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Density ordering instabilities of quasi-two-dimensional fermionic polar molecules in single-layer
and multilayer configurations: Exact treatment of exchange interactions

Mehrtash Babadi and Eugene Demler
Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 29 September 2011; published 16 December 2011)

We study the in-plane and out-of-plane density ordering instabilities of quasi-two-dimensional fermionic polar
molecules in single-layer and multilayer configurations. We locate the soft modes by evaluating linear response
functions within the conserving time-dependent Hartree-Fock (TDHF) approximation. The short-range exchange
effects are taken into account by solving the Bethe-Salpeter integral equation numerically. An instability phase
diagram is calculated for both single-layer and multilayer systems and the unstable wave vector is indicated. In
all cases, the in-plane density wave instability is found to precede the out-of-plane instability. The unstable wave
vector is found to be approximately twice the Fermi wave vector of one of the subbands at a time and can change
discontinuously as a function of density and dipolar interaction strength. In multilayer configurations, we find a
large enhancement of density-wave instability driven by dilute quasiparticles in the first excited subband. Finally,
we provide a simple qualitative description of the phase diagrams using an RPA-like approach. Compared to
previous works done within the RPA approximation, we find that inclusion of exchange interactions stabilize the
normal liquid phase further and increase the critical dipolar interaction strength corresponding to the onset of
density-wave instability by over a factor of two.
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I. INTRODUCTION

The field of ultracold atoms has witnessed a rapid progress
in the past decade. Much of this experimental and theoretical
progress has been motivated by the prospect of realizing
novel strongly correlated quantum phases and exploring the
consequences of strong interactions.1–3 One of the latest
breakthroughs in this direction is the experimental realization
of nearly quantum degenerate gases of fermionic polar
molecules. By association of atoms via a Feshbach resonance
to form deeply bound ultracold molecules,4,5 a nearly degen-
erate gas of KRb polar molecules has been recently realized in
their rotational and vibrational ground state.6–10 The molecules
can be polarized by the application of a dc electric field,
resulting in strong dipole-dipole intermolecular interactions.

At the time this paper is being written, the coldest realized
gas of polar fermionic molecules has a temperature of 1.4 TF

in the experiments of the group at JILA,6–10 where TF

is the Fermi temperature. A major obstacle toward further
evaporative cooling of a large class of bi-alkali polar molecules
is the existence of an energetically allowed two-body chemical
reaction channel,11 resulting in significant molecule losses in
two-body scatterings. In a low-temperature gas composed of
a single hyperfine state, Fermi statistics blocks scatterings
in the s-wave channel and the majority of scatterings takes
place through the p-wave channel. In a three-dimensional gas,
the attractive head-to-tail dipolar interactions soften the p-
wave centrifugal barrier and increase the cross section of
reactive collisions. The rate of chemical reactions can be ef-
fectively suppressed by loading the gas into a one-dimensional
optical lattice (or trap) and aligning the dipoles perpendicular
to the formed quasi-two-dimensional layers, also known as
pancakes. In such geometries, the incidence of head-to-tail
scatterings is effectively suppressed due to the transverse
confinement of the gas on one hand, and reinforcement
of the p-wave barrier due to repulsive side-by-side dipolar
interactions on the other hand.9,12,13 Therefore the preferred

geometry to study reactive polar molecules is in tightly
confined two-dimensional layers.

In such geometries, the energy levels of particles is
quantized due to the transverse confining potential and each
quasi-two-dimensional layer can be thought of as a collection
of two-dimensional energy subbands (see Fig. 1). Since higher
subbands have a larger transverse spreading, it is expected
that occupation of higher subbands will increase the rate of
head-to-tail collisions and consequently, the molecule loss
rate. However, it has been recently shown that the two-body
chemical reactions will still be significantly suppressed even
if the first few subbands are filled, due to Pauli blocking.13

The occupation of higher subbands does not impose any
difficulty on experiments with nonreactive species such as
NaK, NaRb, NaCs, KCs, and RbCs.11 The possibility of
going beyond the single-subband limit opens a new window
toward experimental and theoretical exploration of many-body
physics of quasi-two-dimensional fermionic systems with
anisotropic interactions.

In contrast to the isotropic short-range interactions in
ultracold atomic gases realized using an s-wave Feshbach
resonance,1–3 the long-range and anisotropic nature of electric
dipole-dipole interactions in ultracold gases of polar molecules
allows the experimental realization of a wider range of
physical phenomena. In particular, the repulsive side-by-side
dipole-dipole interactions in layered stacks of polar molecules
can lead to spontaneous translational symmetry breaking and
formation of density ordered phases for strong interactions.
We define the ratio of the typical interaction over the kinetic
energy, rd , as a dimensionless measure of the strength of
dipolar interaction:

rd ≡ m D2 n1/2

h̄2 , (1)

where D is the electric dipole moment of a single molecule, m
is the molecular mass, and n is the two-dimensional density.
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(a) (b)

FIG. 1. (Color online) (a) A multilayer system of quasi-two-
dimensional polar molecules. The dipoles are aligned perpendicular
to the x-y plane by the application of a strong dc electric field. The
interlayer spacing is d . The x axis is perpendicular to the plane of the
plot. (b) Each quasi-two-dimensional layer is composed of multiple
subbands, corresponding to the transverse wave functions of the trap.
For symmetric lattice potentials, the subbands have a well defined
parity with respect to the reflection about the x-y plane. The trap
confinement width, a⊥, is shown in the figure.

It is noticed that in contrast to the electron gas, the interaction
energy is dominant at higher densities for fixed dipole moments
and as a result, the density ordered phases are expected to
appear at higher densities.

Recently, Yamaguchi et al.14 and Sun et al.15 have indepen-
dently studied the density-wave (DW) instability in a strictly
two-dimensional layer of polar molecules in the random phase
approximation (RPA). At zero temperature and zero tilt angle
of dipoles with respect to the confining 2D plane, their results
indicate that the DW instability occurs for rd ≈ 0.17. The
former study treats the self-energy corrections within an
approximate variational method and first-order perturbation
theory.14 The second study neglects the self-energy corrections
altogether, however, presents a rigorous proof for the necessity
of DW instability for strong enough interactions and predicts
the nature of the density ordered phases at different tilt
angles.15 Both studies neglect the exchange-interaction effects
beyond the cancellation of the s-wave component of dipolar
interaction in their calculations. Since the interactions need
to be appreciably strong for the density ordered instabilities
to occur and that the ordering wave vector is in the order
of the Fermi wave vector, we expect that inclusion of short-
range exchange effects will result in a significant quantitative
correction to the results of the cited works.

The simplest self-consistent and conserving many-body
approximation that respects the Fermi statistics is the time-
dependent Hartree-Fock approximation (TDHF),16 also known
as the generalized random phase approximation (GRPA).17

We have recently studied the band renormalization and
collective modes of quasi-two-dimensional polar molecules
within the TDHF approximation.18 In this paper, we study the

(a) (b)

(c) (d)

FIG. 2. (Color online) A schematic representation of the homo-
geneous liquid and density ordered phases of a multilayer system
of quasi-two-dimensional polar molecules. (a) The liquid phase
is characterized by uniform in-plane and out-of-plane density in
each layer. (b) The ripplon phase is characterized by out-of-plane
density modulations and uniform in-plane projected density. The Z2

reflection symmetry may be broken (as shown here) if the mixing
occurs between subbands of even and odd parity. In that case, the
energetically favorable configuration corresponds to a π phase shift
between even and odd layers due to the interlayer attraction. (c) The
density-wave phase is characterized by broken in-plane translational
symmetry. Wigner crystals, striped and bubble phases are examples
of density-wave phases. (d) The zigzag crystal phase is characterized
by broken in-plane translation symmetry and presence of out-of-plane
density modulations.

density ordering instabilities of the liquid phase of quasi-two-
dimensional polar molecules in single-layer and multilayer
configurations. Throughout this study, we assume that the
layers are well separated such that the interlayer tunneling
can be neglected.

We consider instability toward two types of density ordered
phases: in-plane density-wave phase and the ripplon phase
(see Fig. 2). The in-plane density-wave phase is characterized
by broken in-plane translational symmetry [see Fig. 2(c)].
The ripplon phase is a reminiscent of the spin density-wave
(SDW) phase of electronic systems,19 where quasiparticles of
different subbands play the role of different spin states. Since
quasiparticles in different subbands have different transverse
wave functions, their mixing results in out-of-plane density
modulations [see Fig. 2(b)]. In the ripplon phase, the Z2

reflection symmetry about the confining plane may be broken
if the mixing occurs between subbands of even and odd
parities. When the translational symmetry of the in-plane
projected density is broken in addition to the presence of
subband mixing, we denote the phase by a zigzag phase [see
Fig. 2(d)]. Quantum zigzag transition in one-dimensional ion
chains has been a subject of active theoretical and experimental
investigations in the past few years.20–24

We adhere to the mode-softening paradigm of phase
transition and look for the instabilities by monitoring various
density-density response functions in the normal phase as the
interaction and trap strengths are varied. The softening of
a density-wave mode results in the development of a sharp
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peak in its corresponding response function, which eventually
promotes to a singularity when the liquid phase becomes
unstable against density fluctuations.

We remark that the TDHF approximation adopted in this
study is essentially an analysis of Gaussian fluctuations about
the mean-field liquid phase. In many cases, analyses at the
mean-field level underestimate the stability of symmetric
phases and predict transition to the symmetry broken phases
too early. Inclusion of correlation effects usually enhances the
stability of the unbroken phase beyond mean-field predictions.
Thus the instability criterion resulting from TDHF response
functions is most likely only a signal for the formation of
short-range correlations in the liquid phase, with the phase
transition to the density ordered phase occurring at stronger
interactions. Nevertheless, the mean-field stability analysis is
a first step and an indispensable guide in constructing more
elaborate approximations. We discuss this issue with more
detail in Sec. VI.

This paper is organized as follows: we review the micro-
scopic model for single-layer and multilayer configurations
in Sec. II. The TDHF formalism for multisubband and
multilayer systems is described in Sec. III and the instability
phase diagrams are presented in Sec. IV. An approximate
RPA-like theory is developed in Sec. V, with which the
qualitative features of the obtained instability phase diagrams
are explained. Finally, we discuss the results in Sec. VI,
and compare our results with the previous works. The
derivation of analytical expressions for the effective interlayer
and intersubband dipolar interactions and the details of our
numerical method are provided in the appendices.

II. THE MICROSCOPIC MODEL

We start our analysis by reviewing the microscopic model
describing fermionic polar molecules of mass m, prepared in a
single hyperfine state, and loaded in a one-dimensional optical
lattice. For concreteness, we assume that the optical lattice
is along the z axis. Also, we assume throughout this paper
that all of the dipoles are aligned perpendicular to the trap
plane by the application of a strong external dc electric field
(see Fig. 1). We work within the units h̄ = 2m = 1 unless
these quantities appear explicitly. We also denote 3D and
in-plane 2D coordinates by r and x, respectively.

