nonlinear optics, magnetism, dynamics of
molecular systems. It is currently understood that formation of oscillatory zones and localized soliton-
ic solutions is a common feature of many non-linear systems and does not depend on the exact inte-
grability of the model. However the character of solitons is different for each system and
understanding their properties remains a fundamental problem in physics and mathematics.

In this paper we investigate theoretically the nature of solitons and dynamics of their formation in
strongly correlated systems of ultracold bosonic atoms in optical lattices [11–13,41,60]. Recently
questions of far from equilibrium many-body dynamics took central stage in both theoretical and
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experimental study of ultracold atoms. What makes such systems particularly well suited for explor-
ing quantum dynamics is their good isolation from the environment. Their characteristic energies and
frequencies are of the order of kiloHertz, which is extremely convenient for experimental studies. It is
also important that a wide array of experimental tools that allow to control system parameters in time
and prepare far from equilibrium initial states have been developed. Recent experiments addressed
such question as dynamics of fermions in optical lattices [86,82], observation of superexchange inter-
actions using spin dynamics [89], thermalization and relaxation in one-dimensional systems
[49,36,33], motion of impurity particles [52], dynamics and adiabaticity in crossing classical and quan-
tum phase transitions [76,79]. Another important recent achievement is development of experimental
tools for the in situ imaging of individual atoms in optical lattices [5,26,29,37,44,68,72,85] and low
dimensional condensates [35,100]. This technique allows unprecedented level of characterization of
many-body states and should lead to deeper understanding of their out of equilibrium dynamics.
One example is recent analysis of Bakr et al. [5] of the dynamics of defect creation in crossing from
the SF to Mott state in two dimensional optical lattices.

We start our analysis by deriving hydrodynamical approach to describe quantum dynamics of the
lattice bosons. Hydrodynamical description has been applied to quantum many-body systems previ-
ously, including superfluids [47], superconductors [30], quantum Hall systems [91], and magnets [34].
The focus of most earlier analysis was on understanding collective modes and universal features of lin-
ear response functions, which only required understanding linear hydrodynamics. When non-linear
effects have been discussed for superfluid systems, it was primarily done for systems in the continuum
with the full Galilean symmetry. Our goal will be to include both nonlinearities and dispersion, since
the competition of the two determines the nature and dynamics of solitons.

Solitons in systems of ultracold atoms have been discussed previously in the regimes where semi-
classical Gross–Pitaevskii equation can be applied either in uniform systems [14,18,48,74,15] or sys-
tems with optical lattices [21,88,2,3,93,42,46]. In this paper we will be interested in the regime of very
strong interactions between atoms, the so-called hard core bosons regime [80,83]. In this case dynam-
ics of atoms in a lattice can be described using anisotropic Heisenberg model [80]. We demonstrate
that in this regime the character of soliton excitations is very different and depends on both the filling
factor and parameters of the Heisenberg model. Numerical analysis of solitons in Bose systems in opti-
cal lattices in the vicinity of the SF/Mott transition has been done recently by Krutitsky et al. [54]. Our
results can also be applied to study nonequilibrium spin dynamics of two component Bose mixtures in
the Mott insulating regime [20,51] and lattice spin systems in solid state physics.

2. Model

2.1. From lattice bosons to spin Hamiltonian

Microscopic model describing ultracold bosonic atoms in an optical lattice is given by the Bose–
Hubbard model [41,12]
HBH ¼ �tb

X
hiji

byi bj þ
U
2

X
i

niðni � 1Þ: ð1Þ
Here byi is a creation operator for bosons on site i, ni ¼ byi bi is the number of atoms on site i. We do not
include the chemical potential term because in this paper we study dynamics and the operator of the
total number of particles commutes with the Hamiltonian. It is sufficient to impose a certain number
of particles at the initial time and then the total number of particles should not change during evolu-
tion. When there is inhomogeneous external potential we also need to add
Vext ¼
X

i

V ini ð2Þ
To keep the model more general we include nearest neighbor interactions
HExt BH ¼ HHub þ V
X
hiji

ninj ð3Þ
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Such non-local interactions are relevant for atoms in higher Bloch bands [81] and polar molecules in
optical lattices [55]. We consider a regime when the local repulsion U is large and the density of par-
ticles is incommensurate with the lattice. In this case strong number fluctuations are suppressed even
in the superfluid state and we can limit the Hilbert space to only two possible occupation numbers
jn0 � 1i and jn0i per site. It is convenient to represent these states as spin states. State jn0 � 1ii corre-
sponds to j;ii, and state jn0ii corresponds to j"ii. In this limit Hamiltonian (3) is equivalent to the aniso-
tropic Heisenberg model
HAH ¼ �J?
X
hiji

rx
i r

x
j þ ry

i r
y
j

� �
� Jz

X
hiji

rz
i r

z
j ð4Þ
Here ra are Pauli matrices, 2J\ = tbn0, and Jz = �V.
Hamiltonian (4) also appears as an effective description of spin dynamics in the Mott state of two

component Bose mixtures at filling factor n = 1 [20,51].

2.2. Semiclassical equations of motion for lattice bosons

In this section we discuss how one can obtain semiclassical description of dynamics of (4) using either
variational Gutzwiller wavefunctions or linearized equations of motion, which in this case are equivalent
to lattice Landau–Lifshitz equations. To simplify the derivation we assume that parameters of the system
change in one direction only. We emphasize that our focus is on two and three dimensional systems.
Restriction to having variations of parameters in only one direction is, firstly, for notational simplicity
(extension to higher dimensions is straightforward) and, secondly, because we will be concerned with
problems where initial state has been prepared to have parameters changing along one of the coordi-
nates. We discuss effects of fluctuations in transverse directions in subsequent sections.

Strictly one dimensional systems are special and mean-field approaches do not apply to them even
in equilibrium. However special analytical approaches are available for one dimensional systems,
including fermionization and Bethe ansatz [24,28,87]. Also powerful numerical methods based on
DMRG [84] and Matrix Product States [16] allow to study dynamics of one dimensional systems in
great details. On the other hand, nonequilibrium dynamics of higher dimensional systems remains lar-
gely unexplored. This is the main motivation for the current paper. Interestingly, recent work by Lan-
caster and Mitra [56] showed that semiclassical analysis of Landau–Lifshitz equations for one
dimensional spin chains give results consistent with exact calculations. Hence our results may also
be relevant for one dimensional spin chains.

To obtain semiclassical dynamics we consider time-dependent variational wavefunctions
jWðtÞi ¼
Y

i

sin
hiðtÞ

2
e�iuiðtÞ=2j # ii þ cos

hiðtÞ
2

eiuiðtÞ=2j " ii
� �

ð5Þ
Expectation values of the original boson operators are
hbii ¼
ffiffiffiffiffi
n0
p

2
sin hie�iui

hnii ¼ n0 þ
1
2
ðcos hi � 1Þ ð6Þ
To project Schrödinger equation into wavefunction (5) we define the Lagrangian [40,39]
L ¼ �i W
d
dt

���� ����W� 	
þ hWjHjWi

¼
X

i

1
2

_ui cos hi � J?
X
<ij>

sin hi sin hj cosðui �ujÞ � Jz

X
<ij>

cos hi cos hj
and write equations of motion
d
dt

dL
d _qi
� dL

dqi
¼ 0 ð7Þ
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Here qi corresponds to both ui and hi. We find
_ui sin hi ¼ �4J? cos hi sin hiþ1 cosðui �uiþ1Þ þ sin hi�1 cosðui �ui�1Þ

 �

þ 4Jz sin hi cos hiþ1 þ cos hi�1ð Þ
_hi ¼ �4J? sin hiþ1 sinðui �uiþ1Þ þ sin hi�1 sinðui �ui�1Þ


 � ð8Þ
The first equation is effectively the Josephson relation: time derivative of the phase u is equal to the
chemical potential which depends on the values of h and u. The second equation is charge
conservation.

One can give an alternative physical interpretation to Eqs. (8). We write equations of motion for
spin operators
drx
i

dt
¼ �2J?rz

i ðr
y
i�1 þ ry

iþ1Þ þ 2Jzr
y
i ðr

z
i�1 þ rz

iþ1Þ þ hi
zr

y
i ð9Þ
And we have analogous equations for rfy;zgi . To obtain semiclassical dynamics we replace operators by
their expectation values
dhrx
i i

dt
¼ �2J?hrz

i i hr
y
i�1i þ hr

y
iþ1i


 �
þ 2Jzhr

y
i i hr

z
i�1i þ hrz

iþ1i

 �

þ Bi
zhr

y
i i ð10Þ
These are familiar Landau–Lifshitz equations. If we use wavefunction (5) to calculate hrz
i i ¼ cos hi and

hrþi i ¼ 1
2 sin hie�iui , we recognize that Landau–Lifshitz equations are equivalent to (8).

