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Entanglement entropy has become an important theoretical concept in condensed matter physics

because it provides a unique tool for characterizing quantum mechanical many-body phases and new

kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-

body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we

propose a general method to measure the entanglement entropy. The method is based on a quantum switch

(a two-level system) coupled to a composite system consisting of several copies of the original many-body

system. The state of the switch controls how different parts of the composite system connect to each other.

We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of

the many-body system can be extracted. We propose a possible design of the quantum switch, which can

be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement

in critical systems as well as a method for a direct experimental detection of topological order.
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Introduction.—The concept of entanglement plays a
central role in quantum physics and in quantum informa-
tion science [1]. While previously entanglement was
mostly studied in weakly interacting systems of qubits
and photons, more recently it was realized that entangle-
ment is a fundamental property of many-body phases of
strongly interacting particles. Mathematically, the degree
of entanglement in a pure many-body quantum state is
quantified by the entanglement entropy (EE) defined for
a subsystemA: The reduced density matrix �A, obtained
by tracing out all degrees of freedom outsideA, represents
some mixed state ofA and is generally characterized by a
nonzero entropy.

The entanglement entropy provides a valuable tool for
characterizing the properties of many-body states. For
critical systems, EE shows universal scaling with the sub-
system size l, with a prefactor determined by the central
charge of the corresponding conformal theory [2–4]. EE
also serves as a diagnostic for characterizing a new type of
quantum order, topological order [5,6], which cannot be
described by the conventional Landau-Ginzburg order pa-
rameter. The latter proved particularly useful in recent
numerical studies [7,8].

Despite the fact that EE has emerged as an indispensable
theoretical and numerical tool, it is widely believed that it
is nearly impossible to measure it experimentally. This is
because EE is a fundamentally nonlocal quantity; measur-
ing it, seemingly, requires knowing a full reduced density
matrix, the size of which grows exponentially with the
subsystem size A. The existing proposals [9,10] to mea-
sure EE in many-body systems are limited to the case of
noninteracting particles, for which special relations be-
tween the reduced density matrix of a subsystem and
quantum noise exist; these relations, however, break
down when interactions are introduced [11].

Here we propose a method to measure Rényi entangle-
ment entropies in a general interacting system.We consider
a finite 1D chain with short-range hopping and interactions,
focusing on the ground state EE for the system’s partition
into the left (L) and right (R) parts [Fig. 1(a)]. The key

FIG. 1 (color online). (a) The chain represents a general inter-
acting 1D system with short-ranged hopping and interactions.
We describe a method to measure EE between left (L) and right
(R) subsystems. (b) Energy spectrum of the finite chain. The
ground state is separated from other excitations by an energy gap
�, which is given by the thermodynamic gap for gapped phases,
and by the finite-size gap for gapless phases, Eq. (9). (c),
(d) Proposed setup for measuring n ¼ 2 Rényi EE. Two pairs
of half-chains Li (Ri), identical to the L (R) half-chain in (a),
are arranged in a cross geometry. The quantum switch, posi-
tioned at the center of the cross, controls the way in which the
two pairs of half-chains are connected by selectively forbidding
tunneling to one of the neighbors. The overlap of the ground
states of the two configurations corresponding to different con-
nections is related to n ¼ 2 Rényi EE and can be measured by
studying Rabi oscillations of the quantum switch.
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idea is to engineer a composite system Li, Ri, i ¼
1; . . . ; n, consisting of n copies of the original many-body
system, and to couple it to a quantum switch (a two-level
system) in a way described below. By studying the coupled
dynamics of the quantum switch and the many-body sys-
tem, it is possible to extract the EE. Crucially, it is sufficient
to measure only the population of the two states of the
quantum switch. Thus, in principle, the extremely compli-
cated problem of measuring EE is reduced to studying the
dynamics of a single qubit [12].