The second-quantized Hamiltonian describing the system
can be written as

H =
∫

d2r ψ†(r)[−∇2 + Vlat(z)] ψ(r)

+
∫∫

d2r d2r′ ψ†(r)ψ†(r′)Vdip(r − r′)ψ(r′)ψ(r),

(2)

where ψ(r) is the fermion annihilation operator and Vlat(z) and
Vdip(r − r′) denote the optical potential and dipolar interaction,
respectively,

Vlat(z) = V0 sin2(2πz/λ), (3)

Vdip(r) = D2

|r|5 (|r|2 − 3z2), (4)

where λ is the wavelength of the optical lattice lasers. The gas
in the optical lattice can be thought of as a stack of quasi-
two-dimensional layers separated by a distance d = λ/2. In
practice, there are a finite number of layers present in the
sample. We denote the number of layers by Nl and assume
a periodic boundary condition along z direction in order to
eliminate the surface effects. We also denote the transverse
size of the stack by L ≡ Nld.

The fermion operator can be conveniently expanded in
Wannier’s basis in z direction and plane-wave basis in x-y
plane:

ψ(r) =
∑

k

∞∑
α=1

Nl∑
n=1

wαn(z)
eik·x
√

A
cnα,k, (5)

where A is the area of system in x-y planes, wαn(z) denotes
the Wannier’s wave function of the band α, with its center
shifted to nth well of the optical lattice, and cnα,k annihilates a
fermion in layer n, subband α, and with momentum k. We omit
the limits in the summations over layer and subband indices in
the rest of the paper for brevity. Plugging the expansion of the
fermion operator into Eq. (2), we get

H =
∑

k

∑
mn

∑
αβ

(|k|2 + Jmn
αβ

)
c
†
mα,kcnβ,k + 1

2A

∑
k1,k2,q

×
∑
αβ;γ λ

∑
mn;rs

Vmn;rs
αβ;γ λ(q) c

†
mα,k1+q c

†
rγ,k2−qcsλ,k2

cnβ,k1
, (6)

where

Jmn
αβ =

∫
dz w∗

αn(z)

[
− d2

dz2
+ Vlat(z)

]
wβn(z) (7)

and

Vmn;rs
αβ;γ λ(q) =

∫
d2x e−iq·(x−x′)

∫∫
dz dz′ w∗

αm(z)

×w∗
γ r (z′) wλs(z

′) wβn(z) Vdip(r − r′). (8)

In order to simplify the analysis, we assume that the optical
potential is deep and that its minima are well separated, so
that we can neglect interlayer tunneling effects. We call this
limit the independent layers (IL) limit. The subsequent results
presented in this paper are all within this limit. In the IL limit,
the optical potential (3) can be expanded to quadratic order
about its minima:

Vlat(z) 

Nl−1∑
n=0

1

2
m ω2

trap(z − nd)2, (9)

where ωtrap = (2π/λ)
√

2V0/m in the effective trap frequency
of each well. The Wannier’s wave functions can also be
approximated by shifted harmonic oscillator wave functions:

wαn(z) 
 φα(z − nd),
(10)

φα(z) = e−z2/2a⊥√
π1/2 α! 2α a⊥

Hα(z/a⊥),
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where Hα is the Hermite polynomial of degree α and a⊥ is the
transverse spreading of the lowest subband, which is related
to the parameters of the optical lattice as

a2
⊥ = h̄

mωtrap
= hλ√

2mV0
. (11)

The conditions of the IL limit are met if the transverse
spreading of the Wannier’s wave functions is smaller than
the interlayer separation, i.e., a⊥ � d. For sinusoidal optical
potentials, we get the explicit condition 4h2/λ

√
2mV0 � 1.

In the IL limit, the overlap between the wave functions of
different layers is negligible and one can assume

wαm(z) wβn(z) ∝ δmn, for all z ∈ R and m,n ∈ Z. (12)

It is straightforward to show using Eqs. (7), (8), and (12) that
the one-body and two-body matrix elements appearing in the
second-quantized Hamiltonian assume a much simpler form
in this limit:

Jmn
αβ ≡ εα δmnδαβ, (13)

Vmn;rs
αβ;γ λ(q) ≡ δmnδrsV (m−r)

αβ;γ λ (q), (14)

where εα is the zero-point energy of αth subband and is
explicitly given by h̄ωtrap(α + 1/2) in the harmonic trap
approximation described above. We note that a more explicit
condition for the IL limit is the smallness of Jmn

αβ and Vmn;rs
αβ;γ λ

for unequal layer indices (i.e., m �= n and r �= s), compared to
those having the same layer index. Intuitively, Eqs. (13) and
(14) imply the absence of interlayer tunneling and interlayer
exchange interactions, respectively. It is easy to see that the
layer index remains a good quantum number in the IL limit in
the presence of interactions and this salient feature simplifies
the study of multilayer systems to a great degree.

In the next two sections, we explore the effective mi-
croscopic models for single-layer systems (Nl = 1) and
multilayer cases (Nl > 1) in some more detail and briefly
discuss the features of the normal liquid phase in each case
within the Hartree-Fock approximation.

A. Single-layer systems

The absence of interlayer attractive interactions in a single-
layer system makes it an ideal starting point for the study
of the more complicated case of a multilayer configuration.
The physics of single-layer systems is essentially governed by
intralayer repulsive interactions. From an experimental point
of view, this limit is achieved either by selectively removing
particles from an optical lattice in order to get a single pancake
or by utilizing a strong optical trap instead of an optical lattice.
The Hamiltonian takes the following form in this limit:

HSL =
∑
α,k

(|k|2 + Eα) c
†
α,kcα,k + 1

2A

∑
k1,k2,q

∑
αβ;γ λ

×Vαβ;γ λ(q) c
†
α,k1+q c

†
γ,k2−qcλ,k2

cβ,k1
, (15)

where Vαβ;γ λ(q) ≡ V (0)
αβ;γ λ(q) are the intralayer interaction ma-

trix elements. A generating function and explicit expressions
for Vαβ;γ λ(q) can be found in our earlier paper.18 For trap
potentials, which are symmetric about their center, the effective
intersubband interaction matrix elements conserve the net

subband parity of the scattering particles, i.e., Vαβ;γ λ(q) �= 0 if
α + β + γ + λ ≡ 0 (mod 2).18

In an earlier paper, we have studied the self-energy correc-
tions of the single-layer system in the normal liquid phase (see
Ref. 18) in the self-consistent Hartree-Fock approximation.
We do not repeat the analysis here and just mention that
besides the usual Hatree-Fock band renormalization, one also
finds that the noninteracting subband indices do not remain
good quantum numbers in the presence of interactions. A well
defined subband index can still be found after applying an
orthogonal transformation that diagonalizes the Hartree-Fock
decoupled Hamiltonian. More explicitly, one can define a set
of Hartree-Fock fermion operators as

c̃k,α =
∑

μ

Uμα(k) ck,μ, (16)

such that

HHF
SL =

∑
α,k

ε̃α(k) c̃
†
k,α c̃k,α, (17)

where ε̃α(k) are the renormalized energy dispersions of the
Hartree-Fock subbands and HHF

SL is the Hartree-Fock decou-
pled Hamiltonian of a single-layer system. The orthogonal
transformations appearing in Eq. (16), Uμα(k), as well as
the renormalized dispersions, ε̃α(k), are found by solving
the Hatree-Fock equations (see Ref. 18 for details). The
temperature Green’s function for Hatree-Fock quasiparticles
can be read directly from Eq. (17):

G̃μν(k,iωn) = −
∫ βh̄

0
dτ eiωnτ Tr

[
ρ̂HF

SL c̃k,μ(τ )c̃†k,ν(0)
]

= δμν

iωn − ξ̃μ(k)
, (18)

where ρ̂HF
SL = e−β(HHF

SL −μN )/ZSL is the grand canonical equi-
librium density matrix and ξ̃μ(k) = ε̃μ(k) − μ. The Green’s
function in the original noninteracting basis can also be found
using the inverse of the transformation given in Eq. (16):

Gμν(k,iωn) = Uμλ(k) Uνλ(k)

iωn − ξ̃λ(k)
. (19)

The above expression for the Green’s function is found to be
useful in evaluating frequency summations later.

B. Multilayer systems

The physics of multilayer systems is governed by both
intralayer and interlayer interactions. As we will see later,
the interplay of these forces will modify the density-wave
instability of the system to a great degree. The Hamiltonian
takes the following form in this limit:

HML =
∑

k

∑
α,m

(|k|2 + Eα) c
†
mα,kcmα,k + 1

2A

∑
k1,k2,q

×
∑
αβ;γ λ

∑
mr

V (m−r)
αβ;γ λ (q) c

†
mα,k1+q c

†
rγ,k2−qcrλ,k2

cmβ,k1
.

(20)

In contrast to the interaction of particles within each layer,
the intersubband interaction of particles across the layers
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violate the parity conservation due to the absence of reflection
symmetry, i.e., V (m−r)

αβ;γ λ (q) can still be nonzero if α + β + γ +
λ ≡ 1(mod2), provided that m �= r . Explicit expressions for
V (m,r)

αβ;γ λ(q) are provided in Appendix A.
As mentioned in Sec. II, one simplifying aspect of the IL

limit is the conservation of the layer indices in the scattering
processes [see Eq. (12)]. As a consequence, the normal
liquid solution of multilayer systems in the Hartree-Fock
approximation closely resembles that of single-layer systems.
The Green’s function is found by solving the following
Dyson’s equation:

(21)

where m and m′ are layer indices, q is the momentum transfer,
the greek letters denote subband indices, and thin and thick
lines denote bare and dressed Green’s functions. The above
diagrammatic equation yields

Gαβ;m(q,iωn) = G0
αβ;m(q,iωn) +

∑
μν

G0
αμ;m(q,iωn)

×��
μν;m(q)Gνβ;m(q,iωn), (22)

where the noninteracting Green’s function, G0
αβ;m(q,iωn), is

G0
αβ;m(q,iωn) = δαβ

iωn − |k|2 − εα + μ
, (23)

and the proper self-energy matrix ��
μν;m(q) is defined as

��
μν;m(q) = 1

β

∑
iω′

n;m′

∫
d2k′

(2π )2

∑
m′

[
V (m−m′)

μν;γ λ (0)

−V (0)
μλ;γ ν(q − k′)δmm′

]
Gλγ ;m′ (k′,iω′

n). (24)

In the homogeneous normal liquid phase, the layers are
identical and the Green’s functions and self-energy matri-
ces are independent of the layer indices. As a result, the
Hatree-Fock equation for multilayer systems in the IL limit
has an identical structure to that of single-layer systems,
however, with additional contributions coming from direct
interlayer interactions. Thus the numerical method described
in Ref. 18 can be identically applied to obtain the renormalized
subbands of multilayer systems as well. We refer the reader to
Ref. 18 for computational details and suffice to mention that
like single-layer systems, one can again find an orthogonal
transformation of the bare fermion operators that diagonalizes
the Hartree-Fock-decoupled Hamiltonian. More explicitly, one
can define Hartree-Fock quasiparticle operators as

c̃mα,k =
∑

μ

Uμα(k) cmμ,k, (25)

such that

HHF
ML =

∑
m,α,k

ε̃α(k) c̃
†
mα,k c̃mα,k, (26)

where ε̃α(k) is the renormalized energy dispersion of subband
α, Uαβ(k) is an orthogonal transformation, and HHF

ML is
the Hartree-Fock decoupled Hamiltonian of a multilayer
system. Note that ε̃α and Uμα are the same for all layers.
The temperature Green’s function can be directly read from
Eq. (26) and is formally identical to Eqs. (18) and (19),
respectively. The effects of direct interlayer interactions are
implicitly included in the renormalized subband dispersions
and orthogonal transformations.