Dynamics of the Bose–Hubbard model has been studied using Gutzwiller variational wavefunc-
tions in [99,17,66,38]. In [4,75] this approach was used to describe current decay in the strongly inter-
acting regime of bosons. Theoretical predictions were in quantitative agreement with subsequent
experimental results by Mun et al. [65].

3. Semiclassical dynamics in the continuum limit

3.1. Long wavelength expansion

It is convenient to introduce slow variables in space, X = hx, and time, T = ht, where h is the lattice
constant. We are looking at dynamics of fluctuations that are slow on the scale of the lattice constant.
So h is a small parameter in which we will expand. We introduce
l ¼ cos h

rðX; TÞ ¼ huðX; tÞ ð11Þ
and obtain
L ¼ 1
2
rTl� 2J?ð1� l2Þ cosrX � 2Jzl2 þ h2J?

l2l2
X

1� l2 cosrX þ h2J?ð1

� l2Þ 1
3
rXXX sinrX þ

1
4
r2

XX cos rX

� 

� h2JzllXX þOðh4Þ ð12Þ
3.2. Hydrodynamics

If we keep only the lowest order terms in h in (12), we obtain the hydrodynamic part of the
lagrangian
LHydr ¼
1
2
rTl� 2J?ð1� l2Þ cos rX � 2Jzl2 ð13Þ
It is convenient to define
kðX; TÞ ¼ rXðX; TÞ ð14Þ
The new variable is proportional to the phase gradient, k �ru.
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Equations of motion obtained from the lagrangian (13) have a standard hydrodynamic form
kT ¼ 8J?l sin kkX � 8J? cos k� 8Jzð ÞlX

lT ¼ �4J?ð1� l2Þ cos kkX þ 8J?l sin klX

ð15Þ
3.3. Linearized equations of motion. Stable and unstable regimes

Let us consider a superfluid state with a uniform density and, possibly, finite phase winding. When
k – 0, this is a current carrying state with I ¼ 4J?ð1� l2

0Þ sin k.
Frequencies of linearized excitations are given by the eigenvalues of the matrix
A ¼
8J?l sin k �8J? cos kþ 8Jz

�4J?ð1� l2Þ cos k 8J?l sin k

� 

ð16Þ
We have for the eigenvalues of A
k1;2 ¼ 8J?l sin k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J?ð1� l2Þ cos kð8J? cos k� 8JzÞ

q
ð17Þ
When J\ > Jz and k is small, both eigenvalues of (16) are real (when Jz = 0 this is true for all k). This is
the hyperbolic regime, which will be the main focus of our paper.

When 0 < cosk < Jz/J\, eigenvalues of (16) appear as a complex conjugate pair. This is the elliptic re-
gime, which corresponds to the unstable state of the system. In this regime small fluctuations of the
plane wave type
kðX; TÞ ¼ k0 þ dkðX; TÞ; lðX; TÞ ¼ l0 þ dlðX; TÞ
dkðX; TÞ � dkeiqXþimðqÞT

; dlðX; TÞ � dleiqXþimðqÞT
grow exponentially in time. Existence of this unstable regime is known as the dynamical insta-
bility [92,4]. It was observed experimentally for atoms in optical lattices [22,65]. Exponential
growth of small modulations predicted by Eq. (15) is only valid for short times. Dynamics of
the unstable regime beyond the short time limit can be analyzed using mathematical methods
from the theory of elliptic equations. In this paper we only address the stable hyperbolic
regime.

When the initial state does not carry a current, i.e. there is no phase winding,
uðX; 0Þ ¼ 0 ð18Þ
To obtain further insight into the linearized system we set
lðX; TÞ ¼ l0 þ qðX; TÞ
We can now rewrite Eq. (15) in terms of variables q(X,T) and k(X,T), which describe small devia-
tions from the equilibrium state
kT ¼ �8ðJ? � JzÞqX ; qT ¼ �4J?ð1� l2
0ÞkX ð19Þ
System (19) gives the following equation for q(X,T)
qTT ¼ 32J?ð1� l2
0ÞðJ? � JzÞqXX ð20Þ
We find the familiar wave equation, which describes propagation of the initial perturbation q(X,0)
with a small amplitude. Eqs. (19) and (20) show that during the dynamical evolution of the perturba-
tion, the superfluid velocity k(X,T) is of the order of q(X,T), provided that this is true in the initial state.
This is the regime that will be the focus of our paper.
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3.4. Nonlinearities and appearance of singularities

We now include nonlinear terms in the analysis of equations of motion. In the simplest case Jz = 0
we can define
r1 ¼
ffiffiffi
2
p

arcsinl� k ¼ p=
ffiffiffi
2
p
�

ffiffiffi
2
p

h� k

r2 ¼
ffiffiffi
2
p

arcsinlþ k ¼ p=
ffiffiffi
2
p
�

ffiffiffi
2
p

hþ k ð21Þ
And from the Lagrangian (13) we obtain equations of motion
r1
T ¼ 8J? sin

r1 þ r2

2
ffiffiffi
2
p sin

r2 � r1

2
þ 4

ffiffiffi
2
p

J? cos
r1 þ r2

2
ffiffiffi
2
p cos

r2 � r1

2

� 

r1

X

r2
T ¼ 8J? sin

r1 þ r2

2
ffiffiffi
2
p sin

r2 � r1

2
� 4

ffiffiffi
2
p

J? cos
r1 þ r2

2
ffiffiffi
2
p cos

r2 � r1

2

� 

r2

X

ð22Þ
Eqs. (22) are written in terms of the Riemann invariants, which separate the system (15) into the left-
and right-moving parts. This representation is most convenient in the analysis of Hydrodynamic Type
systems. System of Eqs. (22) admits two natural reductions r1 = const or r2 = const, which describe sep-
arate propagation of the left- and right-moving excitations.

When Jz – 0, expressions for Riemann invariants are more cumbersome
r1;2 ¼
ffiffiffi
2
p

arcsin l�
ffiffiffi
2
p

arcsinl0 �
Z k

0

ffiffiffiffiffiffiffiffiffiffiffi
cos k
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos k� Jz=J?
p dk
The corresponding diagonal system of the equations of motion has a character close to (22) in the
hyperbolic regime.

Taking in the account that the functions q(X,T) and k(X,T) have the same order in our approach we
can write
k1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0ÞJ?ðJ? � JzÞ
q

þ 8J?l0k� l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32J?ðJ? � JzÞ

p
q

þ 8J?qk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� l2

0ÞJ?
q 2J? � Jzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J? � Jz

p k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8J?ðJ? � JzÞ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

0

q� �3 q2 þ � � � ð23Þ
In the same way
r1;2 ¼
ffiffiffi
2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
0

q qþ
ffiffiffi
2
p

l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

0

q� �3

q2

2
þ

ffiffiffi
2
p
ð1þ 2l2

0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

0

q� �5

q3

6
þ � � � � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Jz=J?
p � Jz

12J?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Jz=J?

p
 �3 k3 � � � �

ð24Þ
To understand the role of non-linear effects we expand the corresponding equations of motion up
to second order terms in deviations from the uniform state. We obtain the following general form of
the equations of motion
r1
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

� 6l0r1 þ 2l0r2
� 


r1
X

r2
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

� 2l0r1 þ 6l0r2
� 


r2
X

ð25Þ
Eq. (25) describes coupled evolution of the right and left moving parts. To get further insight into
dynamics we make another simplification. In the problems that we consider the left and right moving
parts overlap at short times, but separate after a finite time. The main effects of non-linearities appear
at long times. Thus when discussing effects of non-linearities it is sufficient to consider separately the
left- and right-moving parts of the solution. So when we discuss the dynamics of r1 we can set
r2 = const and vice versa.
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After we make the Galilean transformation for the left and right propagating parts we obtain
Fig. 1.
respect
a singu
r1
T ¼ �6l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p
r1r1

X ð26Þ
r2

T ¼ 6l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p
r2r2

X ð27Þ
Eqs. (26) and (27) are known as the Hopf equations describing ‘‘simple waves’’. Their solutions are
given by the implicit formula
r1;2 ¼ F X � 6l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p
r1;2T

� �

The most important feature of these solutions is that they exist only up to a finite time T0, which de-
pends on the initial conditions. All nontrivial solutions become singular after some finite time. Phys-
ically this corresponds to formation of the breaking point, which we show in Fig. 1. This can be
understood as a result of regions of different densities moving with different velocities.

