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We study the Mott transition of a mixed Bose-Fermi system of ultracold atoms in an optical lattice,

where the number of (spinless) fermions and bosons adds up to one atom per lattice, nF þ nB ¼ 1. For

weak interactions, a Fermi surface coexists with a Bose-Einstein condensate while for strong interaction

the system is incompressible but still characterized by a Fermi surface of composite fermions. At the

critical point, the spectral function of the fermions Aðk; !Þ exhibits a pseudogapped behavior, rising as

j!j at the Fermi momentum, while in the Mott phase it is fully gapped. Taking into account the interaction

between the critical modes leads at very low temperatures either to p-wave pairing or the transition is

driven weakly first order. The same mechanism should also be important in antiferromagnetic metals with

a small Fermi surface.
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A recent experiment with an ultracold mixture of
bosonic and fermionic Yb atoms in an optical lattice [1]
has found a remarkable quantum phase that can be
described as a mixed Mott insulator. Such a state [2–4] is
established in the strongly interacting regime when the
average site occupation of the bosons and fermions
together is an integer, nB þ nF ¼ 0; 1; . . . . While the state
is incompressible and hence fluctuations of the total den-
sity are gapped, the fermions can still move around by
exchanging with the spinless bosons. Hence, the mobile
objects are bound states of a fermionic atom and a bosonic
hole. Depending on their effective interactions, these
bound states can form a number of different phases, includ-
ing a Fermi liquid or a paired condensate. But those are
rather strange fluids, made of composite fermions that
carry zero net particle number. Accordingly, the spectral
function of the original fermionic atoms will not display a
quasiparticle peak. This phase, established for sufficiently
strong interactions, should be contrasted with the weakly
interacting limit where the fermionic atoms form a con-
ventional Fermi sea coexisting with a Bose condensate
(BEC) of the other species. In this Letter, we investigate
the quantum phase transition from the incompressible
mixed Mott state to the compressible metal-BEC phase
and the fate of the Fermi surface across the transition.

In most solids the Mott quantum critical point (QCP)
from a metal to an insulating state is masked by antiferro-
magnetism. In cases where frustration suppresses magne-
tism, however, it has been argued that a direct transition
from a metallic phase to an insulating and incompressible
Uð1Þ spin liquid is possible [5–8]. Yet the understanding
of this transition remains rudimentary and is unconfirmed
by experiment. We argue that with ultracold mixtures
of bosons and fermions it is possible to study a similar

transition directly. Although coupling to a deconfinedUð1Þ
gauge field is missing in our case, important features, such
as critical vanishing of quasiparticle weight and opening of
a pseudogap, remain.
Model.—For simplicity, we confine ourselves to spinless

fermions mixed with a single species of bosons in three
dimensions (d ¼ 3), described by the generalized Hubbard
model

H ¼ �tb
X
hiji

ðbyi bj þ H:c:Þ � tf
X
higi

ðfyi fj þ H:c:Þ

þ 1

2
Ubb

X
i

nbiðnbi � 1Þ þUbf

X
i

nbinfi: (1)

Here byi and fyi create bosonic and fermionic atoms,
respectively, and nbi (nfi) are the bosonic (fermionic) site

occupations. Mott phases can occur for commensurate
filling (we take hnbii þ hnfii ¼ 1).

When the interactions are large enough, Ubf � tf, tb
and Ubb � tb, fluctuations of the density are strongly sup-
pressed and the system is deep in the Mott phase. After
eliminating perturbatively the empty and doubly occupied
states, one obtains a purely fermionic model [2]

H ¼ �teff
X
hiji

ðcyi cj þ H:c:Þ þ Veff

X
hiji

ninj; (2)

with teff ¼ tftb=Ubf and Veff ¼ ðt2b þ t2fÞ=Ubf � 2t2b=Ubb.

Here cyi ¼ fyi bi is a composite fermion, quadratic in the

original fields, ni ¼ cyi ci and the vacuum j�i of the com-
posite fermion is the singly occupied bosonic site.
The ground state of the fermion model (2) can be a

Fermi liquid for Veff � 0, a p-wave superfluid for small
or moderatly large negative Veff , or be unstable to phase
separation for large negative Veff , jVeff j � teff . A phase
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transition out of the Mott state is driven by reducing the
strength of the interactions Ubb, Ubf, or both.