III. EVALUATING THE RESPONSE FUNCTIONS IN THE
TDHF APPROXIMATION AND LOCATING THE

INSTABILITIES OF THE LIQUID PHASE

The instabilities of the liquid phase can be located by calcu-
lating various static response functions in the liquid phase. We
investigate the instability of the liquid phase toward in-plane
and out-of-plane (ripplon) density-wave orders. As a first
step, we define the order parameters and their corresponding
response functions in more detail in the next sections.

A. Order parameters

We define the in-plane projected density operator of layer
m at in-plane coordinate x as

ρ̂m(x) =
∫ (m+1/2)d

(m−1/2)d
dz ψ†(r)ψ(r)

=
∑
α,α′

∑
m,m′

∑
k,k′

∫ (m+1/2)d

(m−1/2)d
dz w∗

mα(z) wm′α′(z)

× e−i(k−k′)·x c
†
mα,kcm′α′,k′

≈
∑

α

∑
k,k′

e−i(k−k′)·x c
†
mα,kcmα,k′ , (27)

where we have adopted the IL approximation in the last line.
In the normal phase, 〈ρ̂m(x)〉 is constant and independent of
x. The in-plane density-wave instability is characterized by
appearance of (quasi-)periodic spatial modulations in 〈ρ̂m(x)〉
[see Fig. 2(c)].

We define the αβ-ripplon operator of layer m at in-plane
coordinate x as

Ŝαβ
m (x) = 1

2

∫ (m+1/2)d

(m−1/2)d
dz (ψ†

α(r)ψβ(r) + H.c.)

≈ 1

2

∑
k,k′

e−i(k−k′)·x (c†mα,kcmβ,k′ + c
†
mβ,kcmα,k′ ). (28)

Again, we have adopted the IL approximation in the last line.
In the normal phase, 〈Ŝαβ

m (x)〉 = 0 for α �= β. The αβ-ripplon
instability is characterized by growth of (quasi-)periodic
spatial modulations in 〈Ŝαβ

m (x)〉 and absence of any instability
in the in-plane projected density [see Fig. 2(b)]. When both
in-plane and out-of-plane symmetries are broken, we refer to
the case as the zigzag instability [see Fig. 2(d)].

B. Evaluation of the response functions

We evaluate the response functions in the imaginary time
formalism and find the real-time response functions by analytic
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continuation. The imaginary-time in-plane projected density-
density response function is defined as

χ
(m−m′)
dd (xτ ; x′τ ′) = −Tr{ρ̂GTτ [ρ̂m(xτ )ρ̂m′ (x′τ ′)]}, (29)

where ρ̂G = e−β(H−μN )/ZG is the grand canonical weighting
operator. The imaginary-time ripplon-ripplon response func-
tion is defined as

χ
(m−m′)
αβ (xτ ; x′τ ′) = −Tr

{
ρ̂GTτ

[
Ŝαβ

m (xτ )Ŝαβ

m′ (x′τ ′)
]}

. (30)

The space and time translation invariance of the Hamiltonian
and the normal phase imply that the response functions are
functions of x − x′ and τ − τ ′ and therefore it is easier to
express them in terms of transferred momentum q and bosonic
Matsubara frequencies iνn. Also, both of the density-desity and
ripplon-ripplon response functions can be expressed in terms
of polarization insertions as follows:

χ
(m−m′)
dd (q,iνn) =

∑
α,β

�
(m−m′)
αα;ββ (q,iνn) (31)

and

χ
(m−m′)
αβ (q,iνn) = 1

4

[
�

(m−m′)
αβ;αβ (q,iνn) + �

(m−m′)
βα;αβ (q,iνn)

+�
(m−m′)
αβ;βα (q,iνn) + �

(m−m′)
βα;βα (q,iνn)

]
,

(32)

where the polarization insertion is defined as

�
(m−m′)
αβ;γ λ (q,iνn) = 1

A

∑
k,k′

�
(m−m′)
αβ;γ λ (q,iνn; k,k′), (33)

and

�
(m−m′)
αβ;γ λ (q,iνn; k,k′)

=
∫ β

0
dτ eiνnτ 〈c†mα,k+q(τ )cmβ,k(τ )c†m′γ,k′−q(0)cm′λ,k′(0)〉con.

(34)

Only diagrams with connected external vertices must be
considered in Eq. (34).

The TDHF approximation for the polarization inser-
tion amounts to summing ladder and ring diagrams to all
orders.16,17 Although we are only interested in the static limit
in this study, i.e., iνn → i0+, we will only take this limit at the
end of the derivation for generality. A typical term contributing
to �

(m−m′)
αβ;γ λ in the TDHF approximation consists of one or more

bubble diagrams, possibly with ladder-type vertex corrections,
connected to each other by interaction lines:

�
(m−m′)
αβ;γ λ = . . .

+ . . .

+

(35)

Since the layer index is conserved on each interaction vertex,
it is easy to see that the particle and hole lines appearing in
an irreducible polarization diagram (bubble) carry the same
layer index. Thus the vertex corrections are only due to the

intralayer interactions. The homogeneity of the normal phase
also implies that the bubble diagrams are independent of
the layer indices. Thus we can carry out the summation in
two steps: first, we evaluate the irreducible polarizations by
summing the ladder-type vertex corrections to all orders. Next,
we calculate the full polarization by connecting the bubbles
with interaction lines.

Let ��
αβ;γ λ be the irreducible interlayer particle-hole

propagator with ladderlike interactions summed to all orders.
��

αβ;γ λ can be found by solving the following Bethe-Salpeter
equation:

Π�
αβ;γλ(q, iνn;k1,k2) =

=

(36)

The diagrammatic equation yields the following integral
equation:

��
αβ;γ λ(q,iνn; k1)

= �
(0)
αβ;γ λ(k1,q,iνn) − �

(0)
αβ;μν(q,iνn; k1)

×
∫

d2k′

(2π )2
Vσν;μρ(k′ − k1)��

ρσ ;γ λ(q,iνn; k′), (37)

where we have summed both sides over k2. Summation over
repeated indices is assumed throughout. �

(0)
αβ;μν(q,iνn; k) is

the bare particle-hole propagator:

�
(0)
αβ;γ λ(q,iνn; k)

= 1

β

∑
iωn

Gλβ(k + q,iωn + iνn)Gαγ (k,iωn)

= Uαα′ (k)Uββ ′(k + q)Uγγ ′(k)Uλλ′(k + q)

× δβ ′λ′δα′γ ′
nF (ξ̃k,α′) − nF (ξ̃k+q,β ′)

iνn − (ξ̃k+q,β ′ − ξ̃k,α′)
. (38)

The irreducible polarization diagram, ��
αβ;γ λ(q,iνn), is found

by summing ��
αβ;γ λ(q,iνn; k1,k2) over k1 and k2. The sum-

mation over k2 is trivial and is already done in Eq. (37).
The summation over k1, however, may only be done once
the solution of the integral equation is known. We solve the
integral equation numerically. The details of the numerical
procedure are provided in Appendix B.

Once ��
αβ;γ λ(q,iνn) is evaluated, the full polarization

can be easily obtained by summing the ring diagrams
to all orders. We note that the interaction lines connect-
ing the irreducible polarizations may have vertices be-
longing to different layers [see Eq. (35)]. The following
Dyson’s equation yields the summation ring diagrams to all
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orders:

Π(m−m′)
αβ;γλ (q, iνn) ≡

= δmm′

+
∑

μν;ρσ

∑

n

,

(39)

where the blank and filled circles denote irreducible and full
polarizations, respectively. The above diagrammatic equation
yields the following linear system of equations:

�
(m−m′)
αβ;γ λ = δmm′��

αβ;γ λ

+
Nl−1∑

n=−Nl+1

∑
μν;ρσ

��
αβ;μν V (m−n)

μν;ρσ �
(n−m′)
ρσ ;γ λ , (40)

where we have dropped the common argument (q,iνn) for
brevity. Since we assumed periodic boundary conditions along
the z axis, �

(m−m′)
αβ;γ λ is a periodic function of m − m′ and the

above equation can be most conveniently solved by going
from the layer index to transverse momentum representation.
We define

�̃
(kz)
αβ;γ λ(q,iνn) =

Nl−1∑
m=0

e−ikzmd �
(m)
αβ;γ λ(q,iνn), (41)

where kz = 2πn/L for n = 0,1, . . . ,Nl − 1. Plugging Eq. (41)
into Eq. (40), we get

�̃
(kz)
αβ;γ λ = ��

αβ;γ λ +
∑

μν;ρσ

��
αβ;μν Ṽ (kz)

μν;ρσ �̃
(kz)
ρσ ;γ λ, (42)

where

Ṽ (kz)
μν;ρσ (q) =

Nl−1∑
n=−Nl+1

e−ikznd V (n)
μν;ρσ (q). (43)

The transverse modes with different kz are decoupled in
Eq. (42) and the problem reduces to solving a linear system in
the subband indices for each kz. The response functions can
also be expressed conveniently in the transverse momentum
basis using Eqs. (31) and (32):

χ
(kz)
dd (q,iνn) =

∑
α,β

�
(kz)
αα;ββ (q,iνn), (44)

χ
(kz)
αβ (q,iνn) = 1

4

[
�

(kz)
αβ;αβ(q,iνn) + �

(kz)
βα;αβ (q,iνn)

+�
(kz)
αβ;βα(q,iνn) + �

(kz)
βα;βα(q,iνn)

]
. (45)

Before embarking on evaluating the response function using
the described formalism, we find it worthwhile to briefly study
the direct consequences of the coupling between in-plane
and out-of-plane modes. Understanding the coupling between
various density ordering modes guides us in predicting which
modes go unstable simultaneously and which modes may
remain stable once the liquid phase becomes unstable.

It is straightforward to establish that all in-plane density
fluctuations (corresponding to polarization diagrams such as

�00;00, �00;11, �11;11, etc.) are coupled to each other due
to the existence of interaction matrix elements V00;11 and
such. Therefore the in-plane density wave modes go unstable
together and contribute to the formation of an inhomogeneous
case. In particular, coexistence of liquid phase in one subband
and a density ordered phase in another subband is impossible.

