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0.1 abstract

Tunability of effective two body interactions near Feshbach resonances is a powerful
experimental tool in systems of ultracold atoms. It has been used to explore a vari-
ety of intriguing phenomena in recent experiments. However not all of the many-body
properties of such systems can be understood in terms of effective models with contact
interaction given by the scattering length of the two particles in vacuum. For example,
when a two component Fermi mixture is quenched to the BEC side of the Feshbach
resonance, a positive scattering length suggests that interactions are repulsive and
thus collective dynamics should be dominated by the Stoner instability toward a spin
polarized ferromagnetic state. On the other hand, existence of low energy two particle
bound states suggests a competing instability driven by molecule formation. Compe-
tition between spontaneous magnetization and pair formation is determined by the
the interplay of two-particle and many-body phenomena. In these lecture notes we
summarize our recent theoretical results, which analyzed this competition from the
point of view of unstable collective modes. We also comment on the relevance of this
theoretical analysis to recent experiments reported in Ref. (Jo, Lee, Choi, Christensen,
Kim, Thywissen, Pritchard and Ketterle, 2009).

0.2 Introduction

It is often effective to characterize many-body systems in terms of their emergent col-
lective modes that describe their low energy excitations. Examples of collective modes
include sound waves in interacting gases, spin (magnetization) waves in magnetic sys-
tems, and phase modes in superconducting systems. The strength of the collective
modes approach is that for many cases, such as Fermi liquids, ferromagnets, supercon-
ductors, etc. these collective modes are long lived and weakly interacting. Moreover,
collective modes can be useful for understanding not only properties of systems near
equilibrium but also for the dynamics of systems away from equilibrium.

The purpose of these lecture notes is to discuss how we can utilize the analysis of un-
stable collective modes to study the dynamics of fermionic systems quenched from the
weakly interacting state to the strongly interacting regime in the vicinity of the Fesh-
bach resonance. Conceptually this approach is similar to the spinodal decomposition in
statistical physics (Chaikin and Lubensky, 2000) and analysis of domain formation in
unstable bosonic systems, such as immiscible two component mixtures (Stamper-Kurn
and Ketterle, 2001), quenched ferromagnetic spinor Bose condensates (Sadler, Higbie,
Leslie, Vengalattore and Stamper-Kurn, 2006; Lamacraft, 2007), dynamics of spiral
states in ferromagnets (Cherng, Gritsev, Stamper-Kurn and Demler, 2008; Conduit
and Altman, 2010). The main new feature of the fermionic problem that we consider
is the need to provide careful regularization of the strong two-body interactions arising
from Feshbach resonances. As we show the interplay of strong two-body interactions
and many-body effects, such as a Pauli blocking by the Fermi sea, lead to some very
intriguing aspects of dynamics.

Non-equilibrium dynamics of quantum systems has been studied for a long time.
However, until recently, experimental ability to control quantum systems has been
rather limited. The progress in parametric control of quantum Hamiltonians of ultra-
cold atom systems has brought renewed interest to the field of non-equilibrium dynam-
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ics. One such recent experiment, performed by the MIT group, studied ramps of a two
component Fermi gas from the weakly repulsive to the strongly repulsive regime (Jo,
Lee, Choi, Christensen, Kim, Thywissen, Pritchard and Ketterle, 2009). The ramp
was accomplished by sweeping the magnetic field to a value close to the Feshbach res-
onance, but on the BEC side. Strongly repulsive fermions are known to be susceptible
to the Stoner instability to ferromagnetism (Stoner, 1933). In fact, this very instabil-
ity is believed to be responsible for itinerant ferromagnetism in metals. Intriguingly,
the MIT experiment observed several surprising phenomena, which they interpreted
as signatures of ferromagnetism, yet they did not find any ferromagnetic domains.
However, strongly repulsive ultracold fermions come with a price — the repulsion is
a byproduct of a shallow bound state. Hence, there is an alternative explanation for
the MIT observations — susceptibility to pair formation (Pekker, Babadi, Sensarma,
Zinner, Pollet, Zwierlein and Demler, 2011). In these notes our goal is to understand
many-body fermionic systems during and immediately after a quench into a strongly
interacting regime near a Feshbach resonance. Emphasis of our discussion will be on
understanding the interplay of two-particle and many-body aspects of dynamics.

Our study can be placed in a general perspective of quenches that take a quantum
system from a disordered phase to an ordered phase described by some order param-
eter (e.g. magnetization or pairing). We show that the dynamics is initially driven by
local instabilities towards ordering. A useful way to understand these instabilities is
in terms of collective modes. In equilibrium, all collective modes of a system are, by
definition, stable. Thus the dynamics following a small perturbations of a collective
coordinate is either periodic or damped but not growing. In other words, in equilib-
rium the imaginary part of the collective mode frequency is either zero or negative (we
adopt the convention that O(t) ∼ Oωe−iωt). On the other hand, consider the dynamics
of a system following the parametric ramp or a quench across a phase transition. In
order to come to equilibrium on the ordered side, the system must develop a finite
order parameter following the quench. Generically, following the quench, some of the
collective modes of the system become unstable, that is they acquire a positive imagi-
nary frequency. This local collective mode instability corresponds to the growth of the
order parameter, and leads to its “nucleation”. For the case of the MIT system, the
quench leads to two distinct types of incompatible instabilities: pair formation and
ferromagnetism. The competition between the two ultimately determines the fate of
the quantum system.

Although a complete description of dynamic processes following a ramp across a
phase transition remains to be found, we will present some aspects of the problem.
The problem of understanding dynamics of large quantum systems is that there are
no generic methods of attack. Therefore, one may want to start by considering small
systems that are susceptible to methods like exact diagonalization. In small quantum
systems there are no true phase transitions. However, one can think about parametric
tuning of the Hamiltonian that leads to a level crossing associated with the phase
transition of the thermodynamic system. For a finite system, such level crossings are
typically associated with the changing of an approximate symmetry of the ground
state and therefore they are avoided level crossing. The dynamics of the quantum
system are then described by the Landau-Zener process (Landau, 1932; Zener, 1932),
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depending on the ramp rate the system may either remain in the ground state or it
may jumps to the excited state. If we try to scale up these arguments to the case of
a large many-body system we immediately run into a problem. During a parametric
ramp, the exponentially large number of eigenstates of the many-body system undergo
“spectral-flow”: some of these eigenstates move up and some down. The result of the
spectral-flow is a large number of Landau-Zener process, which generically require an
exponentially large Hilbert space to describe. Therefore, a method that would keep
only the “important” excitations is very useful.