Our proposal is inspired by the works by Horodecki and
Ekert [14], as well as by Cardy [15]. Reference [14] ad-
dressed the problem of measuring entanglement in a
(mixed) state of several coupled qubits; the method pro-
posed there involved joint operations on different subsys-
tems, and its complexity grew with the system size. Cardy
showed that EE in conformally invariant systems can be
related to the distribution of energy fluctuations following
a quantum quench [15]. However, experimentally measur-
ing energy fluctuations is a challenging problem, espe-
cially in a many-body system, where both kinetic and
potential energy of all particles have to be extracted; the
difficulty of such a measurement also grows rapidly with
the system size.

Relation between entanglement entropy and overlaps in
a composite system.—We will focus on the nth Rényi
entropy, defined as follows:

Sn ¼ 1

1� n
logTrð�̂n

LÞ; (1)

where �L is the reduced density matrix of the left sub-
system. Generally, knowing the Rényi entropies allows one
to reconstruct the von Neumann EE by the analytic con-
tinuation to n ! 1 and to obtain the full entanglement
spectrum (the spectrum of the reduced density matrix);
see, e.g., Ref. [10].

We start with the simplest nontrivial case n ¼ 2. In what
follows, we will rely on the following fact: The Rényi
entropy can be related to the overlap of two ground states
j0i and j00i of a composite system that consists of two
copies of the original many-body system (such that in total
there are four half-chains Li, Ri, i ¼ 1; 2) [16]. The two
configurations correspond to connecting half-chains differ-
ently: (i) Li is connected with Ri, i ¼ 1; 2; (ii) L1 is
connected with R2, and L2 is connected with R1, such
that the half-chains are swapped. As we shall see below, by
coupling quantum switch to the four half-chains, it is
possible to extract the overlap h0j00i (and therefore EE)
from the switch dynamics.

The origin of this relation is understood by using the
Schmidt decomposition of the ground state for a single
chain:

j�0i ¼
X

i

�ijc iiL � j’iiR; (2)

where jc iiL and j’iiR are the orthogonal wave functions
describing left and right subsystems, respectively.
The ground states of the composite system are given by

the tensor product of two chains’ ground states,

j0i ¼ j�0iL1;R1
� j�0iL2;R2

;

j00i ¼ j�0iL1;R2
� j�0iL2;R1

:
(3)

They appear similar, the only difference being that in the
j0i state L1, R1 and L2, R2 pairs are entangled, while in
the j00i state we need to swap the right subsystems.
Applying the Schmidt decomposition (2) for each j�0i in
the above equation, we obtain

j0i ¼
�X

i

�ijc iiL1
� j’iiR1

�
�
�X

j

�jjc jiL2
� j’jiR2

�
;

(4)

j00i ¼
�X

i

�ijc iiL1
� j’iiR2

�
�
�X

j

�jjc jiL2
� j’jiR1

�
:

(5)

The overlap of the two ground states, which can be eval-
uated by using this representation, is given by

h0j00i ¼ X

i

�4
i ¼ Trð�̂2

LÞ ¼ e�S2 (6)

and therefore is related to the S2 EE of a single many-body
system.
Proposed setup.—We consider the following realization

of the composite system: two left and two right subsys-
tems, arranged in a cross geometry, as illustrated in
Fig. 1(c). Initially, each Li, i ¼ 1; 2 subsystem is con-
nected to both right subsystems R1 and R2. In the center
of the cross, a quantum switch is placed—a two-level
system with states j "i and j #i, which controls the connec-
tion between different subsystems [see Figs. 1(c) and 1(d)].
When the switch is in the j "i state, tunneling between the
L1, R2 pair and L2, R1 pair is blocked, such that
configuration (i) is realized; when the switch is in the j #i
state, tunneling between the L1, R1 pair and L2, R2 is
blocked, corresponding to configuration (ii).
First, we assume that the two states of the quantum