As mentioned in Sec. II A, the intersubband interactions
conserve the net of parity of the interacting quasiparticles in
the single-layer case. As a consequence, there is no coupling
between in-plane density fluctuations and odd ripplons (corre-
sponding to polarization diagrams such as �01;01, �01;10, etc)
due to the absence of interaction matrix elements V00;01 and
such. For instance, starting from the N1 phase, it is possible
to reach a density ordered phase with no accompanying
out-of-plane order.

In multilayer systems (Nl > 1), the situation can be differ-
ent. As mentioned in Sec. II B, the intersubband interactions
between quasiparticles of different layers violate the parity
conservation. Using the results of Appendix A, one easily
finds that the parity violating interaction matrix elements are
odd under the inversion of layer indices, i.e., V (m−m′)

αβ;γ λ (q) =
(−1)P V (m′−m)

αβ;γ λ (q), where P = (α + β + γ + λ) mod 2. Using
this property, the interlayer interactions in the transverse
momentum basis, Eq. (43), can be expressed in a more useful
form:

Ṽ (kz)
αβ;γ λ(q)

=
{
Vαβ;γ λ(q) + 2

∑Nl−1
n=1 cos(kznd)V (n)

αβ;γ λ(q) if P = 0,

−2i
∑Nl−1

n=1 sin(kznd)V (n)
αβ;γ λ(q) if P = 1.

(46)

Clearly, the parity-violating matrix elements (P = 1) are
nonvanishing only if kz �= 0. Therefore, in multilayer systems,
density waves and odd ripplons are coupled at finite transverse
momenta. Thus, if the first mode that goes unstable has a finite
transverse momentum, the resulting ordered phase breaks both
in-plane translation symmetry and Z2 reflection symmetry.

We note that once the leading instability is found, the study
of subsequent instabilities must be done with a word of caution.
The leading instability modifies the initial state, either by
producing short-range correlations or breaking a symmetry.
Even if the new state can be described well at the mean-field
level, the Green’s functions and the response functions must be
recalculated in the new state. This requirement in turn modifies
the nature and/or order of the subsequent instabilities. We only
study the leading instability of the liquid phase in this paper
and leave the study of subsequent transitions within the density
ordered phase for future works.

IV. THE MEAN-FIELD INSTABILITY DIAGRAM
OF THE LIQUID PHASE

Due to the complexity of the formalism described in
the previous section, obtaining analytical expressions for the
response functions in the TDHF approximation is a formidable
task without resorting to further approximations. The most
involved part of the calculation is solving the Bethe-Salpeter
integral equation that represents the effects of intralayer
exchange interactions. Here, we present the results obtained
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by exact numerical calculations based on the procedure
outlined in the previous section. The numerical procedure
is described in Appendix B in detail. Later, we will employ
further simplifying approximations in order to obtain tractable
analytical expressions that guide us in interpreting the results.

We are interested in finding the boundary of the stability
of the liquid phase and the characteristics of the mode that
drives the instability, as a function of tunable parameters
of the system. For a fixed number of layers Nl , interlayer
separation d and temperature T , there remain two tunable
dimensionless parameters: the dipolar interaction strength,
rd [see Eq. (1)], and the ratio of the transverse confinement
width and the mean interparticle distance,

√
na⊥. The limits√

na⊥ � 1,
√

na⊥ ∼ 1, and
√

na⊥ � 1 correspond to the
two-, quasi-two-, and three-dimensional regimes, respectively.
The IL limit is achieved for a⊥/d � 1. In the study of
multilayer systems, we restrict our parameters to

√
nd � 1,

i.e., the high-density limit (with respective to the layer spacing)
in which both IL limit and quasi-two-dimensionality can be
approximately achieved.

We locate the instability boundaries of the liquid phase
using a divide-and-conquer method. For each a⊥, we first
locate rd,L and rd,H such that all response functions are regular
and smooth for rd,L and at least one mode is unstable at rd,H.
The instability appears as a zero crossing in the inverse of some
response function. Once a lower and an upper limit is found
for the critical rd , the exact location of the phase boundary is
determined by successive bisection of this interval.

In order to simplify our analysis, we confine our attention to
the low temperatures, where thermal fluctuations are negligible
compared to the quantum fluctuations. We set T = 0.02 T

(0)
F ,

where T
(0)
F = 2πnh̄2/mkB is the Fermi temperature of a two-

dimensional free Fermi gas at the same density. We will later
show that the chosen small temperature is high enough to
suppress the interlayer superfluid transition25–27 in all of the
studied multilayer configurations.

A. Instabilities of single-layer systems

We have studied the properties of the liquid phase of
single-layer systems in an earlier paper.18 In brief, when√

na⊥ � 1, the energy gap between the subbands is much
larger than the Fermi energy and the system is effectively
two-dimensional, i.e., only the lowest subband (α = 0) is
filled. Upon relaxing the trap, i.e.,

√
na⊥ ∼ 1, the subband

gap is reduced and higher subbands will be filled. We denote
a normal liquid phase having up to j th subband filled by Nj .
The Fermi surface of a system in the Nj phase consists of
j + 1 circles, characterized by their radii kF,0,kF,1, . . . ,kF,j .
In analogy to quasi-two-dimensional electron gas, we expect
to get j + 1 peaks in static density-density response function
versus momentum q at q ≈ 2kF,0,q ≈ 2kF,1, . . . ,q ≈ 2kF,j ,
corresponding to softened particle-hole excitations arising
from opposite poles of the Fermi surface of each subband.
We also expect to get a single peak at q ≈ kF,α + kF,β in
the αβ-ripplon response function, again, analogous to SDW
softening in electron gas.19

Figure 3 shows the static density-density response function
in N0 (top plot) and N1 (middle and bottom plots) phases.
In the N0 phase, we only get a single peak corresponding to

FIG. 3. Static density-density response function of a single-layer
system in the normal phase. χ̃dd ≡ 2πh̄2χdd/m and the dashed lines
denote q = 2kF,j , j = 0,1. (a) N0 phase (rd = 1.0,

√
na⊥ = 0.15),

(b) N1 phase (rd = 1.35,
√

na⊥ = 0.25), and (c) N1 phase (rd = 1.35,√
na⊥ = 0.35).

the softened density-wave mode at q ≈ 2kF,0. The middle and
bottom plots (N1) correspond to low and high population of
the first excited subband. It is noticed that in the middle plot,
the q ≈ 2kF,0 mode is more enhanced compared to q ≈ 2kF,1

mode. The scenario is reversed, however, as the population
of the first subband is increased beyond a certain threshold.
Thus we generally expect q ≈ 2kF,0 to be the first mode to go
unstable in the N0 phase, while we expect a switching from
q ≈ 2kF,0 to q ≈ 2kF,1 in the N1 phase.

Figure 4 shows the static 01-ripplon response function for
the same configurations as in Fig. 3. A slight enhancement of

FIG. 4. Static 01-ripplon response function of a single-layer
system in the normal phase. χ̃01 ≡ 2πh̄2χ01/m and the dashed lines
denote q = kF,0 + kF,1. (a) N0 phase (rd = 1.0,

√
na⊥ = 0.15), (b)

N1 phase (rd = 1.35,
√

na⊥ = 0.25), and (c) N1 phase (rd = 1.35,√
na⊥ = 0.35).
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FIG. 5. (Color online) (a) The phase diagram of quasi-two-
dimensional dipolar fermions in a single-layer configuration. The
green dashed lines show the boundary between different multisub-
band normal phases (N0, N1, . . .), the yellow shaded region is a density
ordered phase and the thick lines on the N-DW boundary indicate the
unstable wave vector, q = 2kF,0 (lower segment, sky blue), q = 2kF,1

(middle segment, red), and q = 2kF,2 (upper segment, black). Note
that the indicated DW region is not a single phase and can be
composed of several density ordered phases characterized by different
ordering wave-vectors. (b) The variation of unstable wave vector
along the N-DW boundary (black line). The blue, red, and black
dashed lines show twice the Fermi momentum of the zeroth, first,
and second subbands on the boundary.

the 01-ripplon mode at q = kF,0 + kF,1 is noticed in N1 phase,
however, the peaks are less pronounced than the peaks of the
density-density response function. This result can be under-
stood in light of the stronger intrasubband versus intersubband
repulsion, the latter being weaker due to contributions from
attractive head-to-tail dipole-dipole interactions. Therefore we
generally expect the density-wave instability to precede the
ripplon instability.

Figure 5 shows the instability phase diagram of a single-
layer system as a function of rd and

√
na⊥. As we speculated

before, we find that the density-wave instability precedes
the ripplon instability in the studied range of parameters.
Therefore the ripplon instability may only appear in the density
ordered phase and form a zigzag phase [see Fig. 2(d)]. The plot
next to the phase diagram in Fig. 5 shows the wave vector of
the unstable mode on the N-DW boundary. The switching of
unstable mode in the N1 can also be clearly seen; the density
ordering wave vector of a system in the N1 liquid phase
is q = 2kF,0 for

√
na⊥ < 0.25, however, it discontinuously

jumps to q = 2kF,1 for
√

na⊥ > 0.25. The same behavior is
observed in the N2 phase as well. We will investigate this
behavior in Sec. V.

B. Instabilities of multilayer systems

As mentioned in Sec. II B, the normal phase of multilayer
systems is very similar to single-layer systems in the IL limit,
the only difference being the existence of a mean-field shift of
the subband energies due to direct interlayer interactions. The

interlayer interactions, however, can dramatically affect the
density wave fluctuations. In particular, one expects a more
pronounced enhancement of both density wave and ripplon
fluctuations. Analogous to the single-layer case, starting from
the Nj phase, we again expect to see j + 1 peaks in the
static density-density response functions at q = 2kF,0, q =
2kF,1, . . . ,q = 2kF,j and a peak at q = kF,α + kF,β in the αβ-
ripplon response function. The coupling between density-wave
and ripplon modes at finite transverse momenta results in the
mixing of these peaks such that traces of density wave peaks
can be noticed in the ripplon response function and vice versa.
In the following discussions, we keep the number of layers
constant, Nl = 50, which is in the order of the typical number
achievable in the experiments.

Figures 6 and 7 show the static density-density and 01-
ripplon response functions evaluated for three different points

π
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FIG. 6. (Color online) The static density-density response func-
tion of a multilayer system (

√
nd = 1.25, Nl = 50) in the normal

phase. χ̃dd ≡ 2πh̄2χdd/m and the blue and red planes denote q =
2kF,0 and q = 2kF,0 respectively. (a) N0 phase (rd = 1.265,

√
na⊥ =

0.20), (b) N1 phase (rd = 1.255,
√

na⊥ = 0.22), and (c) N1 phase
(rd = 0.845,

√
na⊥ = 0.36). In all plots, it is noticed that kz = 0

modes experience the most softening.
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FIG. 7. (Color online) The static 01-ripplon response function of
a multilayer system (

√
nd = 1.25, Nl = 50) in the normal phase.