The approach of studying the collective modes in order to describe the dynam-
ics following a parametric ramp or quench has a long history. Kibble (Kibble, 1976)
and Zurek (Zurek, 1985) were the first to point out that a short time after a thermal
quench to an ordered state (e.g. superconducting state), distant parts of the systems
could not have exchanged information and therefore the order parameter at large dis-
tances cannot be correlated. Hence, shortly after a thermal quench it is possible to
find locations in space around which the order parameter winds, thus the dynamics
following a quench results in the formation of topological defects (e.g. vortices for
the superconducting case). Further dynamics involves the motion and recombination
of the topological defects produced at short time scales. The specific problem of the
motion and recombination of topological defects has been studied extensively for the
case of thermodynamic phase transitions in various systems including liquid crystals.
Liquid crystals, in particular, have attracted attention due to both their technological
application in displays and the relative accessibility of their dynamics from the ex-
perimental perspective as the collective modes and topological defects associated with
the various ordered states can be observed using polarized light (Chuang, Turok and
Yurke, 1991). The dynamics of these systems following a quench conform to the notion
of initial growth followed by power-law slow defect recombination (Bray, 2002).

To summarize, the dynamics can be split into two time scales. An initially short
time-scale during which the various unstable collective modes grow exponentially. As
these modes are largely non-interacting, they can be treated as independent modes
in momentum space. As the amplitudes of the unstable collective modes grow, they
start to interact with each other. When the interactions become strong, the resulting
order parameter pattern produced by the initial growth “freezes-in.” Consequently, the
dynamics is controlled by the motion of topological defects (as well as non-topological
excitations).

In these lecture notes, we shall apply the method of collective mode instabilities
to the concrete example of quenches of the non-interacting Fermi gas to the strongly
interacting regime. The motivations for this are (1) The existence of ferromagnetism
in an itinerant fermionic system is a long standing open question in condensed matter
physics. While ferromagnetic transition can be predicted based on a simple mean-field
analysis(Stoner, 1933) several objections to this argument can be raised. Kanamori
was the first to point out that screening was essential to understanding the Stoner
transition, and may even prevent it (Kanamori, 1963). For example, the Stoner cri-
terion suggests ferromagnetic instability even in cases when rigorous theorems forbid
such a transition, such as one dimensional systems (Lieb and Mattis, 1962). Recent
theoretical investigations have found that the transition survives in 3d but becomes of
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first order type at low temperatures (Houbiers, Ferwerda, Stoof, McAlexander, Sackett
and Hulet, 1997; Zhang and Sarma, 2005; Duine and MacDonald, 2005; Tanaka and
Tasaki, 2007; Conduit and Simons, 2009a; Conduit, Green and Simons, 2009; Zhang,
Hung and Wu, 2010). Therefore, if results of the MIT experiments can indeed by
interpreted as Stoner type instability, then they resolve a fundamental matter of prin-
ciple question in physics. However before we accept this interpretation, it is important
that we rule out competing scenarios, such as the nonequilibrium dynamics of pairing.
Other arguments against the possibility of observing Stoner instability in ultracold
Fermi gases near Feshbach resonance have been given in Refs. (Zhai, 2009; Zhang and
Ho, 2011; Barth and Zwerger, 2011) (2) The true ground state in such system is a
condensate of molecules. It was proposed that a Stoner ferromagnetic state can be
created dynamically if the rate at which magnetic correlations develop is considerably
faster than the rate of molecule formation (Jo, Lee, Choi, Christensen, Kim, Thywis-
sen, Pritchard and Ketterle, 2009; Pilati, Bertaina, Giorgini and Troyer, 2010; Chang,
Randeria and Trivedi, 2011). Whether such hierarchy of instabilities really takes place
is crucial for interpreting experimental results. (3) For this reason, studying the dynam-
ics following a quench is relevant to the current experiments. (4) Studying the Stoner
and pairing instabilities is a good way to discuss Feshbach resonance in many-body
systems. Throughout we shall discuss the pairing and the Stoner instabilities from the
perspective of a geometrical Feshbach resonance (in which the quantum numbers of
fermion in the molecular state are identical to those of free fermion). (5) Our analysis
has important general implications for the idea of quantum simulations with ultracold
atoms. In many cases one is interested in using strong repulsive interactions between
atoms in order to create analogues of condensed matter systems. Our analysis provides
a warning that to get any meaningful results, one needs to make sure that molecule
formation does not overwhelm dynamics determined by the repulsive interactions.

The notes are organized as follows. In Section 0.3 we begin by discussing the re-
lation between linear response and collective modes. We also show how to compute
the pairing and the ferromagnetic responses using the equation of motion formalism.
Next, in Section 0.4, we show how to describe a Feshbach resonance using a pseuod-
potential model. In Section 0.5, we apply the pseudopotential model to compute the
many-body T-matrix and thus obtain the pairing collective mode. We comment on
how to incorporate the many body T-matrix into the ferromagnetic susceptibility in
Section 0.6. Finally, in Section 0.7 we summarize the results for the pairing vs. Stoner
competition in the context of the MIT experiments, and make concluding remarks in
Section 0.8.

0.3 Linear response and collective modes

0.3.1 From poles of the response functions to collective modes

A useful approach to think about collective modes is via their link to linear response
susceptibilities. A linear response susceptibility χA(q, ω) is the defined as the link
response of some property of the system 〈A(q, ω)〉 under the influence of an external
perturbation of strength hA(q, ω) that is thermodynamically conjugate to it

〈A(q, ω)〉 = χA(q, ω)hA(q, ω). (0.1)
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Here, by thermodynamically conjugate, we mean that the external perturbation hA(q, ω)
contributes a term to the Hamiltonian

Hexternal = hA(q, ω)eiωtÂ(−q, ω) + h.c.. (0.2)

Generally, to obtain a finite value of 〈A(q, ω)〉 one needs to have a non-zero value of the
external field hA(q, ω). An important exception is when the response function χA(q, ω)
has a pole and is therefore infinite. Writing the integral equation for the response of
the system

〈A(q, t)〉 =

∫
dt′ χA(t− t′, ω)hA(q, t′), (0.3)

we see that poles of χA(q, ω) correspond to long lived modes of the system, which are
identified as the collective modes (Abrikosov, Gor’kov and Dzyaloshinski, 1975; Pines,
Nozières and Nozieres, 1989). The argument above is conventionally used for systems
with time independent parameters. In the next section we will discuss how it can be
extended to the case when the interaction strength is changing in time.

0.3.2 Dynamics of the pairing amplitude using time-dependent Hartree
approximation

One approach to obtain a response function and thus the associated collective mode
spectrum is by using the equation of motion formalism for the operator Â(q, t). We
shall now follow this procedure in detail for the case of the pairing mode of a two
component Fermi gas near a Feshbach resonance. In doing so we shall demonstrate the
RPA approximation that is often used to brining the equation of motion Ȧ = i [H,A]
into a closed form.