Formation of the singularity is not restricted to the truncated equations of motion (25). This is a
feature of the general non-linear dynamics of the equations of motion (22). Generally system of
Eqs. (15) can be reduced to a linear problem using the so-called hodograph transformation. Then solu-
tions of (15) can be described in terms of perturbations moving along the characteristic lines dX/
dT = k1,2(r1,r2). Characteristics of the nonlinear system depend on the variables (r1,r2) and unique solu-
tions of (15) exist only up to a finite time T0. At later times solution becomes multi-valued. Special
solutions of (15) given by relations r1(X,T) = const or r2(X,T) = const describe perturbations moving
along one of the characteristic lines. In this case the second variable (r2 or r1) satisfies a nonlinear first
order equation, which is (locally) equivalent to the nonlinear Hopf equation.

For times approaching T0 solutions of (26) and (27) are close to developing a breaking point and
have high gradients. In this regime neglecting higher order gradients in the Lagrangian (12) is no long-
er justified. In the next section we will see that taking dispersion into account suppresses singularities
in the solutions and gives rise to short-period oscillations.

General analysis of how dispersion leads to the formation of oscillatory zones in our system is
rather complicated. In the most generic case, one can not use expansion (12) to describe the oscillatory
zone formation. The period of oscillations arising for T > T0 is of the order of h, so all higher dispersive
corrections are of the same order. Accurate description of the transition from the ‘‘slowly-modulated’’
to the rapidly modulated regimes can only be done with the use of the original lattice system (8).
However, there are certain special cases, in which the use of the continuum model (12) is justified.
Fortunately these cases are interesting from the experimental point of view. They will be the subject
of our discussion.
0 < T < T0T = T0

r 2

T = 0

0 < T < T0 T = T0

r 1

T = 0

Formation of the breaking point for Eqs. (26) and (27) in the case l0 > 0. r1 and r2 describe left and right movers,
ively. Dynamics is shown in moving frames of references. In both cases the rear edge of the wave steepens and develops
larity.
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4. Nonlinear waves in generic case

4.1. Connection to Korteweg–de Vries equation

When discussing dispersive terms for q and k in the equations of motion, it is sufficient to keep
them only in the linear order in deviations from the uniform state. Dispersive terms come with addi-
tional factors of h and are already small. Hence in the Lagrangian (12) dispersive terms need to be con-
sidered only up to quadratic terms in q or rX. Modulo total derivatives with respect to X we can write
LDisp ’ h2J?
l2

0

1� l2
0

q2
X þ h2Jzq2

X �
1

12
h2J?ð1� l2

0Þr2
XX
The resulting equations of motion are
kT ’ 8J?l sin kkX � 8J? cos k� 8Jzð ÞlX þ 4h2J?
l2

0

1� l2
0

qXXX þ 4h2JzqXXX

lT ’ �4J?ð1� l2Þ cos kkX þ 8J?l sin klX �
1
3

h2J?ð1� l2
0ÞkXXX

ð28Þ
Using variables r1(k,l), r2(k,l) we obtain
r1
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

� 6l0r1 þ 2l0r2
� 


r1
X

� 1
3
ffiffiffi
2
p h2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J?ðJ? � JzÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
0

q
r2

XXX � r1
XXX


 �
�

ffiffiffi
2
p

h2 J?
l2

0

1� l2
0

þ Jz

� 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?

J? � Jz

s
r1

XXX þ r2
XXX


 �
ð29Þ

r2
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

� 2l0r1 þ 6l0r2
� 


r2
X

� 1
3
ffiffiffi
2
p h2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J?ðJ? � JzÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
0

q
r2

XXX � r1
XXX


 �
þ

ffiffiffi
2
p

h2 J?
l2

0

1� l2
0

þ Jz

� 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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As in our earlier discussion we consider separately the left and right moving parts, i.e. we take
either r1 = const or r2 = const. After we included effects of dispersion such reductions are no longer ex-
act. However, in cases of interest, interaction between r1 and r2 gives rise only to small rapid oscilla-
tions. Such oscillations are expected to be much smaller than the structures that we discuss (see e.g.
[53], see also [23,94,95]) and we will neglect them in this paper. We also perform Galilean transfor-
mations for the two parts and obtain in the moving coordinate systems
r1
T ¼ �6l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r2
T ¼ 6l0
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Note that Eqs. (31) and (32) transform into each other if we change X ? �X. Equivalence of the two
equations for fixed values of J\, Jz and l0 represents an evident corollary of the symmetry X ? �X of
the original system.

It is not difficult to see that Eqs. (31) and (32) represent the KdV-equation provided that
l0 – 0; J?
1
6
� l2

0

1� l2
0

� 

� 7

6
Jz – 0
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Fig. 2. The asymptotic form (T ?1) of the N-soliton solutions for Eqs. (33) and (34) respectively (V1 > V2 > V3).
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Depending on the values of parameters J\, Jz, and l0, Eqs. (31) and (32) are equivalent to one of the
following two equations
1 In t
to two-
UT þ 6UUX � UXXX ¼ 0 ð33Þ
UT þ 6UUX þ UXXX ¼ 0 ð34Þ
after an appropriate rescaling of coordinates (X,T) and functions ri. These two equations are equivalent
to each other if we admit the inversion ri ? �ri, T ? �T. However, this transformation leads to very
different physical interpretation of solutions for a fixed l0, as we discuss below.1

KdV type equations (33) and (34) allow solitonic solutions, which are long lived nonlinear excita-
tions in the system. The velocity of a soliton is proportional to its amplitude, so larger solitons move
faster than the smaller ones. The asymptotic form of an N-soliton solution for T ?1 for Eqs. (33) and
(34) can be represented as shown in Fig. 2. In the Appendix we briefly review how one can verify the
existence of solitonic excitations in the KdV equation using connection to the linear Schrödinger equa-
tion. We also point out that in general, solutions of (33) and (34) include not only the soliton part but
also ‘‘wave trains’’. The soliton part and the ‘‘wave train’’ parts separate from each other at long times
(Fig. 3). The soliton part of the solution remains unchanged for all T > 0 while the wave - train part
‘‘dissolves’’ as T ?1 [96]. From our point of view, solitons of (33) and (34) represent the most inter-
esting part of the solution and we focus on them in this paper.

4.2. Discussion of solitonic excitations

Solitons in KdV equations have been studied in detail during the last few decades. In this paper we
take previously known mathematical results and discuss their physical implications for our specific
system. While we provide a brief summary of the mathematical methods used in analyzing soliton
excitations in the Appendix, we refer readers to the books [1,69,70] for a more detailed discussion
of general mathematical aspects of the KdV equation.

The character of solitonic solutions of KdV type Eqs. (33) and (34) depends on parameters. In par-
ticular depending on the ratio of Jz/J\ and the density, isolated solitons can appear either as particle-
like or hole-like excitations. In this subsection we only provide a summary of the results. More details
can be found in the Appendix.
he next chapter we will also discuss that solutions of (33) and (34) demonstrate different stability properties with respect
dimensional modulations.
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Fig. 3. The asymptotic form (T ?1) of the general solution for Eqs. (33) and (34) respectively.

Fig. 4. The form of a soliton solution in the (k,q)-variables for the case of the ‘‘hole-like’’ soliton and the ‘‘particle-like’’ soliton,
respectively.
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In the discussion below we only consider the case l0 > 0, which corresponds to the density above
half-filling hni > 1/2. Eqs. (31) and (32) have a symmetry l0 ? �l0, ri ? �ri. This symmetry originates
from the particle-hole symmetry of the initial system, which relates states below and above half-fill-
ing (8): h ? p � h and u ? �u. In our discussion this symmetry allows to relate solitonic excitations
below and above half-filling. For l0 < 0 solitons are ‘‘mirror images’’ of the l0 > 0 case. For example, if
we find particle-like solitons above half-filling, we should have hole-like solitons below half-filling
(l0 ? �l0) for the same values of J. Let us represent here also the form of the ‘‘hole-like’’ and the ‘‘par-
ticle-like’’ solitons in the original variables (k,q) (see Fig. 4).