χ̃01 ≡ 2πh̄2χ01/m and the green planes denote q = kF,0 + kF,1. (a)
N0 phase (rd = 1.265,

√
na⊥ = 0.20), (b) N1 phase (rd = 1.255,√

na⊥ = 0.22), and (c) N1 phase (rd = 0.845,
√

na⊥ = 0.36). It is
noticed that kzd = π modes experience the maximum enhancements
due to interactions. The peaks at n−1/2q 
 3 for finite kz in plot (c)
correspond to the softened density waves, which are coupled to the
01-ripplons through parity-violating interlayer interactions.

in the normal phase: the (a) plots correspond to a point in the
N0 phase, the (b) plots are in N1 phase with a small population
in the first excited subband, and (c) plots are deep in the N1

phase.
The plots in Fig. 6 indicate that the density-wave modes

with zero transverse momenta experience most enhancement
from the attractive interlayer interactions. This is an expected
result given that density-wave fluctuations are in-plane density
modulations and at kz = 0, they are aligned across the layers
and thus experience the maximum softening due to interlayer
attraction. We note that one expects the reverse scenario,
i.e., maximum suppression of density-waves at kz = 0, had
the interlayer interactions been repulsive [for example, in
multilayer two-dimensional electron gases (2DEG)].

On the other hand, the odd ripplons are expected to
experience most softening at kzd = π which corresponds to

FIG. 8. (Color online) The phase diagram of quasi-two-
dimensional dipolar fermions in a multilayer configuration (

√
nd =

2, Nl = 50). The black dashed line is the N-DW boundary in the
single-layer configuration (refer to the caption of Fig. 5 for the
description of the lines and symbols).

dimerization. At kzd = π , the out-of-plane bumps of even
numbered layers lie closest to the valleys of odd num-
bered layers, forming an energetically favorable configuration
[shown schematically in Fig. 2(b)]. The slightly higher peak
of 01-ripplon response function at kzd = π compared to
kz = 0 is noticeable in Figs. 7(b)–7(c). The smaller peak in
the 01-ripplon response function (visible for 0 < kz � π/2d)
is due to coupling to the softened density-wave mode at
q = 2 kF,1.

In all of the studied cases, although the ripplon softening
was found to be a more pronounced effect in multilayer
configurations compared to single-layer systems, the density-
wave instability still precedes the ripplon instability. The
first density-wave mode that becomes unstable has zero
transverse momentum, implying that the density-wave and
ripplon fluctuations are decoupled. Therefore the density
ordered phase to follow does not necessarily have out-of-plane
order. In the remainder of this section, we discuss the phase
diagrams of multilayer systems for three interlayer separations,√

nd = 2, 1.5, and 1.25.
Figure 8 shows the phase diagram of a multilayer configura-

tion with
√

nd = 2 and Nl = 50. The dashed black line on the
left plot indicates the N-DW boundary line of the single-layer
system (copied from Fig. 5). As mentioned before, the first
unstable mode is an in-plane density-wave mode with zero
transverse momentum. We also find that the most noticeable
deviation of the N-DW phase boundary occurs for larger
values of a⊥. The switching of the unstable wave vector from
q = 2kF,0 to q = 2kF,1 in the N1 phase is also found to occur
for a smaller value of

√
na⊥ compared to the single-layer case,

i.e., closer to the N0-N1 boundary.
Figure 9 shows the phase diagram for

√
nd = 1.5 and

Nl = 50. The hatched region indicates the configurations at
which the interlayer tunneling is not negligible anymore and
the approximation of independent layers is not justified. The
physically interesting part of the phase diagram, however,
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FIG. 9. (Color online) The phase diagram of quasi-two-
dimensional dipolar fermions in a multilayer configuration (

√
nd =

1.5, Nl = 50). The black dashed line is the N-DW boundary in
the single-layer configuration (refer to the caption of Fig. 5 for the
description of the lines and symbols). The hatched region is where
the IL limit is not applicable (refer to Sec. II).

lies outside of the hatched region. We notice that the N-DW
boundary line deviates even further from that of single-layer
systems. The switching point of the unstable wave vector lies
very close to N0-N1 boundary. In other words, the N1 liquid
phase always goes unstable due to the softened density-wave
mode at q = 2kF,1. Since kF,1 = 0 along the N0-N1 transition
line, the unstable wave vector can be arbitrarily small in the
vicinity of the switching point [see Fig. 9(b)].

A more dramatic behavior is observed for smaller layer
separations. Figure 10 shows the phase diagram for

√
nd =

FIG. 10. (Color online) The phase diagram of quasi-two-
dimensional dipolar fermions in a multilayer configuration (

√
nd =

1.25, Nl = 50). The black dashed line is the N-DW boundary in
the single-layer configuration (refer to the caption of Fig. 5 for the
description of the lines and symbols). The hatched region is where
the IL limit is not applicable (refer to Sec. II).

1.25 and Nl = 50. It is noticed that the N-DW boundary
line becomes virtually tangent to the N0-N1 transition line in
the range 0.21 <

√
na⊥ < 0.26. Along this part of the phase

boundary, the transition to the inhomogeneous phase is driven
by extremely long wavelength density-wave modes.

In the next section, we approach the same problem again
using an approximate RPA-like formalism. Although we do
not expect quantitatively reliable results, we still find that such
an approach yields interesting analytical insights into some of
the peculiar results of this section, in particular, the sudden
switching of the unstable mode along the N-DW boundary
and the appearance of long wavelength unstable modes in
multilayer systems.

V. INSIGHTS FROM THE RPA APPROXIMATION:
NEGLECTING SHORT-RANGE
EXCHANGE INTERACTIONS

The major quantitative results of this paper were presented
in the preceding section by numerically evaluating the response
functions in the TDHF approximation. However, some of the
results do not appeal to immediate intuition. In particular,
(i) in single-layer systems, starting from the N1 phase, it is not
clear why the unstable density-wave abruptly switches from
q = 2kF,0 to q = 2kF,1 as the population of particles in the
first subband is increased (see Fig. 5), and (ii) the appearance
of extremely long wavelength unstable density-wave modes
along certain parts of the N-DW phase boundary in multilayer
systems is puzzling. In this section, we develop a simplistic
and minimal model by applying successive approximations
to the TDHF formalism to derive an RPA-like expression
for the density-density response function with which we will
qualitatively explain the above findings.

We start by noting that the main difficulty in obtaining
analytical expressions in the TDHF approximation is the
exact treatment of exchange interactions, i.e., solving the
Bethe-Salpeter integral equation. In the RPA approximation,
on the other hand, one completely neglects the exchange
interactions and this difficulty does not arise. However, the
RPA approximation is not readily applicable to our problem,
given that large cancellations are expected between the
direct and exchange interactions of particle-hole pairs. This
can be easily seen in the simplest case, i.e., a single-layer
system in the two-dimensional limit (a⊥ → 0). In this limit,
the only relevant interaction matrix element is V00;00(q) =
4
√

2πD2/3a⊥ − 2πD2qe−q|n|d + O(D2q2a⊥). The s-wave
component of V00;00(q) diverges in the limit a⊥ → 0. In a
system of spinless fermions (which is the case here), the s-wave
interactions between the particles must vanish due to Fermi
statistics and this cancellation only happens if one considers
both direct and exchange interactions in a balanced way. This is
clearly not the case in the RPA approximation. In these cases,
it is customary to resort to heuristic methods to capture the
exchange effects in an approximate way. Hubbard-type many-
body local-field approximations are widely used in the study
of electron liquid28 and have also been generalized to quasi-
two-dimensional systems.29 Such approximations, however,
essentially aim at improving the long-wavelength behavior
of the response functions. In our problem, we are interested
in the response to density-wave fluctuations at wavelengths
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in the order of the inverse Fermi momentum. Therefore the
many-body local fields used for electronic systems are not
readily applicable to our problem and must be modified.

Since we are only interested in qualitatively relevant results
in this section, we take the easiest route and argue that
by simply removing the s-wave component from all of the
interaction matrix elements, the RPA formalism yields reason-
ably decent values for the density-density response function
at q ≈ 2 kF,j . This claim can be justified by investigating
the Bethe-Salpeter equation for the irreducible polarization
with more care. For the clarity of argument, we consider the
single-subband limit first, where the bookkeeping of subband
indices can be obviated. Taking the static limit, νn → 0, and
defining f (q,k) ≡ ��

00;00(q,i0+; k)/�
(0)
00;00(q,i0+; k), one can

rewrite Eq. (37) as

f (q,k) = 1 −
∫

d2k′

(2π )2
u(k′ − k) �(0)(q,k′) f (q,k′), (47)

where u(k) ≡ V00;00(k) and

�(0)(q,k) ≡ �
(0)
00;00(q,i0+; k)

= nF (ξ̃k,0) − nF (ξ̃k+q,0)

ξ̃k,0 − ξ̃k+q,0 + i0+ . (48)

For concreteness, we set q = 2kF x̂. According to Eq. (48)
and as shown in Fig. 11, �(0)(2kF x̂,k) is singular at k0 =
−kF x̂ and we expect the most important contributions to the
integral on the right-hand side of Eq. (47) to result from the
regions in the vicinity of k0. Thus we may approximately
replace u(k′ − k) with u(k′ − k0) in the integrand. On the
other hand, ��

00;00(2kF x̂,i0+) = ∫
k′ f (2kF x̂,k′) �(0)(2kF x̂,k′)

by definition in which we may again approximately replace
f (2kF x̂,k′) with f (2kF x̂,k0) according to same argument.
Combining both approximations, we find that the final recipe
is to replace u(k′ − k) with u(0) in Eq. (47), i.e., to keep only
the long-range exchange interactions. We emphasize that the
above argument is special to the analysis of |q| ≈ 2kF modes.

Once the short-range exchange interactions are neglected,
the Bethe-Salpeter equation can be trivially solved. Combining
this results with the Dyson’s equation, Eq. (40), we find that
the only effect of the long-range exchange interactions is to
remove the s-wave component from the interaction matrix
elements, as we expected.

The above argument can be easily generalized to multi-
subband and multilayer systems using a matrix notation and
we omit it here. In brief, we find that the general recipe is

FIG. 11. Density plot of �
(0)
00;00(2kF,0x̂,k) showing the singular

behavior at k = −kF,0x̂.

to simply make the substitution Vρν;μσ (k − k′) → Vρν;μσ (0)
in the Bethe-Salpeter equation, yielding the following linear
algebraic system of equations:

�� = �(0) − �(0)Vxch�
�. (49)

We have dropped the common arguments and subband indices
for brevity in the above equation. Also, matrix multiplication
is implied in each pair of subband indices. The approximate
exchange interaction matrix, Vxch, is defined as

[Vxch]μν;ρσ = Vρν;μσ (0). (50)

Combining Eqs. (49) and (42), we get

�̃(kz) = �̃(0) + �̃(0)(Ṽ (kz) − Vxch)�̃(kz). (51)

To ensure no violation of conservation laws, the short-range
exchange interactions must also be neglected in the self-energy
corrections. However, the long-range direct and exchange
intralayer exchange cancel each other. As mentioned in
Sec. II B, the direct interlayer interactions merely shift the
zero-point subband energies by a small amount and for
simplicity, one may neglect such corrections as well. Therefore
self-energy corrections can be neglected altogether. We refer
to this approximation scheme as RPAns for brevity, with the ns
subscript indicating the absence of s-wave interaction terms.