Consider an interacting gas composed of two species of fermions. Suppose that the
gas may be described by the Hamiltonian

H =
∑
k,σ

εk,σc
†
k,σck,σ +

∑
q

ρ̂q,↑Vq(t) ρ̂q,↓, (0.4)

where, c†k,σ and ck,σ are the creation and annihilation operators for a fermion of species

σ and momentum k and non-interacting energy εk,σ = k2/2mσ−µ. Vq(t) describes the
time dependent inter-atomic potential undergoing parametric tuning (we shall assume

s-wave scattering) and ρ̂(q, σ) =
∑
k c
†
k+q,σck,σ is the density operator. To probe the

pairing susceptibility, we add the thermodynamically conjugate external perturbation

Hext = Pext
q (t)

∑
k

c†q/2+k,↑(t)c
†
q/2−k,↓(t) + h.c., (0.5)

and measure the pairing amplitude Pq(t) =
∑
k〈c
†
q/2+k,↑(t)c

†
q/2−k,↓(t)〉.

At this point, it is useful to introduce the operatorB(k, q, t) = c†q/2+k,↑(t)c
†
q/2−k,↓(t)

which is related Pq(t) by a summation over k and taking the expectation value. The
equation of motion for the operator B is
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d

dt
B(k, q, t) = i[H,B(k, q, t)]. (0.6)

Evaluating the various commutators we obtain

i
d

dt
B(k, q, t) = (εq/2+k,↑ + εq/2−k,↓)B(k, q, t)

+ [1− n̂↑(q/2 + k, t)− n̂↓(q/2− k, t)]
[
Pext
q (t) +

∫
d−p Vk−p(t)B(p, q, t)

]
, (0.7)

where n̂σ(q, t) = c†q,σ(t)cq,σ(t) is the number operator, and d−p stands for d3p/(2π)3.
By taking the expectation value of Eq. (0.7), we find that the equation of motion
for the two fermion expectation value 〈B(k, q, t)〉 will be coupled to expectation val-
ues containing four fermion operators. This coupling to higher order expectation val-
ues is a general feature of equation of motions for interacting theories. To obtain a
closed form equation, we must cut off the equation of motion at some point. A typ-
ical approach is called the Random Phase Approximation (RPA), which states that
the paring amplitude must oscillate at the drive frequency, and therefore one can
decouple the pairing amplitude in four fermion terms. That is, within the RPA we
replace the four fermion expectation values by the product of the two fermion ones:
〈n̂↑(q/2+k, t)B(p, q, t)〉 → 〈n̂↑(q/2+k, t)〉〈B(p, q, t)〉. Further, as the expectation value
〈n̂↑(q/2+k, t)〉 is presumed to be stationary by the RPA, we can replace it by its value
in the initial state nF↑ (q/2+k). The RPA assumption is consistent with the assumption
that only the unstable collective mode has interesting dynamics, and therefore we can
ignore the dynamics of other expectation values. Taking the expectation value of the
equation of motion and making the RPA approximation we obtain

i
d

dt
〈B(k, q, t)〉 = (εq/2+k,↑ + εq/2−k,↓)〈B(k, q, t)〉

+ [1− nF↑ (q/2 + k)− nF↓ (q/2− k)]

[
Pext
q (t) +

∫
d−p Vk−p(t)〈B(p, q, t)〉

]
. (0.8)

Taking the expectation value of the equation of motion, making the RPA approx-
imation, and Fourier transforming the result we obtain the much simplified equation

ω〈B(k, q, ω)〉 = (εq/2+k,↑ + εq/2−k,↓)〈B(k, q, ω)〉

+ [1− nF↑ (q/2 + k)− nF↓ (q/2− k)]

[
Pext
q (ω) +

∫
d−p Vk−p〈B(p, q, ω)〉

]
. (0.9)

Reorganizing the terms in Eq. (0.9), we bring it to the form

〈B(k, q, ω)〉
[
Pext
q (ω) +

∫
d−p Vk−p〈B(p, q, ω)〉

]
=

1− nF↑ (q/2 + k)− nF↓ (q/2− k)

ω − εq/2+k,↑ − εq/2−k,↓
.

(0.10)

Integrating both sides over k, we obtain the integral form of the differential Eq. (0.8)
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P(q, t) =

∫
dt′χ

(0)
pair(q, t− t

′)
[
V (t′)P(q, t′) + Pext

q (t′)
]
, (0.11)

where χ
(0)
pair(q, t) is the Fourier transform of the the bare susceptibility

χ
(0)
pair(q, ω) =

∫
d−k

1− nF↑ (q/2 + k)− nF↓ (q/2− k)

ω − εq/2+k,↑ − εq/2−k,↓
, (0.12)

where, within the RPA approximation, χ
(0)
pair(q, t) is evaluated with fermions in the

initial state.
A particularly simple case, is the one in which the interaction strength changes

in a stepwise fashion V (t) = V θ(t). In this case, small fluctuations induced by the
external field after the quench will be governed by the poles of the familiar RPA-like
susceptibility

χRPA
pair (ω, q) =

χ
(0)
pair(ω, q)

1− V χ(0)
pair(ω, q)

. (0.13)

Here, the difference between the usual RPA susceptibility and Eq. (0.13) is that in
the former the bare susceptibility given by Eq. (0.12) is evaluated in the equilibrium
fermionic state while in the latter it is evaluated in the initial fermionic state before
the quench. If the final interaction strength falls in the pairing regime, then χRPA

pair (ω, q)
will have a line of poles ωq = Ωq + i∆q with a positive imaginary part, corresponding
to the exponential growth of small fluctuations. When time reaches t ∼ 1/∆max, where
∆max corresponds to the fastest growing mode, the amplitude of the fastest growing
mode will become large. At this point in time, the various unstable modes begin to
strongly interact with each other and therefore our instability analysis begins to fail
as a result the initial exponential growth of the modes saturates and the topological
defects freeze in.

To get a simple physical picture of the dynamics discussed above it is useful to
consider a complimentary approach that looks at the most unstable q = 0 component
of the pairing amplitude. Consider the time dependent wavefunction:

|Ψ(t)〉 =
∏
k

(
uk(t) + vk(t)c†k↑c

†
−k↓

)
|0〉. (0.14)

Here
{
uk(t)2, vk(t)2

}
= 1

2

(
1± εk√

ε2k+∆(t)2

)
are functions of time because the pairing

gap ∆(t) is itself a function of time. The statement that energy of the collective mode
in the pairing channel is ωq is equivalent to the statement that for small values of ∆(t),
∆(t) obeys the equation of motion

d∆(t)

dt
= −iωq=0∆(t). (0.15)

When Imωq > 0 we get exponential growth of the pairing amplitude. It turns out
that when one focuses on the q = 0 mode only, it is possible to derive dynamics
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even beyond linearized approximation for ∆ (Barankov, Levitov and Spivak, 2004;
Yuzbashyan, Tsyplyatyev and Altshuler, 2006). In contrast, the approach discussed
above considers modes at all q’s but is limited to the linearized approximation.