We also remind the readers that we only need to consider states that are stable against dynamical
modulations, i.e. J\ > Jz.
Solitons for Jz > J?=7 and l0 > 0
In this case both Eqs. (31) and (32) reduce to Eq. (34) after rescaling the variables and, if necessary,
performing the transformation X ? �X. There should be no solitons when U(X) 6 0. We are guaranteed
to find solitonic excitations when
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Z þ1

�1
UðXÞdX > 0 ð35Þ
When U(X) P 0 the soliton part represents the main part of the solution. So we find particle-like sol-
itons in this situation.
Solitons for Jz < J?=7 and 0 < l0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J? � 7Jz

7ðJ? � JzÞ

s

Now both Eqs. (31) and (32) reduce to Eq. (33) after rescaling the variables and doing the transfor-

mation X ? �X in Eq. (32). This equation does not have any solitons when U(X) P 0. It has guaranteed
solitonic solutions when
Z þ1

�1
UðXÞdX < 0 ð36Þ
In the case with U(X) 6 0 the soliton part represents the main part of the solution. Hence in terms of
the original density, we find the hole-type solitons in this case.
Solitons for Jz < J?=7 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J? � 7Jz

7ðJ? � JzÞ

s
< l0 < 1
Both Eqs. (31) and (32) reduce to Eq. (34) in this case. Thus we find particle-like solitons in terms of
the original density.

We can now summarize results of this subsection. When Jz > J\/7 we find that above half-filling
there are only particle-like solitonic excitations. When Jz < J\/7 and above half-filling we find that
we have either hole-like (closer to half-filling) or particle-like solitons (closer to filling factor one).

4.3. Self-consistency of the long wavelength expansion

Before concluding this section we would like to verify that our solutions do not take us outside the
region of applicability of Lagrangian (12), which was obtained using long wavelength expansion. When
we consider dynamics starting from a state with small smooth deviations from a uniform density,
approximate Lagrangian (12) can be certainly used at the initial stages of the evolution. However, at final
(asymptotic) stages of the evolution, the solution may be sufficiently different from the initial state. Let
us consider specifically the soliton part of asymptotic solutions. In soliton solutions both the nonlinear
and dispersive parts are important and the interplay of the two gives rise to a stable soliton. One of the
important properties of the KdV equation is that the amplitude of solitons is of the same order as initial
deviations from the uniform density. Eqs. (31) and (32) were obtained assuming small deviations of the
initial density from the uniform value l0. These small deviations set the scale for the amplitude of result-
ing solitons. In solitons there is a direct relation between the amplitude and the width (the width in-
creases as the amplitude goes to zero). Hence in the limit that we discuss, the dispersion part of our
soliton solutions should be small, and our approximation of neglecting higher dispersion corrections
should be justified even for the final stages of the evolution. For example, when solution can be written
as the ‘‘quasiclassical solution’’, in which the soliton part represents the main contribution to the solu-
tion, higher dispersive and nonlinear terms should have very weak effect on the soliton.

Similar considerations are applicable for the ‘‘wave-train’’ part of the solutions. However, the
‘‘wave-train’’ part dissolves in the limit T ?1 and we expect that it will be more challenging to ob-
serve it in experiments.

5. Nonlinear waves in special cases

5.1. Half-filling. Solitons of the modified Korteweg–de Vries equation

When the particle density is 1/2, the system of hard core bosons has a full particle-hole symmetry.
Eigenvalues k1,2 of the linearized system (19) have the largest possible magnitude
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k1;2 ¼ �4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J?ðJ? � JzÞ

p

which corresponds to the largest possible velocity of linear waves. In the case of dynamics start-
ing from some initial state, this should provide fastest spatial separation of the left- and right-
moving parts of the perturbation. In this case l0 = 0, so corrections to k1,2, which are linear in
q and k, vanish and we need to use quadratic terms in the expansion (23). In our discussion be-
low we keep linear terms, in order to accommodate small l0 – 0. Using approximation (24) we
can write
k1 ’
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" #
From the last two equations we determine how propagation of the left- and right- moving parts,
(31) and (32), is modified by the higher order terms. Within the assumptions of spatial separation
of the left- and right-moving parts, which we used in the earlier discussion, and using appropriate
moving frames of reference we find
r1
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ
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s
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In writing the last equations we omitted higher order corrections in l0. When J\ – 7Jz. Eq. (37) can be
written in the canonical form
UT þ ðaU þ 6U2ÞUX � UXXX ¼ 0 ð39Þ
after a scaling transformation. Parameter a that we introduced here is proportional to the deviation
from half-filling, a � l0, and we assume it to be small.

Eq. (39) is called the modified Korteweg–de Vries (mKdV) equation and represents an integrable
system as well as the KdV equation (see [90]). Let us note also that the mKdV equation is connected
with the KdV equation by the Miura transformation [64] which was the first observation of the inte-
grability properties of the KdV equation itself (see [69]).

There is a wider variety of soliton excitations that one can construct in the mKdV problem. At a
fixed value of the chemical potential one can find both particle-like and hole-like solitons moving
in the same direction. This should be contrasted to the situation away from half-filling, which we
discussed in the previous section, where at a given chemical potential and direction of propagation
we had either particle or hole like solitons, but never both simultaneously. For the mKdV case we
also find soliton excitations which look like particle on a pedestal (or hole on a pedestal). We pro-
vide a detailed discussion of solitons in the mKdV problem and their manifestations for our system
in the Appendix.

5.2. Close to integer filling. Nonlinear Schrödinger equation

When the system is close to integer filling l0 = ±1. In this case characteristic velocities of the lin-
earized system (19) coincide. Hence we can no longer assume separation of the left- and right-moving
parts. Examining systems (29) and (30) we find that dispersive corrections also have singularities in
variables (q,k).

To avoid these difficulties we return to variables (h,r), which we used before, and consider the
Lagrangian density
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L ¼ 1
2
rT cos h� 2J? sin2 h cosrX � 2Jz cos2 h� h2J? sin hðsin hÞXX cosrX

� h2J? sin2 h
1
6
rXXX sinrX þ

1
4
r2

XX cos rX

� 

� h2Jz cos hðcos hÞXX þOðh4Þ ð40Þ
in the limit h ? 0, p. If we keep only quadratic terms in (sinh,r) in the dispersive part of the Lagrang-
ian, we can write the corresponding equations of motion as (in the limit l0 = ±1)
rT sin hþ 8J? sin h cos h cos rX � 8Jz cos h sin hþ 4h2J?l0ðsin hÞXX ¼ 0
hT � 8J?ðsin hÞX sin rX � 4J? sin hðsin rXÞX ¼ 0

ð41Þ
If we keep only the lowest order cubic terms in the nonlinear part of (41), we can rewrite this equation
for small (h,r) as
rT sin hþ 8l0ðJ? � JzÞ sin h� 4l0ðJ? � JzÞ sin3 h� 4l0J? sin hr2
X þ 4h2l0J?ðsin hÞXX ¼ 0

hT � 8J?ðsin hÞXrX � 4J? sin hrXX ¼ 0
(l0 = ±1).
It is not difficult to verify that the system above can be written in the form of the defocusing non-

linear Schrödinger equation
ihwT ¼ 8ðJ? � JzÞw� 4ðJ? � JzÞjwj
2wþ 4h2J?wXX ð42Þ
for the function
w ¼ sin heil0r=h ¼ sin heil0u
Eq. (42) describes an integrable system [97], which was solved by Zakharov and Shabat by the in-
verse scattering method. System (42) admits an exact description of the evolution starting from any
initial state. However, nonlinear Schrödinger equation does not have soliton solutions in the defocus-
ing case. Defocusing nature of Eq. (42) demonstrates stable behavior of the system with respect to ini-
tial perturbations. In this case asymptotic behavior of solutions of (42) should only include wave-
trains which ‘‘dissolve’’ for T ?1 [96].2

5.3. Special filling factor

We now comment on the special point of our system at
l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J? � 7Jz

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ðJ? � JzÞ

p
ð43Þ
for the case 0 < Jz < J\/7. To get Eqs. (33) and (34) from (31) and (32) we need to make scaling
transformation
X ! X h
2ð1� l2
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6
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���� ����1=2
This transformation is singular at the special point (43). As a corollary, the width of solitons (and the
period of oscillations in the ‘‘wave-train’’ part) become small in X-space w.r.t. another parameter
l0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J? � 7Jz

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ðJ? � JzÞ

p

Higher dispersive terms become important in this limit and Lagrangian density (12) can no longer

be used. As we discussed earlier, dynamics is more complicated near this special point, and one should
use original lattice system (8) to discuss dynamics. In general we expect here oscillation zones with
rather short period of oscillations.
soliton solutions on the ‘‘pedestal’’ are also possible for Eq. (42). We do not consider them here.
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6. Decay of the density step

We now apply our general arguments to understand dynamical evolution starting from a specific
initial state. We assume that at T = 0 we have a smooth step-like change in the density without any
initial current. Experimentally such initial configuration can be created using a smooth step in the
external potential that is suddenly removed. This initial state is of the form given by Eq. (18). It is
shown schematically in Fig. 5. In this section we only consider the situation when the system is not
close to any special points. Density step decay for systems close to half-filling is discussed in the
Appendix.