The important features of the phase diagrams presented in
the previous section can be captured by keeping only the first
two subbands. We also restrict the forthcoming analysis to
kz = 0, given that such modes become unstable first. Under
such assumptions, Eqs. (51) and (44) yield

χdd(q) = −1

det�(q)

{
�

(0)
00 (q) + �

(0)
11 (q) + �

(0)
00 (q)�(0)

11 (q)

× [
Veff

00;00(q) + Veff
11;11(q) − 2Veff

00;11(q)
]}

, (52)

where

det�(q) = 1 − Veff
00;00(q)�(0)

00 (q) − Veff
11;11(q)�(0)

11 (q)

+�
(0)
00 (q)�(0)

11 (q)
[
Veff

00;00(q)Veff
11;11(q) − Veff

00;11(q)2
]
.

(53)

The effective interaction matrix elements, Veff
αβ;γ λ, are defined

as

Veff
αβ;γ λ(q) =

⎡
⎣ Nl−1∑

n=−Nl+1

V (n)
αβ;γ λ(q)

⎤
⎦ − Vγβ;αλ(0), (54)

and the bare static intrasubband polarization, �(0)
αα(q), can be

evaluated analytically in the absence of self-energy correc-
tions:

�(0)
αα(q) =

∫
d2k

(2π )2

nF
(
ξ 0

k+q,α

) − nF
(
ξ 0

k,α

)
ξ 0

k+q,α − ξ 0
k,α + i0+

= m

2πh̄2

[
1 −

√
1 −

(
2k

(0)
F,α

q

)2

θ
(
q − 2k

(0)
F,α

)]
.

(55)

In the above equation, {k(0)
F,α} are the Fermi momenta of

a noninteracting quasi-two-dimensional gas, as shown in
Table I.
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TABLE I. The Fermi momenta of the first two subbands of a
noninteracting quasi-two-dimensional gas.

a⊥ < 1√
2πn

1√
2πn

� a⊥ <
√

3√
2πn

k
(0)
F,0

√
4πn

√
2πn + n/a2

⊥

k
(0)
F,1 0

√
2πn − n/a2

⊥

In this simplified approach, the single-layer and multilayer
systems are treated likewise. The multilayer effects are
included in the effective interactions. In other words, Veff

αβ;γ λ is
the sum of all intralayer and interlayer interactions. Studying
the behavior of the effective interactions is thus a key step in
understanding the difference between the phase diagrams of
single-layer and multilayer systems. We focus on the behavior
of Veff

00;00(q), which is found to be qualitatively identical to the
behavior of the rest of the involved interaction matrix elements,
Veff

11;11(q) and Veff
00;11(q). Expanding Eq. (A4) about q = 0, we

get

V (n)
00;00(q) = 4

√
2πD2

3a⊥
δn,0 − 2πD2qe−q|n|d + O(q2a⊥), (56)

using which we find

Veff
00;00(q) 


{
−2πD2q, Nl = 1,

−2πD2q coth
(

qd

2

)
, Nl = ∞,

(57)

where the neglected terms are O(q2a⊥). For future reference,
it is also useful to study the behavior of Veff

00;00(q) for finite Nl

and for wavelengths longer than the interlayer separation d. In
this limit, we find

Veff
00;00(q) 


{
−2πD2(2Nl − 1)q, q � L−1,

− 4πD2

d
, L−1 � q � d−1.

(58)

Again, the neglected terms are O(q2a⊥). We remind that L ≡
Nld is the transverse size of the stack. While the effective
interaction in single-layer systems has a linear dependence
on q in the regime q � a−1

⊥ , its behavior is very different
for long-wavelength modes in multilayer systems. Figure 12
shows Veff

00;00(q) as a function of q for three different number
of layers, Nl = 1 (green), 3 (blue), and 200 (black). In the IL
limit (a⊥ � d), one can classify the length scales into four
regimes according to the behavior of effective interactions.
These regimes are indicated in Fig. 12 and a brief description
for each is provided in the caption. Consequently, one can
categorize the density wave fluctuations according to the same
length scale classification and as we will see shortly, this is
a key step in interpreting the features of the obtained phase
diagrams.

We start the analysis of RPAns with the simpler case
of single-layer systems. The stability of the normal phase
can be determined by looking at the behavior of det�(q),
which is the term appearing in the denominator of the RPAns

expression for the density-density response function. For
small interaction strengths, det�(q) ≈ 1. Upon increasing the
interactions, det�(q) decreases and eventually crosses zero at
some q, signaling the appearance of a softened mode.

FIG. 12. (Color online) The effective interaction matrix element
Veff

00;00(q) vs q. The green (upper), blue (middle), and black (lower)
lines correspond to Nl = 1,3, and 200, respectively. In all cases,
a⊥/d = 1/15. The inset plot shows the Nl = 200 case at small values
of q for clarity. In the IL limit (a⊥ � d), one can classify the length
scales into four categories according to the behavior of effective
interactions, as indicated on the figure. Category (0): (q � L−1)
length scales larger than L. The layered structure of the stack is
invisible to density-wave fluctuations in this length scale. Since we
have set kz = 0, the in-plane density waves are all aligned across
the layers and collectively behave like a single density wave with an
effective dipolar interaction strength of (2Nl − 1)D2 [see Eq. (58)]. In
other words, the whole stack behaves like a single two-dimensional
layer. Category (I): (L−1 � q � d−1) length scales smaller than L

and larger than interlayer separation d . Density-wave fluctuations
in any given layer interact with a fraction (qL)−1 of other layers,
hence, resulting in a constant, scale invariant effective interaction
−2πD2(2Nl − 1)q × (qL)−1 ≈ −4πD2/d . Category (II): (d−1 �
q � a−1

⊥ ) length scales smaller than d and larger than a⊥. In
this regime, the interlayer interactions are exponentially small [see
Eq. (56)] and the density waves only interact within the layers.
Category (III): (q � a−1

⊥ ) length scales smaller than a⊥. Each of
the interaction matrix elements (Veff

00;00, Veff
00;11, etc.) assume different

nonuniversal constant values in the order of D2/a⊥.

Generally, we found that the approximate identity
Veff

00;00(q)Veff
11;11(q) ≈ Veff

00;11(q)2 holds well for all q. In par-
ticular, all interaction matrix elements behave similarly in the
limit q � a−1

⊥ according to the remarks given in the caption
of Fig. 12, justifying this identity for wavelengths longer than
a⊥. The second line of Eq. (53) can be neglected in light of the
this observation, yielding the following simple expression for
det�(q):

det�(q) ≈ 1 − Veff
00;00(q)�(0)

00 (q) − Veff
11;11(q)�(0)

11 (q). (59)

Intuitively, the above equation implies that the net density-
wave enhancement is the algebraic sum of RPA-like density-
wave enhancement of each subband.

Figure 13 shows the plot of det�(q) for a point in N0

phase [Fig. 13(a)] and two points in N1 phase, with small and
large population of the first subband [Figs. 13(b) and 13(c),
respectively]. In it noticed that in Figs. 13(a) and 13(b), the
most softened mode (i.e., smaller det�) is q = 2kF,0, while
in Fig. 13(c), q = 2kF,1 is the most softened. The shift of the
unstable mode from q = 2kF,0 to q = 2kF,1 in the N1 phase can
be explained in light of Eqs. (59) and (55). In order to simply
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(a)

(b)

(c)

FIG. 13. Plot of det�(q) vs n−1/2q for three points in the normal
phase [see Eqs. (52) and (53) and the following text for details]:
(a) N0 phase (rd = 0.40,

√
na⊥ = 0.30), (b) N1 phase (rd = 0.50,√

na⊥ = 0.41), and (c) N1 phase (rd = 0.50,
√

na⊥ = 0.50). Refer
to Fig. 14 to see the location of these three points in the phase diagram.

the discussion, we note that as long as q < 2kF,α , �(0)
αα(q) has

a positive constant value and rapidly falls for q larger than
2kF,α . Thus one only needs to monitor det�(q) for q = 2kF,0

and q = 2kF,1, where the product of the effective interactions
and the bare polarizations is the largest. There are two possible
scenarios in the N1 phase.

Case I (kF,1 � kF,0): this case corresponds to dilute
quasiparticles in the first excited subband and consequently,
the effective interactions (which increase linearly with momen-
tum) are weak at q = 2kF,1. Therefore the sum of RPA-like
enhancements resulting from both subbands at q = 2kF,1

is smaller than the enhancement resulting mainly from the
zeroth subband at q = 2kF,0 [see Fig. 13(b)]. Since kF,1 �
kF,0, �

(0)
11 (2kF,0) ≈ 0 and at q = 2kF,0, the density-wave

enhancements are mainly due to the interactions in the zeroth
subband.

Case II (kF,1 ∼ kF,0): this situation arises when there is a
significant population in the first excited subband, i.e., deep in
the N1 phase. The scenario is reversed in this case and the sum
of enhancements resulting from both subbands at q = 2kF,1 is
larger than the enhancement resulting mainly from the zeroth
subband at q = 2kF,0 [see Fig. 13(c)].

It is not hard to see that the second scenario may only
happen if the rise of interactions is slower than the fall of
density of particle-hole excitations as a function of q. The
linear momentum dependence of dipolar interactions and the
rapid fall of �

(0)
11 (q) for q > 2kF,1 guarantees the realization

of this situation for large enough values of kF,1.
Figure 14 shows the approximate phase diagram of a

single-layer system calculated in the RPAns approximation.
The flatness of N0-N1 and N1-N2 boundaries is due to ignoring
the self-energy corrections in the normal phase. There is a
striking similarity between this phase diagram and the one
obtained by exact numerical calculation of TDHF response
functions (see Fig. 5). However, the predicted value for the

c
b

a

FIG. 14. (Color online) The approximate phase diagram of quasi-
two-dimensional dipolar fermions in a single-layer configuration
in the RPAns approximation. The dashed lines show the smallest
rd for which the density-wave mode at q = 2kF,0 or q = 2kF,1

become unstable. The pink line indicates the first unstable mode.
The switching of unstable density-wave mode in the N1 phase is
noticeable. Refer to Fig. 13 for a plot of det�(q) for the three points
marked in the diagram.

DW instability at a⊥ → 0, rRPA
d ≈ 0.15, is more than a factor

of two smaller than the same value predicted within TDHF,
rTDHF
d ≈ 0.39.

Figure 15 shows the approximate phase diagram of three
multilayer systems with different interlayer separations ob-
tained using the RPAns scheme. It is noticed that the nontrivial
features of multilayer phase diagrams, i.e., (1) indifference of
N-DW boundary line to existence of multiple layers deep in
the N0 phase, and (2) enhancement of density wave instability
along parts of N0-N1 phase for smaller interlayer separations,
are also present in the picture that RPAns suggests.