In addition to instantaneous quenches, we can also consider ramps that occur over
a finite amount of time. In this case, we can estimate the point in time at which the
freezing in of topological defect occurs via a scaling argument similar to the one of
Ref. (Zurek, 1985). Suppose that the phase transition occurs at the time t = 0. Fol-
lowing this time, the susceptibility computed via Eq. (0.13) will have a line of poles
with positive imaginary frequencies. As t increases the system goes deeper into the
ordered phase, and the line of poles moves up to larger and larger imaginary frequen-
cies. At each point in time, we can identify the most unstable mode and correspond-
ing wavelength ∆max(t) and qmax(t). Approximately at the time that the inequality
t . 1/∆max(t) is first satisfied, the fastest growing mode begins to saturate and the
defects freeze in. The time dependence of ∆max(t) can be estimated from the scaling
properties of the phase transition ∆max(t) ∼ uzν(t), where u(t) = (Vc − V (t))/Vc is
the time dependent distance to the phase transition, ν and z are the correlation length
and the dynamic critical exponents.

At this point, we are seemingly ready to study the pairing instability. However,
there is a technical difficulty that one can immediately see with the bare pairing sus-
ceptibility. The integral in Eq. (0.12) has a UV divergence: for k → ∞ the integrand
becomes − 1

2εk
and thus the integral diverges in two or more dimensions. Mathemat-

ically, the divergence originates from using a δ-function (in real space) inter-atomic
potential, which itself is unphysical. In the next section, we will implement a pseu-
dopotential with a finite effective range to describe the interactions between atoms. It
will turn out that scattering at low energies can be described by a universal Scattering
Matrix that is independent of almost all of the details of the interatomic potential, but
depends only on a few measurable scattering parameters: namely the scattering length
and the effective range. We will use this knowledge to rewrite the pairing susceptibility
in terms of these parameters, and thus obtain a universal description of the pairing
instability.

0.3.3 Dynamics of magnetization based on time dependent Hartree
approximation

Before proceeding to study the nature of the interatomic interactions, we attack the
competing Stoner instability, which at first sight does not seem to suffer from a similar
UV divergence. For the Stoner case, we are looking for a response to magnetization
Mq, and therefore use the external perturbation

Hext = M ext
q (ω)eiωt

∑
k

c†k,↑ck+q,↑ − c†k,↓ck+q,↓. (0.16)

Within the RPA approximation, we find the susceptibility

χRPA
FM (ω, q) =

χ
(0)
FM(ω, q)

1− V χ(0)
FM(ω, q)

, (0.17)
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Fig. 0.1 Properties of the unstable collective modes associated with the Stoner instability

computed using δ-function interactions. (a) Growth rate ∆q as a function of wavevector q for

T = 0 and 1/kF a = 0.53 (top line), 0.54, 0.55, ..., 0.63 (bottom line). (b) The most unstable

wavevector qmax (squares) and the corresponding growth rate ∆max (circles) vs. 1/kF a. A fit

to the mean-field critical theory (ν = 1/2, z = 3) is shown with solid black lines. (c) Details

of the critical behavior of qmax and ∆max as a function of distance from the transition point

u = (1/kF a)c − (1/kF a), (1/kF a)c = 2/π on a log-log scale.

where

χ
(0)
FM(ω, q) =

∫
d−k

nF↑ (q/2 + k)− nF↓ (q/2− k)

ω − (εq/2+k,↑ − εq/2−k,↓)
, (0.18)

=
N0

2

(
1 +

m2

2kF q3

[
(εq + ω)2 − 4εF εq

]
log

εq − vfq + ω

εq + vF q + ω

+
m2

2kF q3

[
(εq − ω)2 − 4εF εq

]
log

εq − vfq − ω
εq + vF q − ω

)
, (0.19)

and N0 = kFm
2π2 is the density of states at the Fermi surface, and the explicit expression

for the susceptibility after carrying out the d−k integral (in 3D) is called the Lindhard
function.

The susceptibility χRPA
FM (ω, q) acquires purely imaginary poles ωq = i∆q for V N0 >

1 and has no poles for V N0 < 1. As ∆q > 0, these poles correspond to unstable
collective modes of the system, and therefore V N0 = 1 corresponds to the phase
transition point from Fermi liquid to Stoner Ferromagnet (at the RPA level). The
growth rate of the instability ∆q is traced out as a function of q for several values of V
in Fig. 0.1. In all cases, for small momenta ∆q is linear in q. This is a reflection of the
fact that magnetization is a conserved order parameter (the operator for the total spin
of the system commutes with the Hamiltonian), therefore making large domains (small
q) requires moving spins by large distances, which is a slow process. As q increases, we
are bending the emerging Ferromagnetic texture at shorter and shorter length-scales.
Eventually this becomes energetically unfavorable and ∆q bends over and decreases,
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becoming zero at q = qcut at which point the imaginary part of the pole of χRPA
FM (ω, q)

disappears.
After a quench the fastest growing modes, i.e. those with the largest ∆q will dom-

inate and thus determine the size of the typical domains. In particular, we find that
the for a given u = (V − Vc)/Vc, where Vc is the interaction corresponding to the
phase transition, the fastest growing modes have a qmax ' 2kFu

1/2 and a growth
rate of ∆max ' (16/3π)εFu

3/2. It is tempting to relate the interaction strength to
the scattering length a via V = 4πa/m. Implementing this temptation, we plot the
growth rate as a function of inverse scattering length in Fig. 0.1. Here, we start to
see a problem: as the scattering length becomes larger, so does the growth rate of
the Ferromagnetic instability. This is clearly a deficiency of the theory, as at unitarity
(where the scattering length diverges) the only available scale is the Fermi energy scale
so the distance to the transition u should not appear. Physically, the deficiency lies in
using the bare scattering length, which is only meaningful for low energy collisions, to
describe the Stoner instability that involves all energy scales up to the Fermi energy.
In the following sections we shall develop the formalism to describe collisions at all
energy scales within a Fermi liquid. Afterwards, we shall come back to the case of the
Stoner instability, and using a more realistic interaction potential fix the divergence
at unitarity.

0.4 Feshbach resonance via pseudopotentials

In this section, our goal is to describe atom scattering in the vicinity of a Feshbach
resonance. Our strategy is to first describe the scattering between a pair of atoms
in vacuum; in the following section we shall extend this description to include Pauli-
blocking to obtain a description of scattering in many-body system.