Since we rely on the long wavelength expansion, we assume that function q(X,T = 0) is a slow func-
tion of the spatial coordinate.

The main terms in the long wavelength expansion of dynamics are given by the wave Eq. (19). The
wave equation predicts that after a short time the step-like initial state should turn into a two-step
solution, with two steps propagating in the opposite directions (see Fig. 6). When the two steps sep-
arate from each other, they can be analyzed independently. The left- and right-moving edges of the
solution correspond to r1 and r2. Proceeding to the next order in h, we find that they are described
by Eqs. (31) and (32), respectively. After rescaling of coordinates (X,T) and functions r1 and r2 them-
selves, this dynamics is given either by Eq. (33) or (34), where the choice depends on the values of
(J\, Jz, and l0).

First of all, we need to understand whether hydrodynamic solutions for r1 and r2 break down and
develop a singularity. For l0 > 0 and the initial density profile shown in Fig. 5 the steepness of function
r1(X) should increase with time while the steepness of function r2(X) should decrease with time (see
Fig. 7). This follows from simple hydrodynamic analysis following Eqs. (26) and (27). This means that
the steepness of solutions q(X), k(X) will increase on the left-moving edge of Fig. 6 and decrease on the
right-moving edge. (The situation changes to the opposite for the inverse step initial state.) So in this
case no dispersive corrections are needed for r2(X). Function r2(X) should remain smooth for all T > 0 in
Fig. 5. The step-like initial conditions for the function q(X,T) with the assumption u(X,0) = 0.

Fig. 6. The evolution of initial distribution with k(X,0) = 0 and the step-like q(X,0) in the approximation of system (19).
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Fig. 7. The increasing of the steepness of solution r1(X) on the left-moving edge and the decreasing of the steepness of solution
r2(X) on the right-moving edge in the hydrodynamic approximation. The data are sketched in the original coordinate system.

Fig. 8. The development of oscillation zone from the step-like initial data for the case of Eq. (33).
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the hydrodynamic approximation. On the other hand, function r1(X) develops a breaking point in the
hydrodynamic approximation. Thus we need to consider Eq. (31) taking into account dispersive cor-
rections. As we discussed before dispersive corrections should give rise the oscillation zone, which we
expect to grow linearly with time. The form of oscillations should be different for Eqs. (33) and (34)
due to different signs of dispersion in these systems (see Figs. 8 and 9).

To understand the oscillation zone that arises following breaking of the hydrodynamic solution we
need to analyze dynamics of the KdV equation with step like initial conditions. This problem was ad-
dressed by Gurevich and Pitaevskii [31,32] using the Whitham theory of slow modulations. We will
now summarize their key results pointing out their implications for our system.

Gurevich and Pitaevskii considered a general problem of slowly modulated one-phase solution of
the KdV equation. One-phase solution is a periodic running wave solution that provides a generaliza-
tion of the one-soliton solutions of the KdV equation



Fig. 9. The development of oscillation zone from the step-like initial data for the case of Eq. (34).

Fig. 10. The general form of the function U(h,j,A,n) representing the one-phase solution of the KdV-equation.
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UðX; TÞ ¼ U jX þxT þ h0;j;A;nð Þ
One-phase solution depends on three parameters (j,A,n). Functions U(h,j,A,n) should be 2p-periodic
in h, so parameter j plays the role of the wave number for nonlinear running waves. Parameter A plays
the role of the amplitude of the periodic solution, while parameter n = hUi is the value of U averaged
over one period (see Fig. 10).

One-phase solutions of KdV can be written in the form
UðjX þxT;j;A;nÞ ¼ A
s2 dn2 A

12s2

� 
1=2

ðX � VTÞ; s
" #

þ c

V ¼ A
3s2 ð2� s2Þ þ c
where s is the modulus of the Jacobi elliptic function dn(u,s), 0 6 s 6 1. The values (j,x,n) can be ex-
pressed in terms of the parameters (A,s,c) in the following way
j ¼ p
KðsÞ
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12s2
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KðsÞ ð2� s2Þ A

12s2

� 
3=2
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12s2
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s2KðsÞ
where K(s) and E(s) are the elliptic integrals of the first and the second kind respectively.
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We can also write
Uðh;A; s; cÞ ¼ A
s2 dn2 KðsÞ

p
h; s

� 

þ c
as normalization of function U(h,j,A,n).
The one-soliton solutions of KdV can be considered as the limiting case of the one-phase solutions

in the large-period limit j ? 0. Traditionally the asymptotes U(h) ? 0, h ? ±1 is assumed for the sol-
iton solutions of KdV, so the amplitude parameter A remains the one parameter of a one-soliton
solution.

In Whitham’s approach parameters (j,A,n) become slow functions of x and t
j ¼ jðX; TÞ; A ¼ AðX; TÞ; n ¼ nðX; TÞ
so that functions j(X,T), A(X,T), n(X,T) satisfy a nontrivial system of quasilinear equations in partial
derivatives (the so-called Whitham’s system). Whitham’s system describes evolution of initial param-
eters j(X,0), A(X,0), n(X,0) of oscillating solutions, such that development of oscillations can be calcu-
lated in this case.

Gurevich and Pitaevskii showed that in the KdV equation with a step like initial conditions, the
small oscillation zone, that arises near the breaking point of the hydrodynamic solution, can be de-
scribed by the self-similar solutions characterized by only one variable, l = X/T.

In more details, the asymptotic (T ?1) form of oscillations can be described by the modulated
one-phase solutions of KdV with parameters j(X,,T), A(X,T), n(X,T) of the form
jðX; TÞ ¼ jðX=TÞ; AðX; TÞ ¼ AðX=TÞ; nðX; TÞ ¼ nðX=TÞ
The oscillation zone is located in the interval
l� < X=T < lþ
in this asymptotic regime.
According to [31,32] the amplitude of oscillations A(X,T) becomes zero at the ‘‘trailing edge’’ of the

oscillation zone (the right edge in Fig. 8 and the left edge in Fig. 9). The wave number of nonlinear
oscillations j(X,T) becomes zero at the ‘‘leading edge’’ of the oscillation zone (the left edge in Fig. 8
and the right edge in Fig. 8).

We can see that the ‘‘trailing edge’’ of oscillation zone can be considered as a source of oscillations
with small amplitude, which develop into solitons in the limit T ?1. The ‘‘leading edge’’ of the oscil-
lation zone can be considered as a source of free solitons since we have j ? 0 on this edge and the
distance between solitons tends to infinity for T ?1.

We point out that it is also possible to analyze the problem above in terms of the ‘‘pure’’ soliton
picture [58,59]. Approach used in [58,59] is also a classical part of the soliton theory.

General problem of the decay of different initial configurations in the theory of small-dispersion
KdV-equation represents a big branch of the soliton theory. While we do not discuss other problems
here, we expect that many of the known mathematical results will be relevant for different experi-
ments with ultracold atoms. We also point out that our methodology for identifying the character
of solitons (particle- or hole-like) was based on considering the function U(X,T), which describes Rie-
mann invariants r1(X,T) or r2(X,T). It is more natural to classify solitons based on the density. Relations
between r{1,2}(X,T) and the more physical variables of the density, q(X,T), and the phase gradient,
k(X,T), are given in Eq. (24). We find that the density always follows the behavior of r{1,2}(X,T). Hence
our classification of the hole-type and the particle-type solitons in terms of the density coincides with
that given in terms of the function U(X,T).