FIG. 15. (Color online) The approximate phase diagram of quasi-
two-dimensional dipolar fermions in multilayer configurations (Nl =
20) in the RPAns approximation: (a)

√
nd = 3, (b)

√
nd = 2, and

(c)
√

nd = 1.5. The dashed lines show the smallest rd for which the
density-wave mode at q = 2kF,0 or q = 2kF,1 become unstable. The
pink lines indicate the first unstable mode.
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The former feature can be explained by first noting that the
studied range of interlayer separations is such that

√
nd ∼

O(1). Therefore the unstable vector in the N0 phase, q =
2kF,0 ∼ 2

√
4πn, is almost an order of magnitude larger than

d−1 and belongs to category (II). The interlayer interactions
are irrelevant in this regime and the physics is identical to that
of a single-layer system.

As a side note, we remark that in order to see the effect of
interlayer interaction in the single-subband limit (N0 phase),
one must choose d such that

√
nd � 1. In particular, in the

limit
√

nd � N−1
l , the unstable modes will lie in category (0)

and the density-wave instability will be driven by fluctuations
whose length scale is larger than the transverse length of
the stack. As mentioned earlier, the effective interactions are
enhanced proportionally to the number of layers in this limit
and as a result, we expect the interaction strength required for
the onset of density-wave instability to be reduced by a factor
of ∼N−1

l .
The latter feature, i.e., appearance of long-wavelength

unstable modes close to N0-N1 boundary can be explained as
follows. We discuss the simpler case of Nl → ∞ first in which
all q � d−1 lie inside category (I), i.e., where the effective
interactions assume a constant value of −4πD2/d. Existence
of a small particle density n1 in the first excited subband
will result in the appearance of long-wavelength gapless
particle-hole excitations. The length scale associated to these
modes can be very large and may as well lie within category
(I) for small enough n1, i.e., q = 2kF,1 ∼ 2

√
4πn1 � d−1.

Since the density of long-wavelength excitations is finite
in two dimensions, i.e., lim|q|→0 �(0)(q) ∼ O(m/2πh̄2), they
will have a finite RPA-like contribution of �

(0)
11 (2kF,1) ×

Veff
11;11(2kF,1) ∼ −2mD2/dh̄2 to det� [see Eq. (59)]. For small

interlayer separations, this contribution can be large and result
in density-wave instability.

In the limit Nl → ∞, these modes appear exactly along the
N0-N1 boundary, where q = 2kF,1 = 0. The largest layer sep-
aration, dmax, for which such long-wavelength modes appear
can be easily determined. At d = dmax, the q = 0 unstable
mode appears only at one point, viz., at the intersection of
N0-N1 and N-DW lines. Therefore both q = 2kF,0 and q = 0
are unstable at this point [see Fig. 15(a)]. The RPAns instability
condition at q = 0 yields

det�(0+) = 1 − 4πD2

dmax

[
�

(0)
00 (0) + �

(0)
11 (0)

]
= 1 − 4πD2

dmax

m

πh̄2 = 0, (60)

and the instability of q = 2kF,0 = 2
√

4πn yields

det�(2kF,0) = 1 − Veff
00;00(2

√
4πn) m

2πh̄2 = 0. (61)

In the above equation, the effective interaction must be
evaluated on the N0-N1 boundary, i.e., a⊥ = 1/

√
2πn. The

simultaneous solution of these equations yields

√
ndmax 
 2.209, rd 
 0.5523. (62)

For d < dmax, the q = 0 unstable modes appear along a finite
interval on the N0-N1 boundary [see Figs. 10, 15(b), and 15(c)].

The prediction of dmax within RPAns is significantly larger
than the one inferred from TDHF calculations presented earlier
(see Fig. 9,

√
ndTDHF

max 
 1.5 and rd 
 1.35). This deviation is
again due to approximate treatment of exchange interactions.

We conclude this section by briefly studying the scaling
dependence of the wave vector of the long-wavelength
unstable modes discussed above on Nl . For finite Nl , the
q = 2kF,1 mode lies inside category (0) if the first excited
subband is dilute enough. In this limit, the whole stack
behaves collectively like a single pancake, with an effective
interaction of ∼−2π (2Nl − 1)D2q. Assuming q < L−1, the
RPAns instability condition yields

det�(q) ≈ 1 − 2 × m

2πh̄2 2πD2(2Nl − 1)q = 0. (63)

Solving for q, we get

q ≈
√

n

2(2Nl − 1)rd

,

√
nd

4
� rd � 0.55. (64)

The constraints imposed on rd in the above equation result
from two requirements: on one hand, the solution must satisfy
q � L−1. On the other hand, the rd required for instability of
this mode must be smaller than that required for the instability
of the q = 2kF,0 mode, which is ≈0.55 in the vicinity of the
N0-N1 boundary and for d not much less than dmax [see Eq. (62)
and Fig. 15]. In the limit Nl → ∞, the unstable wave vector
becomes 0.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we studied the mean-field density order-
ing instabilities of quasi-two-dimensional fermionic polar
molecules in both single-layer and multilayer configurations.
The dipole moments of the molecules were assumed to be
aligned perpendicular to the confining planes using a dc
electric field. We located the instabilities by evaluating various
linear response functions in the liquid phase and by searching
for the softened modes. We considered both in-plane and
out-of-plane density ordering instabilities, as schematically
depicted in Fig. 2.

In all of the studied cases, the instability of the in-plane
density-wave modes was found to precede the instability of
out-of-plane “ripplon” modes, although the latter modes were
also softened to some degree. We also found that the leading
unstable mode in multilayer systems has a zero transverse
momentum, i.e., the in-plane density waves are aligned across
the layers.

In multilayer configurations, an interesting finding was the
enhanced density-wave instability driven by dilute quasipar-
ticles of the first excited subband. By analyzing the effective
interactions at various length scales in Sec. V, we found that
these dynamical instabilities are associated to the softening
of low-energy particle-hole excitations whose wavelength is
comparable to or larger than the transverse size of the system,
L. On one hand, the density of such excitations is finite due to
the underlying two-dimensionality of the system. On the other
hand, their effective interaction is enhanced proportionally to
the number of layers due to their long wavelength. Hence, they
produce a significant density-wave softening effect.
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Another interesting feature of the phase diagram of both
single-layer and multilayer configurations is the nonmono-
tonicity of the N-DW phase boundary as a function of
transverse confinement width (see Figs. 5, 8–12). A phase
diagram with similar qualitative features has been predicted
before for quasi-2DEG using density functional theory with
Perdew-Zunger-type exchange-correlation energy.30 Thus we
expect this feature of the presented instability diagram to
persist in the true phase diagram, i.e., when the correlation
effects are also taken into account. The protrusion of the liquid
phase inside the density ordered phases allows realization of
the following interesting experimental scenario; starting from
a point such as rd = 1.45,

√
na⊥ = 0.15 in a density ordered

phase of a single-layer system, the homogeneous liquid phase
can be revived upon relaxing the trap. However, the liquid state
becomes unstable again upon relaxing the trap further (i.e., by
crossing the red boundary line in Fig. 5) toward a different
density ordered phase.

As mentioned in the introduction, Yamaguchi et al.14

and Sun et al.15 have recently studied the density-wave
instability of a (strictly) two-dimensional system of polar
molecules (a⊥ → 0) within the RPA approximation. Their
study, however, includes the more general case of tilted dipoles
and finite temperatures. At zero temperature and dipole tilt
angle, their results indicated that the density-wave instability
occurs at rd ≈ 0.17. The RPA-like approximation used in
Sec. V yields rd ≈ 0.15 in the limit a⊥ → 0, which is in good
agreement with the result of Ref. 14.

The TDHF results presented in Sec. IV, however, predict
rd ≈ 0.39 in the same limit, which is more than a factor of two
larger than the prediction of the RPA approximation. Hence,
we conclude that an exact treatment of short-range exchange
interactions is important for quantitatively reliable predictions
of phase transitions in dipolar systems.

The instabilities predicted in the mean-field picture must
be interpreted with care. On one hand, one must consider the
possibility that the actual phase transition is first-order. In this
case, the mode softening criterion does not indicate the true
transition but signifies the spinodal line (i.e., the end of liquid
metastability region) and the actual phase transition occurs for
smaller values of rd . Typically, the spinodal line lies close to
the actual transition line31 and therefore we do not expect the
above issue to be a major source of error in the obtained phase
diagrams.

The main shortcoming of the present analysis lies in the
mean-field approximation and absence of correlation effects in
the liquid phase. It is known that the mean-field mode softening
analysis often predicts the transition to the symmetry broken
phases too early. For instance, the Wigner crystal phase of 2D
electrons with 1/r Coulomb interactions is found to become
stable for rs � 1.44 in the mean-field approximation,32 while
a more realistic quantum Monte Carlo calculation yields a
value of rs � 38.33 Thus, we expect that the instability lines
shown in Figs. 5 and 8–10 will be shifted to larger values
of rd once correlation effects are taken into account. Since
mean-field predictions improve by increasing the dimension-
ality, this correction is expected to be smaller in multilayer
systems compared to single-layer systems. Nevertheless, we
expect that the mean-field transition lines obtained here
will describe sharp crossovers to the regime of strong short

range crystal correlations (with no long-range order) in real
systems, with the actual phase transitions following for larger
values of rd .

We remark that the regime of strong short-range crystal cor-
relations with no long-range order is reminiscent of the pseudo-
gap phase of fermions with strong attractive interactions.34,35

In the latter case, one finds short-range pairing correlations but
no true long-range order, i.e., no condensation of molecules.
While the full analysis of such strongly correlated “preformed
density-wave” state is outside the scope of this paper, the
mean-field analysis presented here is an indispensable first
step toward the study of this intriguing state.

At the time this paper is being written, the experimental
verification of the presented results can still be challenging.
The maximum dipolar interaction strength accessible in the
experiments is rd ≈ 0.05, which belongs to the experiments
of the group at JILA with KRb polar molecules. Observation of
density-wave instability either requires production of denser
gases or using molecules with larger dipole moments (the
permanent dipole moment of KRb is 0.55D). Further progress
of experiments with LiCs5 (with a permanent dipole moment
of 0.5D) and other fermionic polar molecules is another
promising experimental direction toward observation of the
effects discussed in this paper.