The key to controllable inter-atomic interactions in ultracold atom systems is the so
called Feshbach resonance. Inter-atomic interactions in ultracold atom experiments are
typically of van der Waals type and therefore intrinsically attractive (main exception to
this rule are experiments with dipolar atoms and molecules). However, at low energies,
interactions can appear to be repulsive. This is possible via scattering off a shallow
bound state, as can be qualitatively appreciated from second order perturbation theory.
A Feshbach resonance corresponds to the appearance of such a bound state. The utility
of a Feshbach resonance comes from the fact that the binding energy and, therefore, the
interaction strength can be tuned. The tuning is via a magnetic field as the bound state
(or more appropriately the closed channel) has a slightly different magnetic moment as
compared to the open channel (see (Pethick and Smith, 2002; Ketterle and Zwierlein,
2008) for details).

Instead of delving into the details of atomic physics of Feshbach resonances, for
pedagogical insight we present a simple model for a so called geometric resonance. In a
geometric resonance, it is assumed that the inter-atomic interaction can be described
by a potential that only depends on the inter-atomic distance and can be tuned directly,
thus avoiding the complication of a true two channel model.

Consider a pair of atoms with masses m1 and m2 interacting via the inter-atomic
potential V (r1 − r2). The scattering problem is described by the Hamiltonian
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Fig. 0.2 Graphic representation of the T-matrix as a summation of Ladder diagrams (top)

and the corresponding Lippmann-Schwinger equation (bottom). Purple squares represent

the T-matrix, solid black lines fermionic atom propagators, dotted black lines inter-atom

interactions, and solid grey lines external fermionic atom legs. The external legs are shown

for clarity, and indicate how one would go about connecting the T-matrix to fermionic lines.

H =
1

2m1
∇2

1 +
1

2m2
∇2

2 + V (r1 − r2). (0.20)

It turns out that at low energies, the details of V are not important. Our main tool
for describing atom scattering will be the T-matrix, which is related to the scattering
amplitude in the center of mass frame via T (E = k2/2µ; k, k′) = − 2π

µ f(k, k′), where k

and k′ are the relative momenta of the scattering atoms before and after the collision,
E is the total kinetic energy, and µ−1 = m−1

1 + m−1
2 is the reduced mass of the

scattering atoms. In fact, the scattering problem is universal in the sense that many
inter-atomic potentials V (r1 − r2) will lead to the same form of the T-matrix for low
energy scattering. Therefore, to model scattering, we can come up with any suitable
potential that produces the T-matrix we want. This type of model potential is usually
called a pseudopotential.

The poles of the T-matrix correspond to two atom bound states. Near a Feshbach
resonance, there must be a bound state having a spatial extent of the scattering length
a, which corresponds to a binding energy of Eb ≈ 1/2µa2. Therefore the T-matrix must
have the form

T (E) = −2π

µ

(
−1

a
− i
√

2µE + reµE +O(E2)

)−1

, (0.21)

where a is the scattering length and E is the kinetic energy of the two scattering atoms
in the center of mass frame. The effective range re is the first correction of the binding
energy due to the shape of the inter-atomic potential and roughly corresponds to its
spatial extent. Here, we have specialized to the case of s-wave scattering and thus the
T-matrix has no angular dependence.

The T-matrix may be obtained directly by soling the Schrodinger equation, Eq. (0.20).
An alternative, and more instructive approach, is to obtain the T-matrix via a resum-
mation of particle-particle ladder diagrams (see Fig. 0.2) which yields the Lippmann-
Schwinger equation
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T (iωn, q; k, k
′) = V (k − k′) +

∑
iω1

∫
d−k1V (k − k1)G↑(

iωn
2

+ iω1,
q

2
+ k1)

G↓(
iωn
2
− iω1,

q

2
− k1)T (iωn, q; k1, k

′), (0.22)

where Gσ(iωn, q) = (iωn − k2/2m)−1 is the free fermion Green function, and we have
added the center of mass momentum q to the labels of the T-matrix. Since the physical
T-matrix does not depend on the relative momenta differences, we shall drop them
from our notation.

Many different pseudopotentials will result in the same T-matrix Eq. (0.21). In fact,
many different pseudopotentials are in common use, e.g. box potentials, Gaussian po-
tential, hard sphere potentials, and regularized δ-function potentials, see e.g. (Pethick
and Smith, 2002; Pilati, Bertaina, Giorgini and Troyer, 2010; Chang, Randeria and
Trivedi, 2011). Here, following Ref. (Phillips, Beane and Cohen, 1998), we shall use a
slightly less common form of the pseudopotential

λ(k1, k2) =

1∑
i,j=0

λijk
2i
1 k

2j
2 , (0.23)

where the matrix λij

λij =

(
C C2

C2 0

)
. (0.24)

This form has two tuning parameters C and C2 which are needed to match both
the scattering length and effective range which appears in the T-matrix, allowing for
the flexibility to describe both wide and narrow resonances. For the special case of a
wide resonance, where re ≈ 0, we can drop C2, thus eliminating the matrix structure
and reducing the description to that of Ref. (Pethick and Smith, 2002). The main
advantage of this form of the pseudopotential is that it is separable, thus considerably
simplifying the Lippmann-Schwinger Eq. (0.22). We can now write the T-matrix in
the same form as the pseudopotential

T (E, k1, k2) =

1∑
i,j=0

τij(E)k2i
1 k

2j
2 , (0.25)

where the τ(E) matrix is to be determined. Due to the translational invariance of the
problem, we shall work in the center of mass frame. The T-matrix in a moving frame
is related to the T-matrix in the center of mass frame via T (E, q) = T (E− q2/2(m1 +
m2), 0). From here on, we shall take the step of setting m1 = m2 = m = 2µ to simplify
the notation. In matrix form the Lippmann-Schwinger equation becomes

τ(E) = λ+ λI(E)τ(E) (0.26)

where
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I(E) =

(∫
d3k

(2π)3
1

E+−k2/2µ
∫

d3k
(2π)3

k2

E+−k2/2µ∫
d3k

(2π)3
k2

E+−k2/2µ
∫

d3k
(2π)3

k4

E+−k2/2µ

)
. (0.27)

The integrals in (0.27) come with an upper cut-off Λ, and E+ stands for E + iδ. We
see that the divergence that appears in the bare pairing susceptibility, Eq. (0.12), is
of exactly the same type as the 11 component of the I(E) matrix, suggesting that the
two are related.