Before concluding this section we would like to point out that whether step-like conditions shown
in Fig. 5 should be considered as a source of hole-like or particle-like solitons in the solutions q(X,T),
k(X,T) depends on the relation between parameters (J\, Jz,l0). In general, we expect that larger values
of Jz and l0 suppress the appearance of hole-type solitons and favor solitons of the particle type. On
the opposite side, smaller values of Jz and l0 allow solitons of the hole type and suppress solitons
of particle type.



1792 E. Demler, A. Maltsev / Annals of Physics 326 (2011) 1775–1805
7. Two-dimensional effects

In this section we discuss the role of transverse directions. We consider a question of whether one
dimensional profiles, that we discussed so far, are stable against ‘‘weak’’ modulation in the transverse
direction.

For a D-dimensional lattice we need to change the long wavelength Lagrangian density (40) to a
more general expression
L ¼ 1
2
rT cos h� 2J? sin2 h

XD

i¼1

cosrXi � 2JzD cos2 h

� h2J? sin h
XD

i¼1

ðsin hÞXiXi cosrXi � h2Jz cos h
XD

i¼1

ðcos hÞXiXi

� h2J? sin2 h
XD

i¼1

1
6
rXiXiXi sinrXi þ

1
4
r2

XiXi cosrXi

� 

þOðh4Þ
or
L ¼ 1
2
rTl� 2J?ð1� l2Þ

XD

i¼1

cosrXi � 2JzDl2

þ h2J?
l2

1� l2

XD

i¼1

l2
Xi cosrXi � h2Jzl

XD

i¼1

lXiXi

þ h2J?ð1� l2Þ
XD

i¼1

1
3
rXiXiXi sin rXi þ 1

4
r2

XiXi cosrXi

� 

þOðh4Þ
in the coordinates (l,r).
We separate the hydrodynamic and dispersive parts of the Lagrangian and repeat considerations

used in the previous sections. Analysis of the dynamical system is more complicated for D > 1 and
we will not explore all of its richness. We only address a question whether one dimensional solitons
that we discussed so far are stable with respect to formation of a two dimensional pattern (see Fig. 11).

We start with a generic situation corresponding to Eq. (33) or (34). Since we are going to consider
only small modulations of the soliton strings, we can follow the procedure suggested in [43] to get the
Kadomtsev–Petviashvili equation for two-dimensional systems.
v

X

Y

0

Fig. 11. Schematic sketch of a one-dimensional soliton string modulated in the Y-direction.
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Firstly we recall that Eqs. (31)-(32) are written in the moving coordinate systems. For the left-mov-
ing part of the solution in the laboratory frame of reference we have
3 We
r1
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

r1
X � 6l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p
r1r1

X

þ
ffiffiffi
2
p

h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?

J? � Jz

s
J?

1
6
� l2

0

1� l2
0

� 

� 7

6
Jz

� 

r1

XXX ð44Þ
In writing the last equation we preserved the restriction r2 = const.
The first term in the right-hand part plays the main role in the evolution of r1(X,T) and other terms

represent small corrections with respect to the main contribution. According to [43] we only need to
calculate corrections to the main term coming from the slow modulation of the solution in the Y-direc-
tion. This procedure gives us stable or unstable variants of the Kadomtsev–Petviashvili equation. The
main term in the right-hand part of (44) originates from the linear system (19) of (20) which can be
easily written in the two-dimensional form by adding additional derivatives in the Y-direction. What
we need here is correction to the dispersion law x2 � k2

X which can be written as
x ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

X þ k2
Y

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

kX þ
1
2

k2
Y

kX

 !

for the left-moving part in our situation.3 As a result, the small modulations in the Y-direction of solu-
tions of (44) can be described by the equation
r1
TX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

r1
XX � 6l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p
ðr1r1

XÞX

þ
ffiffiffi
2
p

h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?

J? � Jz

s
J?

1
6
� l2

0

1� l2
0

� 

� 7

6
Jz

� 

r1

XXXX

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

r1
YY
or
r1
TX ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð1� l2

0Þ
q

r1
YY � 6l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?ðJ? � JzÞ

p
ðr1r1

XÞX

þ
ffiffiffi
2
p

h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J?

J? � Jz

s
J?

1
6
� l2

0

1� l2
0

� 

� 7

6
Jz

� 

r1

XXXX ð45Þ
in the moving coordinate system.
Eq. (45) is the Kadomtsev–Petviashvili (KP) equation which describes the small transverse modu-

lations of solutions of the KdV equation considered in the two-dimensional case. The stable Kadomt-
sev–Petviashvili equation corresponds to the same signs of the coefficients for r1

XXXX and r1
YY . In this

case the small modulation of a soliton string causes just the weak oscillations along the string and
does not produce any instability. The opposite situation with different signs of the coefficients before
r1

XXXX and r1
YY corresponds to the unstable situation where the soliton strings are unstable with respect

to modulation along the Y-axis.
We can see then that the stable soliton string in two dimensions arises for the situation of Eq. (33),

i.e.
Jz < J?=7; �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J? � 7Jz

7ðJ? � JzÞ

s
< l0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J? � 7Jz

7ðJ? � JzÞ

s

which corresponds to the small values of Jz and the density n � 1/2 in the pattern.

The solutions we considered in the opposite situation
use the expansion of the solutions of linear system in the form f ðX; TÞ ¼
R

f ðkÞeixðkÞTþikRdk.



4 Let
dispersi

1794 E. Demler, A. Maltsev / Annals of Physics 326 (2011) 1775–1805
Jz > J?=7 or jl0j >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J? � 7Jz

7ðJ? � JzÞ

s

are unstable from the point of view of the two-dimensional modulations.4

Let us say now that the analogous considerations can be performed also in the case of Eq. (39) so
the results formulated above can be used also in the limit l0 ? 0.

We must certainly say that the Kadomtsev–Petviashvili equation is an integrable system from the
point of view of the inverse scattering methods [19,98]. The theory of Eq. (45) is very deep and brought
many beautiful ideas in the theory of solitons. Let us just mention here two nice classes of solutions of
(45) in the stable and the unstable situation.

(1) The most interesting solutions of the Kadomtsev–Petviashvili equation in the stable situation
are the two-dimensional N-soliton solutions which are described in general by the formula
UðX; Y; TÞ ¼ U x1T þ k1
XX þ k1

Y Y þ c1; . . . ;xNT þ kN
X X þ kN

Y Y þ cN
� �
with some special functions U(h1, . . . ,hN) [78].
The N-solution solutions of the KP equation represent N plane interacting waves propagating at some
angles with respect to each other. The interaction of the waves results in the phase shifts which can be
rather big in the resonant case [63].

(2) For the unstable variant of the KP equation very interesting rational localized solutions
(‘‘lumps’’) can arise. The ‘‘lumps’’ represent localized both in X- and Y-direction solitons with
rational dependence of coordinates. The interaction of solitons does not produce any phase
shifts in this situation, so the solitons completely ‘‘forget’’ about each other after the interaction
[10].

Let us emphasize here that the relation J\ > Jz was assumed everywhere in our considerations
above and the properties we consider will be completely changed for the opposite situation J\ < Jz.
Thus, as we pointed out already, the hydrodynamic approximation (15) reveals an elliptic instability
for the small values of k(k < p/2) in this situation which corresponds to a modulation instability of
long-wave solutions of (8) in this case. In the same way, Eq. (42) becomes the focusing nonlinear
Schrödinger equation in this situation which corresponds to the unstable behavior of the long-wave
solutions of (8) either. However, the integrable nature of the focusing nonlinear Schrödinger equation
leads to very interesting behavior of solutions also in this case. The most interesting part is the pres-
ence of the N-soliton solutions for the focusing NLS equation which should be observed for Jz > J\. The
corresponding two-dimensional equation for (42) can be written in the form
ihwT ¼ 8ðJ? � JzÞw� 4ðJ? � JzÞjwj
2wþ 4h2J?wXX þ 4h2J?wYY ð46Þ
The one-dimensional solutions of (46), however, are unstable with respect to the weak transverse
modulations [6] for Jz > J\.

8. Concluding remarks

Soliton solutions in quantum systems is a subject of considerable theoretical interest. However,
most of the earlier work focused on one dimensional systems, where special analytical tools, such
as the Bethe ansatz solution, are available. For example, exact solitonic solutions were considered re-
cently in a different quantum system in a series of papers [7–9]. Their analysis relied on the quantum
inverse scattering methods, which are special to 1d integrable systems. Our analysis in this paper is on
constructing semiclassical solitons in two and three dimensional systems.