switch are completely decoupled (later on, we will intro-
duce the dynamics). In this case, the spectrum of the
switch-chains system consists of two sectors, correspond-
ing to j "i and j #i states of the switch, as illustrated in
Fig. 2(b). The spectrum in each sector can be related to the
spectrum of the single many-body system fEi; j�iig (Ei

being eigenenergy, j�ii the corresponding wave function):
The eigenfunctions are given by the tensor products of the
eigenfunctions for a single chain. For configuration (i), the
spectrum has the following form:

fEi þEj; j "i � j�iiL1;R1
� j�jiL2;R2

g; i; j¼ 0;1;2; . . . ;

(7)
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while for configuration (ii) it is given by

fEi þEj; j "i � j�iiL1;R2
� j�jiL2;R1

g; i; j¼ 0;1;2; . . . :

(8)

The ground state is doubly degenerate and is separated
from the rest of the spectrum by a gap. The gap � is given
by the thermodynamic gap for gapped quantum phases (up
to small finite-size corrections). For a gapless phase, the
gap is due to the finite size of the chain and is given by

�� @v

l
; (9)

where v is the velocity of gapless excitations and l is the
size of the chain. The wave functions of the two ground
states are given by

jGSi ¼ j "i � j0i; jGS0i ¼ j #i � j00i:
In order to extract the overlap h0j00i, we now introduce

weak tunneling between the two states of the quantum
switch, adding the following term in the Hamiltonian:

Ht ¼ Tðj "ih# j þ j #ih" jÞ: (10)

Such tunneling gives rise to the hybridization of the two
ground states jGSi ¼ j "i � j0i and jGS0i ¼ j #i � j00i.
Assuming small tunneling amplitude T � �, we can con-
sider only the two lowest states, and the effective low-
energy Hamiltonian describing their dynamics takes the
following form:

Heff ¼ ~TðjGSihGS0j þ jGS0ihGSjÞ; ~T ¼ Th0j00i: (11)

Thus, the renormalization of the tunneling amplitude is
proportional to the desired overlap.

The renormalization of the tunneling amplitude can be
experimentally measured by studying the Rabi oscillations
of the switch. One possible way to measure the Rabi

frequency is as follows: Initially, T ¼ 0 (two switch levels
are decoupled), and the system is prepared in the first
ground state jGSi. At time t ¼ 0, the tunneling is switched
on. The system will oscillate between the two states jGSi
and jGS0i, such that the difference of probabilities of the
two states is given by

PGS � PGS0 ¼ cosð ~�tÞ; ~� ¼ ~T=@: (12)

By measuring the population of the two states of the
quantum switch, the renormalized Rabi frequency can be
extracted. This gives the desired overlap and, therefore, the
Rényi entropy via Eq. (6).
Measuring higher Rényi entropies Sn, n > 2.—The

method described above can be extended to measure the
higher Rényi entropies. The setup is as follows: n left and n
right half-chainsLi andRi are arranged in a star geometry
in an alternating fashion, such that the Li half-chain
neighbors Ri and Riþ1 half-chains (as illustrated in
Fig. 3 for the case n ¼ 4). Initially, each half-chain is
coupled to both of its neighbors. The quantum switch can
selectively block the tunneling to one of the neighbors;
thus, similarly to the case n ¼ 2, the two states of the
quantum switch realize different configurations of the
composite system: In the first configuration, Li is con-
nected toRi, while in the second,Li is connected toRiþ1

for 1 � i � n� 1, and Ln is connected to R1.
The overlap of the ground state wave functions j0ni and

j00ni of the two configurations is directly related to the nth
Rényi entropy (see, e.g., Ref. [15]):

Sn ¼ 1

1� n
logh0nj00ni: (13)

The overlap and Sn can be measured in a Rabi experiment,
similar to the case n ¼ 2.