Having obtained a relation between the pseudopotential and the physically ob-
servable T-matrix, we can plug the pseudopotential into the many-body problem to
obtain an effective interaction parameters C and C2 in terms of the scattering length,
effective range, and cut-off. Although the parameters C and C2 depend on the cut-off,
as we shall demonstrate the pairing susceptibility is be independent of it.

0.5 Application to pairing susceptibility

The pairing susceptibility, that we originally obtained using the equation of motion ap-
proach, can also be obtained diagrammatically. Explicitly, the susceptibility is related
to the two particle propagator, i.e. the Cooperon, which is the many body version of
the T-matrix. At the RPA level, the Cooperon C(iωn, q) corresponds to the solution of
the Lippmann-Schwinger equation 0.22, with free Green functions replaced by Green
functions of fermions in a Fermi sea Gσ(iωn, q) = (iωn − k2/2m+ εF )−1, where εF is
the Fermi energy. Thus, at the RPA level the difference between the Cooperon and the
T-matrix is that the Cooperon takes into account Fermi blocking so that scattering
only occurs on top of the Fermi sea.

The relationship between C(iωn, q) and χ(iωn, q) is shown schematically in Fig. 0.4.
Explicitly, the relationship is

χ(iωn, q) = χ(0)(iωn, q)

+
∑

iω1,iω2

∫
d−k1 d

−k2G↑(
iωn
2

+ iω1,
q

2
+ k1)G↓(

iωn
2
− iω1,

q

2
− k1)

× C(iωn, q; k1, k2)G↑(
iωn
2

+ iω1,
q

2
+ k1)G↓(

iωn
2
− iω1,

q

2
− k1). (0.28)

Using this relation, it can be shown we can recover Eq. (0.13) for the susceptibility.
At this point, we remark that the poles of the Cooperon and the pairing susceptibility
match. Therefore, to find the unstable collective modes it is sufficient to look at the
poles of the Cooperon.

In matrix form, the analog of the Lippmann-Schwinger equation (0.26) for the
T-matrix is the Lippmann-Schwinger equation for the Cooperon (using RPA)

C(E, q) = λ+ λĨ(E, q)C(E, q) (0.29)

where Ĩ(E, q)

Ĩ(E) =

(∫
d3k

(2π)3
1−2nF (k)

E+−k2/2µ+2εF−q2/4m
∫

d3k
(2π)3

k2(1−2nF (k))
E+−k2/2µ+2εF−q2/4m∫

d3k
(2π)3

k2(1−2nF (k))
E+−k2/2µ+2εF−q2/4m

∫
d3k

(2π)3
k4(1−2nF (k))

E+−k2/2µ+2εF−q2/4m

)
. (0.30)
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At this point we can use the relationship between interaction matrix λ and the physical
parameters a and re to compute the Cooperon and find its poles. The resulting plot
of the poles is shown in Fig. 0.3. To understand the pole structure, we first comment
on the effect of the cut-off. As the momentum cut-off Λ is increased, the parameters C
and C2 that appear in λ matrix change. However, as can be clearly seen in Fig. 0.3a,
the Cooperon poles converge to their asymptotic values once Λ exceeds the Fermi-
momentum by a factor of ∼ 100.

Instead of dealing with the cut-off, we can directly cancel the divergences in the
Cooperon by comparing it with the T-matrix. Comparing Eq. 0.27 and Eq. 0.30, we
find that denominators of I(E + 2εF − q2/4m) and Ĩ(E) match, thus the divergences
of C(E, q) and T (E+2εF −q2/4m, q = 0) cancel. Using this fact, we add and subtract
the T-matrix to the Cooperon Lippmann-Schwinger equation

C−1(E, q) = λ−1 − Ĩ(E) + τ−1(E + 2εF − q2/4m)− τ−1(E + 2εF − q2/4m). (0.31)

Carefully inverting this equation shows that only the 11 component is non-zero, and
we obtain the expression

C(E, q) =

[
µ

2π

(
1

a
+ i

√
2µ

(
E + 2εF −

q2

4m

)
− reµ

(
E + 2εF −

q2

4m

))

+

∫
d−k

nF (k + q/2) + nF (k − q/2)

E + 2εF − k2/m− q2/4m

]−1

. (0.32)

In Fig. 0.3a, we compare the pole structure obtained by gradually increasing the cut-off
Λ with the asymptotic pole structure obtained from the above expression. In doing so
we verify that the asymptotic expression is indeed correct and corresponds to Λ→∞.

Having understood how to regularize the divergence in the Lippmann-Schwinger
equation, we come back to the question of understanding the pole structure. We begin
our analysis with the T-matrix in vacuum. For each value of a, T (E, q) has a line of
poles on the BEC side located at E = ωq + i∆q = −1/ma2 +mq2/4, corresponding to
the binding energy of a Feshbach molecule with center of mass momentum q. As a con-
sequence of energy and momentum conservation the pole frequency is real, indicating
that a two-body process in vacuum cannot produce a Feshbach molecule.

The Cooperon is a natural extension of the two particle scattering amplitude, i.e.
the T-matrix, to a systems with a finite density of atoms. The presence of the Fermi-
sea shifts the poles of the Cooperon relative to the T-matrix in two ways: (1) in the
range −∞ < 1/kFa . 1.1 the Cooperon pole acquires a positive imaginary part ∆q

that corresponds to the growth rate of the pairing instability (see Fig. 0.3a); and (2)
the real part of the pole Ωq, which would correspond to the binding energy of a pair
in the absence of an imaginary part, uniformly shifts down (see Fig. 0.3b).

The shift of the pole into the complex plane is quite surprising, especially on the
BEC side of the Feshbach resonance where the interactions are repulsive, such a shift
corresponds to a finite rate of molecule formation. Typically one assumes that a two
particle collision can not lead to the formation of a molecule as energy and momen-
tum conservation laws can not be satisfied simultaneously, and hence earlier analysis
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Fig. 0.3 (a) Imaginary part of the Cooperon pole trajectory as a function inverse scattering

length for various values of the cut-off Λ and re = −0.5. As Λ increases the pole trajectory

approaches its asymptotic value. (b) Real part of the Cooperon pole trajectory as a function

inverse scattering length for various values of the effective range re. The trajectory of the

corresponding vacuum binding energies (T-matrix poles) and vacuum binding energies shifted

down by the twice the Fermi energy (T-matrix poles - 2εF ) are indicated by the tops and

bottoms of the shaded corridors. In the strong interaction regime (small positive scattering

length) the Cooperon pole approaches the bottom of the corridor, i.e. the T-matrix pole

shifted down by twice the Fermi energy. (c) Imaginary part of the Cooperon pole trajectory

(pairing rate) as a function inverse scattering length for various values of the effective range re.