States described by the wavefunction (5) correspond to collective excitations in the superfluid
state. In the superfluid state the U(1) symmetry is spontaneously broken, so the number of particles
us note here that these conclusions do not require in fact the square two-dimensional lattice and are applicable for any
on law x2 ¼ ak2

X þ bk2
Y , a, b > 0 in the main linear approximation.
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is not a good quantum number. Solitons which we discuss in this papers are semiclassical collective
excitations. They can be thought of as spatially inhomogeneous coherent states representing non-lin-
ear excitations of the Hamiltonian. These solitons do not have a well defined number of particles.
Within our approximations solitons have infinite lifetime. We expect that including coupling to other
excitations may give rise to small but finite decay rate for the solitons, which may lead to dissipative
terms in the semiclassical dynamics. We expect that this should not change our conclusions qualita-
tively, since solitons should be robust against small dissipation [67].
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Appendix A

A.1. General approach for analyzing solitonic solutions in KdV-type equations

The famous procedure of integration of the KdV equation [27] is based on the connection of the KdV
with the linear Schrödinger operator passing through the iso-spectral deformations according to the
KdV evolution. The corresponding linear problems have the form
�wXX þ Uw ¼ Ew ð47Þ
for Eq. (33), and
�wXX � Uw ¼ Ew ð48Þ
for Eq. (34). The connection of the KdV equations with the linear problems (47) and (48) gives a pos-
sibility to represent also Eqs. (33) and (34) in the equivalent form [57]:
@

@T
bL ¼ bLbA � bAbL ð49Þ
where the operators bL; bA have the form
bL ¼ � d2

dX2 þ U; bA ¼ �4
d3

dX3 þ 6U
d

dX
þ 3UX
for Eq. (33) and
bL ¼ � d2

dX2 � U; bA ¼ 4
d3

dX3 þ 6U
d

dX
þ 3UX
for Eq. (34). Representation (49) of the KdV equation permits to consider the KdV evolution as the iso-
spectral deformation of the operator bL using the exponent of the operator bA as the corresponding basis
transformation.

According to the procedure represented in [27] the scattering problem for the linear Eqs. (47) and
(48) plays the basic role in solving Eqs. (33) and (34) in the rapidly decreasing case jU(X)j? 0, X ? ±1.
Thus, if we consider the eigen-functions of (47) or (48) having the asymptotic form
wðXÞ ’ eikX þ bðkÞe�ikX ; X ! �1; wðXÞ ’ aðkÞeikX ; X ! 1
(k2 = E) and introduce the reflection and transition coefficients r(k), t(k) in the standard way we will
have very simple evolution of the functions r(k,T), t(k,T):
tðk; TÞ ¼ tðk;0Þ; rðk; TÞ ¼ e�8ik3T rðk; 0Þ
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according to the KdV evolution of U(X,T).5

In the same way, if the potential U(X) has bounded states wn(X) with the energies En we will have
En = const during all the KdV evolution. From the other hand, provided that the functions wn(X) are
normalized in the following way
5 We
6 We

moving
wnðXÞ ’ eknX ; X ! �1; wnðXÞ ’ Cne�knX ; X ! 1
ð�k2
n ¼ EnÞ the evolution of the values Cn(T) is given by CnðTÞ ¼ e�8k3

nT Cnð0Þ.
The full set of the scattering data
frðkÞ; En;Cng
gives the full information about the potential U(X) [25,61,45] such that the solution U(X,T) can be
reconstructed at every time T using the values of r(k,T), En, Cn(T).

The potentials U(X) having zero reflection coefficient r(k) � 0 are called the reflectionless potentials
and correspond to the exact N-soliton solutions of the KdV-equation. The number of the bounded
states (n = 1, . . . ,N) is equal to the number of solitons in the N-soliton solution, so we can say that every
bounded state in potential U(X) corresponds to a soliton in the solution U(X,T). The one-soliton solu-
tions of the KdV-equation have the form
UðX; TÞ ¼ � 2a2

ch2ðaX þ 4a3T þ c0Þ
ð50Þ
for Eq. (33) and
UðX; TÞ ¼ 2a2

ch2ðaX � 4a3T þ c0Þ
ð51Þ
for Eq. (34). Potentials (50) and (51) have exactly one bounded state according to linear problems (47)
and (48), respectively with energy E1 = E1(a) depending on the amplitude of a soliton.

A.2. Analysis of solitons close to half-filling. Modified KdV equation

In this section we discuss soliton solutions of two types of the mKdV equations:
UT þ 6U2UX � UXXX ¼ 0 ð52Þ
UT þ 6U2UX þ UXXX ¼ 0 ð53Þ
(we put a = 0 here).
Eq. (53) has two varieties of one-soliton solutions of arbitrary amplitude defined by the analytic

formula
�
Z

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vU2 � U4

p ¼ X þ C
Here U should be taken from one of the regions in the U-space where the value of expression vU2 � U4

is positive (see Fig. 12).
It is then easy to see that we can have either the particle-type or hole-type solitons, both moving to

the right (v > 0)6 and connected by the transformation U ? �U (Fig. 13).
Soliton velocity is proportional to the square of the amplitude v � A2 and we can have arbitrary po-

sitive value of A. Explicit formula for the one-soliton solutions of (53) can be written in the form
U ¼ � a
chðaX � a3T þ c0Þ
have different signs in the evolution of r for Eqs. (33) and (34).
remind the readers that this analysis is done in the left-moving coordinate system. Velocity of solitons with respect to the
frame should be much smaller than the velocity of the reference frame moving.



Fig. 12. The left and right paths of integration w.r.t. U corresponding to hole- and particle-type one-soliton solutions of (53).

U

0

U

0

v

v

X X

Fig. 13. The particle- and the hole-type solitons for Eq. (53).

Fig. 14. The left and right paths of integration w.r.t. U corresponding to the hole- and t particle-type soliton solutions on a
‘‘pedestal’’ U0 for (53).
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Eq. (53) also admits more general soliton solutions. One can construct soliton solutions on a ‘‘ped-
estal’’. These solutions are defined by a more general analytic formula
�
Z

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vU2 � U4 � 2vU0U þ 4U3

0U þ vU2
0 � 3U4

0

q ¼ X þ C
where two different paths of integration w.r.t. U are shown at Fig. 14.
Again we can have solitons of the particle and hole type, both on a ‘‘pedestal’’ U = U0 moving with

the speed v (our discussion is done in the moving frame) which can be represented by the following
explicit formulas



Fig. 15. Solitons of the particle- and hole-type on the ‘‘pedestal’’ U = U0 > 0 moving with the same velocity v for Eq. (53).
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U ¼ U0 þ
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4U2
0 þ a2

q
chðaX � ð6U2

0aþ a3ÞT þ c0Þ þ 2U0

U ¼ U0 �
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4U2
0 þ a2

q
chðaX � ð6U2

0aþ a3ÞT þ c0Þ � 2U0
We have here v ¼ 6U2
0 þ a2 while the amplitudes of the particle-type and the hole-type solitons are

given by the formulas
Ap:t: ¼
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4U2
0 þ a2

q
þ 2U0

; Ah:t: ¼
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4U2
0 þ a2

q
� 2U0
(see Fig. 15).
We can now see the difference in the particle- and hole-type solitons in this new situation. For

U0 > 0 the amplitude of a particle type soliton can be arbitrarily small for a ? 0, while the amplitude
of the hole-type soliton is bounded from below by the value 4U0 (the situation is opposite for U0 < 0).
We also see that solutions, which we consider, can be described as ordinary solitons of equation
UT þ 6U2
0 þ 12U0U þ 6U2

� �
UX þ UXXX ¼ 0
after the shift U ? U � U0. This coincides with the general mKdV Eq. (39) after a Galilean
transformation.