FIG. 3 (color online). Setup proposed for measuring higher
Rényi EE. The case n ¼ 4 is shown. 2n half-chains Li and Ri

are arranged in a star geometry in an alternating fashion.
Initially, tunneling to both neighboring half-chains is allowed.
The quantum switch blocks tunneling to one of the neighbors;
thus, the two states of the switch realize two configurations, in
which the half-chains are connected differently (each Li is
connected to its clockwise neighbor Ri for the j "i state, and
it is connected to the counterclockwise neighborRiþ1 for the j #i
state.)

FIG. 2. The dynamics of the coupled switch-chain system can
be used to measure n ¼ 2 Rényi entropy. (a) We introduce
dynamics of the quantum switch by turning on weak tunneling
with amplitude T between the j "i and j #i states. (b) Schematic
of the energy spectrum of the switch-chains system. The ground
state is doubly degenerate and is separated from the excited
states by a gap. Assuming that T � �, the system will perform
Rabi oscillations between the two ground states, with the re-
normalized effective tunneling between them; see Eq. (11). By
measuring the renormalized Rabi frequency, it is possible to
extract the overlap of the ground states of the two configurations
of the many-body system shown in Figs. 1(c) and 1(d) and,
therefore, the Rényi entropy.
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A possible design of the quantum switch.—Although the
proposed setup is generic and one can envision its realiza-
tion in a number of solid state and atomic physics systems,
we believe that it could be most easily implemented in
systems of cold atoms. The 1D chains described by the
transverse field Ising model have been recently realized in
such systems [17]. Below, we propose one possible design
of a quantum switch in cold atomic systems. It can be used,
for example, to test the universal scaling of EE with the
system size in the transverse field Ising model.

The design of the quantum switch, illustrated in Fig. 4,
involves two dipolar molecules which interact repulsively
with each other and with the particles that constitute the
many-body system. The dipolar molecules reside in a
four-well potential arranged in a square pattern, with the
vertices of the square situated on the lines connecting
the last sites of the neighboring half-chains (see Fig. 4).
By neglecting tunneling between the wells, the ground
state of the molecules is doubly degenerate and corre-
sponds to the particles occupying the opposite vertices of
the square.

We impose two main requirements: First, the dipolar
molecules interact strongly with the particles in the many-
body system, such that, when a given quantum well is
occupied, the tunneling between the half-chains that neigh-
bor that well is blocked. Second, the interactions between
the dipolar molecules must be strong enough such that we
can neglect the excited states of the molecules (e.g., a
configuration in which they occupy neighboring quantum
wells). Under these demanding but realistic conditions, the
four-well system provides a version of a quantum switch.
Experimentally, one would measure the dynamics of such a
switch by monitoring the occupation of different quantum
wells as a function of time.

This switch design can be extended for the case n > 2.
2n wells should be designed between the ends of the half-
chains shown in Fig. 3. They should be populated by n
dipolar molecules with such long-range interactions that in
the ground state every other well is occupied. Then, the two
degenerate ground states of the dipolar molecules corre-
spond to the j "i and j #i states of the quantum switch.
Conclusions and generalizations.—In conclusion, we

have proposed a method to experimentally measure the
ground state EE in a generic many-body system. We have
considered a specific setup which can be realized with
current experimental means in cold atomic systems. We
expect that the approach proposed here will enable the tests
of the universal scaling of EE in various critical many-body
systems.
The ideas presented above can also be generalized to

measure entanglement entropy in two-dimensional sys-
tems [18]. Such a measurement provides a direct experi-
mental test of topological order [5,6] characteristic of
systems such as spin liquids and fractional quantum Hall
states.
Finally, we note that the proposed approach can be used

to measure EE of arbitrary excited states, as long as they
are separated from the other states by an energy gap.
Exploring the EE of excited states may shed light on the
nature of localization in disordered many-body systems.
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Note added in proof.—Daley et al. recently proposed an

alternative method to measure Renyi entanglement entropy
in bosonic cold atom systems [19].
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