(d) Imaginary part of the Cooperon pole trajectory (pairing rate) as a function of momentum

for various scattering lengths, and a wide resonance (re = −0.01). The plot indicates that

the most unstable pairing mode is always at q = 0.

focused on considering at least a three body collision (Fedichev, Reynolds and Shlyap-
nikov, 1996). Hence, one would think that by analyzing poles of the Cooperon, which
seems to describe two particle collisions, we cannot get a pole with a finite imaginary
part. An important difference of our system is that we are considering a many-body
system. So even though the Cooperon can be understood as effectively a two particle
scattering amplitude, it describes a scattering event taking place in the presence of
a filled Fermi sea. The Pauli principle plays a role of the “third body”. That is the
energy-momentum restrictions on molecule (or more precisely Cooper pair) formation
are lifted, as the pair forms above the Fermi-sea, the excess energy can be absorbed
by the two holes that are left behind under the Fermi-sea. This process is schemati-
cally represented in the inset of Fig. 0.7. Within our approximation there is a sharp
cut-off of the molecule formation rate on the BEC side when distance between parti-
cles becomes much larger than the scattering length and the Pauli principle becomes
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C(iω  ,q)nχ(iω  ,q)=n

iω  ,qn iω  ,qn

Fig. 0.4 Diagrammatic representation of the relation between the Cooperon (many-body

T-matrix) and the pairing susceptibility. Solid black lines represent fermionic atom propaga-

tors, purple square represents the Cooperon, and dotted grey lines represent external source

of the pairing field.

ineffective. In reality, we expect that the molecule formation rate does not go to zero
completely but becomes determined by much slower three body processes discussed
earlier in Refs. (Petrov, 2003; Nielsen and Macek, 1999; Esry, Greene and Burke, 1999;
Bedaque, Braaten and Hammer, 2000).

The uniform shift down of the real part of the pole Ωq is likewise a result of Pauli
blocking (Abrikosov, Gor’kov and Dzyaloshinski, 1975), and indicates an appearance of
a paired state on the BCS side as well as stronger binding of the pairs on the BEC side.
Deep on the BEC side, the Feshbach molecule becomes deeply bound and therefore
very small in real space. As a result the molecule becomes extended far beyond kF in
momentum space and Pauli blocking becomes less relevant. Consequently, see Fig. 0.3b,
the Cooperon pole (solid lines) approaches the T-matrix pole (shifted by 2εF , dotted
lines) deep on the BEC side.

Coming back to the imaginary part of the pole, as depicted in Fig. 0.3c, ∆q=0

increases exponentially as one approaches the Feshbach resonance from the BCS side,
i.e. the growth rate of the BCS pairing in a wide resonance is equal to the BCS gap at
equilibrium ∆q=0 ≈ 8εF e

π/2kF a−2 (Abrikosov, Gor’kov and Dzyaloshinski, 1975). For
a wide resonance, the growth rate continues to increase on the BEC side, reaching a
maximum at kFa ≈ 2, and finally decreasing to zero at kFa ≈ 1.1, at which point the
Fermi sea can no longer absorb the energy of the Feshbach molecule in a two-body
process. Deeper in the BEC regime pairing takes place via the more conventional
three-body process and would round the pairing instability curve near kFa ≈ 1.1 in
Fig. 0.3c. As we go from a wide resonance re � 1/kF , to a more narrow resonance
re ≈ 1/kF , the maximum in the paring rate decreases and shifts to the BEC side (see
Fig. 0.3c).

We comment that pairing at finite q is always slower than at q = 0, with ∆q

monotonically decreasing to zero at q = qcut (see Fig. 0.3d). Throughout a wide
resonance the approximation qcut ≈ (

√
3/2)(∆q=0/εF )kF works reasonably well except

in the vicinity of kfa ∼ 2 where qcut reaches the maximal value for a two-body process
of 2kf .

0.6 More on Stoner instability

In section 0.3, we left the story of the Ferromagnetic instability at the unphysical diver-
gence of its growth rate in the unitary regime. In this section, we use the knowledge
gained in the previous two section to fix this divergence. The reason for the diver-
gence, lies in the description of inter-particle interactions near unitarity. Even without
a Fermi-sea, from the form of the T-matrix (0.21), we see that the interactions are
strongly frequency dependent T (ω) ≈ 4

√
2π/im

√
ω. Only at very low energies does
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Fig. 0.5 Diagrammatic representation of the vertex function Γ~q(~k1) that appears in the Fer-

romagnetic susceptibility with the bare two particle interaction V replaced by the Cooperon

C(~q1), which is a momentum and frequency dependent interaction. Curly lines represent ex-

ternal sources of spin flips, solid lines – fermions, dashed lines – interactions, gray lines –

external legs. Figure is reprinted from Ref. (Pekker, Babadi, Sensarma, Zinner, Pollet, Zwier-

lein and Demler, 2011)

the expression T (ω) ≈ 4πa/m, that we have used for the interaction strength in the
calculation of the Stoner instability makes sense.

To proceed, we replace the interatomic interaction by the Cooperon. In fact, this
program has been implemented before in the context of the fermionic Hubbard model,
see e.g. Ref (Chen, Bourbonnais, Li and Tremblay, 1991). Instead of computing the
Ferromagnetic susceptibility directly, it is advantageous to compute the vertex function
as indicated in Fig. 0.5. The susceptibility is related to the vertex function via

χFM(~q) =

∫
d~k1G(~q + ~k1)G(~k1) Γ~q(~k1), (0.33)

where we have switched to the notation ~q = (ω, q) in order to save space. The poles
of the susceptibility arise due vertex function and not the two Green functions in
the above expression. Therefore, to find the poles of the susceptibility it is sufficient
to find the poles of the vertex function. However, this is a rather complicated task,
and necessarily involves some approximations. Instead of going through the details,
which are presented elsewhere (Pekker, Babadi, Sensarma, Zinner, Pollet, Zwierlein
and Demler, 2011), here we comment on the physics of the results and the differences
between using the Cooperon and the δ-function interactions.

The most significant difference is the disappearance of the divergence of the insta-
bility rate near the resonance. Moreover, not only does the rate of the Stoner instability
become finite everywhere, the instability persists on the BCS (attractive) side. The
singularity of the Stoner instability rate was related to the singularity of the scattering
amplitude of two particles in vacuum at zero energy. When analyzing a many-body
system we need to integrate over energies of the order of the Fermi energy. Since for
any finite energy, there is no singularity in the scattering amplitude, this leads to a
suppression of the Stoner instability rate. Furthermore, the Pauli blocking by the Fermi
sea no longer allows to make an “ideal” Feshbach molecules. Instead, these molecules
are restricted to occupy states outside of the Fermi momentum, which in fact enhances
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Fig. 0.6 Properties of the unstable collective modes associated with the Stoner instability

computed using Cooperon interactions, as opposed to δ-function interactions of Fig. 0.1.