We can claim then that regimes described by Eq. (34) (i.e. J\ < 7Jz, or l2
0 > ðJ? � 7JzÞ=7ðJ? � JzÞ if

J\ > 7Jz) admit hole-type solitons after including the next nonlinear corrections. However, the small
amplitude limit A ? 0 is possible only for l0 ? 0 for the hole-type solutions. As a result, we expect
that new solutions, which we discussed above, can only be observed when
J? < 7Jz; l0 ! 0
and where changing from (34)–(53) is quite natural. In the regime
l2
0 > ðJ? � 7JzÞ=7ðJ? � JzÞ
it is easy to see that the limit l0 ? 0 is possible only for J\ � 7Jz. However, as we pointed out already,
this situation is more complicated and should not be considered from the point of view of Eqs. (34) or
(53). Thus, we can see that hole-type solitons can arise in the regimes corresponding to Eq. (34) for the
situation J\ < 7Jz in the limit l0 ? +0 as a ‘‘reminiscent’’ of the region l0 < 0 as follows from the higher
corrections to (34).

The N-soliton solutions of Eq. (53) as well as the solution of the initial value problem can be con-
structed in the form analogous to the case of KdV (see [62,90]).
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We can see then that Eq. (53) gives a good limiting case of Eq. (34) for l0 ? 0 in the situation
J\ < 7Jz. Moreover, Eq. (53) provides a good limit for both cases l0 > 0 and l0 < 0. The most remarkable
feature of this regime is that both particle- and hole-type solitons with small amplitudes can coexist.
The cubic nonlinear correction preserves the property of integrability of the corresponding evolution.
Hence we expect that our analysis is applicable in the vicinity of the point l0 = 0.

Let us turn now to the regimes described by Eq. (33) (i.e. l2
0 < ðJ? � 7JzÞ=7ðJ? � JzÞ; J? > 7Jz) which

correspond to Eq. (52) for l0 = 0.
It is not difficult to see that Eq. (52) does not have real soliton solutions in ordinary sense and only

the soliton solutions on ‘‘pedestal’’ can exist in this case. The one-soliton solutions on ‘‘pedestal’’ are
defined by the analytic formula
�
Z

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�vU2 þ U4 þ 2vU0U � 4U3

0U � vU2
0 þ 3U4

0

q ¼ X þ C
where the path of integration w.r.t. U is shown in Fig. 16.
Explicit formula for the soliton solution can be written in the form
U ¼ � U0 �
2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
0 � a2

q
chð2aX � ð12U2

0a� 8a3ÞT þ c0Þ þ U0

264
375
such that the soliton is of the hole-type for the positive ‘‘pedestal’’ and is of the particle-type for the
negative pedestal (U0 > 0) (Fig. 17).

The amplitude of soliton
A ¼ 2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

0 � a2
q

þ U0
does not exceed the value 2U0 and can be arbitrarily small for a ? 0. The inverse scattering method
and construction of the N-soliton solutions on ‘‘pedestal’’ for Eq. (52) were considered in [77] and
Eq. (52) demonstrates that integrable properties are analogous to those of the KdV equation.

We can see then that Eq. (52) gives a satisfactory limit of the regimes described by Eq. (33)
ðl2

0 < ðJ? � 7JzÞ=7ðJ? � JzÞ; J? > 7JzÞ in the limit l0 ? 0. We have to note, however, that the amplitude
of solitons is restricted now by the value 2l0 for l0 ? 0 and soliton solutions disappear for l0 = 0.
Thus, generation of solitons in the regimes corresponding to Eqs. (33) and (52) should be suppressed
in the limit l0 ? 0. This should be contrasted to the regimes corresponding to Eqs. (34) and (53).

A.3. Appendix. Step decay close to half-filling

One can use the inverse scattering method to solve initial value problems with localized initial per-
turbations for Eqs. (52) or (53) very similarly to what we discussed for Eqs. (33) or (34). However,
Fig. 16. The path of integration w.r.t. U corresponding to a one-soliton solution on a ‘‘pedestal’’ for Eq. (52).



Fig. 17. The solitons of the hole type and of the particle type on the positive and negative ‘‘pedestals’’ for Eq. (52).

Fig. 18. The limiting form of a soliton solution for Eq. (52).
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localized initial perturbation (U(X) ? 0, X ? ±1) will be a source of solitons at final stages only for Eq.
(53) for l0 = 0. The soliton part will be absent in the solutions of (52). We also point out that for small
l0 – 0 and big amplitude of initial perturbation for Eq. (52) (V0� l0) the ‘‘limiting’’ soliton (Fig. 18) in
the limit T ?1 can arise [73].

We also discuss briefly dynamics starting from the step-like initial state for Eqs. (52) and (53) and
the asymptotes of the corresponding solutions for T ?1. According to the type of the solutions we
considered above we will consider now the initial data such that
UðXÞ ! U1; X ! �1; UðXÞ ! U2; X ! þ1
where both U1 and U2 are supposed to be small.
Let us note first of all that the situation here is not pretty much different from those shown at Figs. 8

and 9 in the case when U1 and U2 have the same signs (say U1, U2 > 0). So, the new features will arise
here only in the case of different signs of U1 and U2 both for Eqs. (52) and (53).

Let us start again with Eq. (53).
We have to say first that the oscillation region arises now for the both kinds of steps for the differ-

ent signs of U1 and U2 (see Fig. 19) and the situation with just a decreasing of the steepness of initial
data shown at Fig. 7 is impossible in this case.

Both the situations shown at Fig. 19 for (53) result in the generation of solitons on the final stage
which have the particle type in the first and the hole type in the second situation (Fig. 20).

We can see that the regimes of decay of step-like initial data for (53) include both the regimes com-
ing from l0 > 0 and l0 < 0 which is rather natural and gives a good limit for l0 ? 0.

Let us consider now the situation of Eq. (52) corresponding to the small values of Jz and l0. Let us
consider the initial data shown at the top of Fig. 19 and suppose first that jU1j > jU2j. At the situation
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Fig. 19. Appearance of oscillations for two different kinds of steps for Eq. (39) in the case of different signs of U1 and U2.
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Fig. 20. The particle-type and hole-type solitons on the pedestals, U1 and U2, arising for two types of the step-like initial data for
Eq. (53).
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we describe the final stage of the oscillations development looks rather similar to that shown at Fig. 8
which is rather natural for the limit l0 ? 0 in the pattern. However, the limit jU2j? jU1j demonstrates
quite new features here which are connected with the arising of a new solution for Eq. (52). Indeed, for
jU2j? jU1j the solitons arising in the decay of the step-like initial data have a ‘‘limiting’’ form (Fig. 18)
which is connected with the separation of the ‘‘shock-wave’’ solution
Fig
U ¼ �athðaX � 2a3T þ c0Þ ð54Þ
for jU2j = jU1j = a.
Solution (54) plays an important role in the decay of the step-like initial data we consider for (52)

for jU2jP jU1j. Let us say that for general initial data having the form
Uð�1Þ ¼ �Uðþ1Þ ¼ a
. 21. Additional step with decreasing steepness (T ?1) arising after the separation of solution (54) for jU2j > jU1j.

U

0 X

U

0 X

Fig. 22. Soliton ‘‘flip’’ after interacting with the ‘‘shock-wave’’ solution (54) for Eq. (52).
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all the parts including (54), solitons and the ‘‘wave-train’’ will generically arise [73].
It’s not difficult to understand also that for jU2j > jU1j an additional step of the height jU2j � jU1j

with the decreasing steepness will arise near the level U2 after the separation of solution (54) (Fig. 21).
We have to say now that the step-like initial conditions of the second type (the bottom of Fig. 19)

can be investigated just by the change U ? �U.
Let us mention here also the very interesting solutions of (52) including the soliton part and solu-

tion (54). The soliton solutions coexist with solution (54) and the interaction of a soliton with (54) re-
sults in the phase shift and the soliton ‘‘flip’’ (Fig. 22).

Finally, we point out again that while considerations above were given for the function U(X), rep-
resenting Riemann invariants r{1,2}(X), we can express the results in terms of physical variables q and k
using Eq. (24) (we also remind the readers that our analysis assumes the limit q ? 0 and k ? 0). We
find that for jU1j > jU2j (Fig. 23) the case
Fig. 23
T > 0.

Fig. 24
right-m
U1 � �U2
corresponds to the case q(X) > 0, k(X) > 0. For jU1j � jU2j 	 jU1j we also have q2	 q1, k1	 k2 (see
Fig. 23). It is not difficult to see that conditions of this type can arise naturally after separating the
right- and left-moving parts of initial conditions, as shown in Fig. 24.
. Correspondence between functions U(X) and (q(X),k(X)) in the left-moving part of the step-like initial conditions for

. Initial conditions for q(X) and k(X), which give rise to the case U1 � �U2, jU1j > jU2j, after separation of the left- and
oving parts for T > 0.
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