We remark that in the same way ultracold atoms were
utilized as a simulator for confined electrons with effective
short-range interactions and shed light on the Hubbard model,
ultracold polar molecules may be utilized as a tool to address
unsettled questions regarding the nature of transitions to
density ordered phases, intermediate strongly correlated states
(such as the electron nematic phase) and microemulsion phases
(such as stripes and bubbles).36

Throughout this work, we had assumed that the stable phase
in the weakly interacting regime is the normal liquid phase.
Neglecting the weak high angular momentum superconducting
phases, which may only appear at very low temperatures, this
assumption is valid for single-layer systems. In multilayer
configurations, however, the normal phase is known to be
unstable toward dimerized pseudogap and interlayer superfluid
phases25–27 at low temperatures. The passage through these
phases occurs through Ising-like and Berezinskii-Kosterlitz-
Thouless phase transitions, respectively. In our study, the
configuration that is most likely to be in a superfluid phase
in all of the presented multilayer phase diagrams (Figs. 8–10;
excluding the hatched regions) is

√
nd = 1.25, rd ≈ 0.8, and√

na⊥ ≈ 0.28. For such a configuration, the critical tempera-
ture for BCS transition is estimated to be Tc/T

(0)
F ≈ 0.01337

using the results of Ref. 25. Therefore the temperature chosen
in this study, T/T (0)

F = 0.02, is above the interlayer pairing
transition, and our assumption about the stability of the liquid
phase for weak interactions is justified.

The competition between interlayer pairing instability and
density-ordering instabilities at lower temperatures or for
systems with smaller interlayer separations, is an interesting
topic for future works. The results presented here can also be
easily extended to tilted dipoles. Reducing the intrasubband
repulsion and enhancing the intersubband repulsion, tilting
the dipoles may reverse the order of density-wave and ripplon
instabilities. The competition between intralayer p-wave
superfluidity which is expected to occur for large tilt angles,38
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ripplon, and density-wave instabilities is another interesting
topic for future research.

Note added. After the completion of this work, we became
aware of a recent related work by Zinner et al.39 in which
they study the density-wave instability of stacks of strictly
two-dimensional polar molecules (a⊥ → 0) within the RPA
approximation.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE
INTERACTION MATRIX ELEMENTS

In this Appendix, we provide analytical expressions for the
interlayer interaction between quasiparticles in the first two
subbands. The interaction between quasiparticles in higher
subbands may also be calculated using the same method.

Using Eq. (8) and approximating the Wannier’s wave
functions by shifted harmonic oscillator wave functions, the
effective interaction between particles confined to planes z = 0
and z = l can be expressed as

Vαβ;γ λ(q; l) ≡
∫

dk

2π

[∫
dz φα(z) φβ(z) e−ikz

]

×
[∫

dz′ φγ (z′ − l) φλ(z′ − l) eikz

]
Vdip(k,q),

(A1)

where φα(z) is αth harmonic oscillator wave function and

Vdip(k,q) ≡
∫

dz d2x e−ikz e−iq·x Vdip(x,z)

= 4πD2

(
k2

k2 + |q|2 − 1

3

)
. (A2)

Note that V (m,n)
αβ;γ λ(q) ≡ Vαβ;γ λ[q; (n − m)d]. Evaluating the k

integral, we get∫
dkz

2π
Vdip(k,q) = 8πD2

3
δ(z − z′) − 2πD2|q|e−|q||z−z′|.

(A3)

Plugging Eq. (A3) into Eq. (A1), we get

Vαβ;γ λ(q; l) = 8πD2

3

∫
dz φα(z)φβ(z)φγ (z − l)φλ(z − l)

− 2πD2|q|
∫

dz

∫
dz′ e−|q||z−z′ |φα(z)φβ(z)

×φγ (z′ − l)φλ(z′ − l). (A4)

At this point, one may proceed by finding a generating
function for Vαβ;γ λ(q; l) through expressing the Hermite’s
functions appearing in the harmonic oscillator wave functions
in terms of their generating functions.18 Since we are interested

in the first few matrix elements here, we find it is easier to
evaluate the required integrals directly. The first integral in
Eq. (A4) is a simple Gaussian integral, while the second double
integration can be easily evaluated by changing variables to
η = (z + z′)/2 and ξ = (z − z′)/2 and successive integration
by parts. We just quote the final result here:

V00;00(q; l) = 4
√

2πD2

3a⊥
e−l2/2a2

⊥ − πD2|q| F+(|q|a⊥,l/a⊥),

(A5)

V00;01(q; l) = −4
√

πl D2

3a2
⊥

e−l2/2a2
⊥

+
√

2πD2a⊥|q|2 F−(|q|a⊥,l/a⊥), (A6)

V00;11(q; l) = 2
√

2πD2

3a⊥
e−l2/2a2

⊥ (1 + l/a⊥)

+ D2

2
|q|[2√

2π |q|a⊥ e−l2/2a2
⊥

−π (2 + |q|2a2
⊥) F+(|q|a⊥,l/a⊥)

]
, (A7)

V01;11(q; l) = 2
√

πD2l

3a2
⊥

e−l2/2a2
⊥ (l2/a2

⊥ − 1)

−
√

πD2|q|2
4a⊥

|q|[ − 4l/a⊥ e−l2/2a2
⊥

+
√

2π (2 + |q|2a2
⊥) F−(|q|a⊥,l/a⊥)

]
, (A8)

V11;11(q; l) =
√

2πD2

3a⊥
e−l2/2a2

⊥ (3 − 2l2/a2
⊥ + l4/a4

⊥)

− D2

4

√
π

2
|q| [ − 4|q|a⊥e−l2/2a2

⊥ (3 + |q|2a2
⊥

+ l2/a2
⊥) +

√
2π (2 + |q|2a2

⊥)2 F+(|q|a⊥,l/a⊥)
]
.

(A9)

In the above equations, F±(x,y) is defined as

F±(x,y) = e−y2/2

[
e(x−y)2/2 Erfc

(
x − y√

2

)

± e(x+y)2/2 Erfc

(
x + y√

2

) ]
. (A10)

APPENDIX B: NUMERICAL SOLUTION OF THE
BETHE-SALPETER EQUATION

A major difficulty in evaluating response functions in the
TDHF approximation is solving the Bethe-Salpeter equation
resulting from the ladder diagram summations, Eq. (37),
in order to obtain the irreducible polarization ��

αβ;γ λ. The
bookkeeping of subband indices in quasi-two-dimensional
systems is an additional difficulty. Nevertheless, the problem is
essentially a system of coupled Fredholm integral equations of
the second kind, which can be efficiently solved using numer-
ical methods such as the Nyström method.40 In this method,
one approximates the integrations using quadrature formulas
and solves the resulting (large) system of linear equations.
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(a) (b)

(c) (d)

FIG. 16. Adaptively generated grids for integrations involving
(a) h00;γ λ, (b) h01;γ λ, (c) h10;γ λ, and (d) h11;γ λ for a system in
the N1 phase (rd = 1.35,

√
na⊥ = 0.25) and

√
nq ≈ 4.78. k̃x(y) ≡

n−1/2 kx(y).

In the approach used in this study for locating softened
modes, one is only interested in the response functions in the
static limit, i.e., νn → 0+. In this limit, the bare polarizations
appearing in Eq. (37) will have integrable singularities at
the intersection of particle and hole Fermi surfaces. For
example, Fig. 11 shows the single singularity at k0 = −kF,0x̂

for q = 2kF,0x̂. The dressed polarizations may have additional
singularities associated to the softened collective modes. The
single-particle and collective singularities can be separated
by simply dividing the irreducible polarization by the bare
polarization. We define

hαβ;γ λ(q,iνn; k) ≡ (�(0))−1
αβ;μν(q,iνn; k) ��

μν;γ λ(q,iνn; k),

(B1)

where the inverse of the bare polarization is
defined only with respect to subband indices, i.e.,
(�(0))−1

αβ;μν(q,iνn; k) �
(0)
μν;γ λ(q,iνn; k) = δαγ δβλ. Recasting

Eq. (37) in terms of hαβ;γ λ, we get

hαβ;γ λ(q,iνn; k1) = δαγ δβλ −
∫

d2k′

(2π )2
Vνβ;αμ(k′ − k1)

×�(0)
μν;ρσ (q,iνn; k′) hρσ ;γ λ(q,iνn; k′).

(B2)

In the absence of interactions, hαβ;γ λ is simply the identity
operator in the space of subband indices. Since the bare

polarization appears in the integrand, the integrable singu-
larities associated to gapless particle-hole excitations will
not result in any singularity in hαβ;γ λ. On the other hand,
if the Fredholm determinant of the above integral equation
vanishes at some q, i.e., det[1 + V �(0)] = 0, hαβ;γ λ will be
singular at that q. In fact, this condition can be used as a
practical criterion for locating the softened collective modes.
Thus, the single-particle poles are absent in hαβ;γ λ and it
effectively represents the many-body correction to the bare
polarization.

For nonsmooth integral kernels, as it is the case here,
rapid convergence of Nyström mehod is only achieved if
one employs adaptively generated integration quadratures
that properly handle the integrable singularities and fast
variations of the integral kernels. The singular points must
be avoided and a finer mesh must be used in the proximity
of the singularities and sharp variations of the integrand. We
implemented the adaptive mesh refinement (AMR) algorithm
described in Ref. 41 on a square-based mesh to generate
the integration quadrature. For each q, a uniform rectangular
grid was generated and adaptively refined until the relative
integration error was smaller than 10−4. One may generate a
single “global” quadrature that handles the irregularities of the
various integral kernels appearing in Eq. (B2) corresponding
to different choices of subband indices. However, a more
efficient approach can be devised by utilizing the parity
conserving nature of intralayer interactions. For instance,
when only the first two subbands are relevant, there is no
subband hybridization and �

(0)
αβ;γ λ ∝ δαγ δβλ �

(0)
αβ . Therefore

hρσ ;γ λ only appears in conjuction with �(0)
ρσ in the intergand

of Eq. (B2) and, consequently, one may produce four separate
integration quadratures for h00;γ λ, h01;γ λ, h10;γ λ, and h11;γ λ,
each of which has about half the number of points of a globally
applicable quadrature. Figure 16 shows an instance of the
adaptive grid generated in this fashion.

In all of the studied cases, the algorithm produced a mesh
containing ∼5000 (or less) points before the stopping criteria
was fulfilled. The integrals appearing in Eq. (B2) were then
approximated using the generated quadrature and reduced
to a linear system. The linear system was solved using LU
decomposition. Once hαβ;γ λ was calculated, the irreducible
polarization diagrams were finally evaluated by multiplying
hαβ;γ λ by the bare polarization and summing over k1:

��
αβ;γ λ(q,iνn) =

∫
d2k1

(2π )2
�

(0)
αβ;μν(q,iνn; k1)

×hμν;γ λ(q,iνn; k1). (B3)

The previously generated quadratures can be utilized to
evaluate the above integral as well.
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J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Phys. Rev.
Lett. 101, 133004 (2008).

235124-18

http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.101.133005
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1103/PhysRevLett.101.133004


DENSITY ORDERING INSTABILITIES OF QUASI-TWO- . . . PHYSICAL REVIEW B 84, 235124 (2011)

6S. Ospelkaus, A. Peer, K.-K. Ni, J. J. Zirbel, B. Neyen-huis,
S. Kotochigova, P. S. Julienne, J. Ye, and D. S. Jin, Nat. Phys.
4, 622 (2008).

7K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer,
B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S.
Jin, and J. Ye, Science 322, 231 (2008).

8K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, Phys.
Chem. Chem. Phys. 11, 9626 (2009).

9S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda,
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