(a) Near the transition, ∆q curves look similar to the δ-function case, except the critical

point has changed so correspondingly the curves were computed for 1/kF a = 0.85 (top line),

0.86, 0.87, ..., 0.93 (bottom line). (b) qmax (squares) and ∆max (triangles) vs. 1/kF a. A fit

to the mean-field critical theory (ν = 1/2, z = 3) is shown with solid black lines. Note

that the unphysical divergence at the Feshbach resonance, that was present for δ-function

interactions, has disappeared. Further, the instability continues to the attractive side of the

resonance. (c) Details of the critical behavior of qmax and ∆max as a function of distance

from the transition point u = (1/kF a)c − (1/kF a), (1/kF a)c ≈ 0.94. Figure reprinted from

Ref. (Pekker, Babadi, Sensarma, Zinner, Pollet, Zwierlein and Demler, 2011)

their binding energy. The strongest Stoner instability corresponds to the kFa at which
the scattering at typical energies is strongest. The typical energy scale is the Fermi
energy εF , and scattering is strongest when the bound state energy correspond to the
typical energy scale. Thus the Stoner instability is strongest not when the bound state
disappears in vacuum but in the vicinity of the point where the bound state energy
plotted in Fig. 0.3b “crosses” εF . This crossing occurs on the BEC side of the reso-
nance. As a result, the Feshbach resonance in vacuum is not reflected in any singular
structure in the presence of a Fermi sea. Instead, the ∆max has a maximum on the
BEC side, and smoothly decreases to zero on the BCS side.

Another minor difference for the Stoner instability between the δ-function and the
Cooperon interactions, is that the location of the phase transition point, which shifts
from (1/kFa)c = 2/π for δ-function interactions to (1/kFa)c ≈ 0.94 for Cooperon
interactions. The shift of the phase transition point is again associated with the form
of the interactions at higher energies. However, the behavior of ∆q’s in the vicinity
of the phase transition is very similar for both cases as can be seen by comparing
Figs. 0.1 and 0.6. Indeed, the power laws describing the behavior of qmax and ∆max

remain the same.
Finally, we comment on the nature of approximations that we make in computing

the ferromagnetic susceptibility. In resumming diagrams indicated in Fig. 0.5, we did
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Fig. 0.7 Comparison of the growth rates of the pairing instability (dashed-dotted blue line)

and the Stoner instability (solid red line) across the Feshbach resonance as a function of

1/kF a. The Stoner instability can occur in several “angular momentum” channels, the sub-

dominant channels are traced by dashed red lines. Finally, we also plot the growth rate for

the Stoner instability obtained with RPA and δ-function interactions that shows unphysical

divergence near the resonance. Inset: Schematic diagram of the pair creation process showing

the binding energy (spring) being absorbed by the Fermi sea (arrows). The figure is reprinted

from Ref. (Pekker, Babadi, Sensarma, Zinner, Pollet, Zwierlein and Demler, 2011).

not resum all interaction terms. We resummed only the most divergent contributions
as the scattering length was going to infinity. In particular, the diagrams we resum cor-
respond to a very simple time dependent Hartree type analysis in which we neglected
changes in the Fermi occupation numbers and screening of interactions. Our justifi-
cation was that we are interested in short time dynamics when such processes can be
neglected. However it is possible that we have a hierarchy of time scales. Dynamics of
order parameters may be slow due to the usual critical slowing down near the quantum
phase transition. On the other hand there may be fast processes on the timescale of
ε−1
F , which we may not be able to take into account. Although, in the vicinity of the

Feshbach resonance and away from the phase transition, the order parameter dynam-
ics also occurs on time scales of ε−1

F , indicating that there is no timescale separation.
A more careful Keldysh type analysis of nonequilibrium dynamics, may be required.

0.7 Discussion

We summarize the results obtained thus far in Fig. 0.7. We find that after a quench
from the weakly interacting regime to the vicinity of the Feshbach the pairing and
the Stoner instabilities compete with each other on both sides of the resonance. The
growth rate associated with the pairing instability is always larger than that of the
Stoner instability indicating that a paired state is thus the favored outcome. In treating
both instabilities, we found that it is important to describe the interactions carefully.

Finally, we comment on the interpretation of the MIT experimental observations
of Ref. (Jo, Lee, Choi, Christensen, Kim, Thywissen, Pritchard and Ketterle, 2009) in
light of the competition between pairing and ferromagnetism. Following the ramp to
the strongly interacting regime, the MIT group let the system evolve for some time
before performing their measurements. The most striking results were obtained for
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the atom loss measurement, which showed that as the scattering length is increased
the atom loss first increases, and then suddenly starts to decreases for kFa & 2. The
loss rate was measured by rapidly ramping down the magnetic field at the end of
the experiment and thus projecting weakly bound ”Feshbach molecules” onto strongly
bound molecules away from the resonance. Thus the rapid decrease of the atom loss can
have two interpretations: (1) the formation of ferromagnetic domains prevented atomic
collisions (which occur only between fermions of different species) and thus resulted in
a decrease of atom loss rate, or (2) the atom losses are caused by pair formation and the
maximum of the pairing rate near kFa = 2 corresponds to the maximum in atom loss
rate. Interpretation (1) has been studied in a series of theoretical papers (Conduit and
Simons, 2009b) and has been shown to be reasonably consistent with experimental
observations. Since we find that the pairing instability always dominates over the
Stoner instability we are forced to conclude that scenario (2), which is also consistent
with experimental observations, is more likely.

In addition to the atom loss rate the MIT group, likewise, measured the changes of
the cloud size and the average kinetic energy. Indeed, mean field theory calculations for
the Stoner transition in a trap (LeBlanc, Thywissen, Burkov and Paramekanti, 2009)
show similar trends to those found by the MIT experiments. However, the pairing
transition is quite similar to the Stoner transition in the sense that the atoms gain
potential energy at the cost of kinetic energy. Thus, we expect that the trends for
cloud size and kinetic energy would be similar for the two transitions.

0.8 Concluding remarks

The notion of collective modes is important in understanding not only equilibrium
physics but also dynamics. As an example, we have investigated the role of the pairing
and the ferromagnetic modes in quenches across the Feshbach resonance where these
unstable modes directly compete with each other in real time.
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knowledge stimulating discussions with A. Georges, W. Ketterle, D. Huse, G. Shlyap-
nikov. This work was supported by the Army Research Office with funding from the
DARPA OLE program, Harvard-MIT CUA, NSF Grant No. DMR-07-05472, AFOSR
Quantum Simulation MURI, AFOSR MURI on Ultracold Molecules, the ARO-MURI
on Atomtronics.
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