Consider first tuning the transition by changing Ubf,

while Ubb remains large. For the resulting hard-core
bosons it is useful to rewrite the problem in terms of holes

in the Mott insulator, hyi ¼ bi. The condition of unity
filling reads now hnhii ¼ hnfii and the repulsive interaction
is mapped to attraction, Ubf ! �Ubf. In these variables,

the Mott transition can be understood as binding of bosons
to fermions, with the Mott state being a Fermi liquid of the

molecules cyi j�i ¼ fyi h
y
i j�i as Veff > 0 in this limit.

A similar transition, from a Fermi surface of atoms to a
Fermi surface of molecules, has been considered in Ref. [9]
for a Bose-Fermi mixture in the continuum with an inter-
species Feshbach resonance. Our lattice model with
Ubb � Ubf maps to this continuum problem for low den-

sities, hnfii � 1. We therefore expect two transitions as

found in Ref. [9]. First a Fermi sea of molecules starts to
form beyond a critical value of the attraction Ubf ¼ Uc1

and coexists with the atomic Fermi sea and a BEC. The
volume of the molecular Fermi surface grows continuously
until it reaches the full Luttinger volume, corresponding to
the full fermion density, at Ubf ¼ Uc2, where the cond-

ensate fraction vanishes and the Mott insulating state is
reached. As pointed out in Ref. [9], interactions are irrele-
vant at such a QCP in d ¼ 3 and due to the quadratic
dispersion at the bottom of the bosonic and fermionic
bands, ! / k2, the dynamical critical exponent is z ¼ 2.
The same theory can be applied for nearly unity filling
by the fermions if we apply the particle hole transformation
on the fermions rather than the bosons. Other phases with
broken lattice symmetry are possible at certain intermedi-
ate fillings [10,11].

We now turn to the main focus of this Letter and con-
sider the transition driven by reducing the boson-boson
interaction Ubb for largeUbf. In this case we can eliminate

the fermionic doublon state fyi b
y
i j0i. Using again the

single boson state j�i as vacuum, we introduce besides

the single fermion state cyi j�i and bosonic hole hyi j�i
defined above also the bosonic doublon py

i j�i ¼
2�1=2byi j�i. The Hamiltonian (1) projected to low energies
becomes

Heff ¼ 1

2
Ubb

X
i

ðnpi þ nhiÞ ��f

X
i

nci

� tb
X
hiji

½ð ffiffiffi
2

p
py
i þ hiÞð

ffiffiffi
2

p
pj þ hyi Þ þ H:c:�

� tf
X
hiji

ðcyi hihyj cj þ H:cÞ þUcc

X
hiji

ncincj (3)

supplemented with the hard-core condition npi þ nhi þ
nci � 1 and Ucc ¼ ðt2b þ t2fÞ=Ubf. Unity filling implies

hnhii ¼ hnpii and the transition from the Bose-Fermi

Mott state to the superfluid is a simultaneous condensation

of doublons and holes just as in a conventional bosonic
Mott-superfluid transition [12].
Critical theory.—The most general action (including the

most relevant terms) describing the QCP is given by

S¼SbþSfþSbf;

Sb¼
Z
dxd�j@��j2þv2

s jr�j2þrj�j2þubj�j4;

Sf¼
Z

�c ½@�þ ~vF �ð�ir� ~kFÞ�c �uf �cr �c �crc ;

Sbf¼ubf
Z
dxd� �c c j�j2:

(4)

Here the bosonic order parameter field is related to the

bosons through �ðxÞ � ffiffiffiffiffiffiffiffiffiffi
1=vs

p ½hðxÞ þ pyðxÞ�. As in the
conventional bosonic Mott transition, hnhii ¼ hnpii entails
the absence of linear time derivatives�	@��. Formally, the
same theory was considered by Yang [13] to address the
Mott transition at integer boson filling in contact with a
Fermi sea at a noncommensurate filling. The crucial differ-
ence here is that in our theory the c fermions are not
the physical atoms but rather composite objects. In the
Supplemental Material [14] we discuss how the parameters
vs, vF, uf, and ubf in Eq. (4) are related to the original

coupling constants.
The bosonic sector of the field theory (4) is identical to

that of the commensurate Mott transition in the purely
bosonic system where !� vsk, resulting in dynamical
exponent z ¼ 1. First, we analyze the coupling of the
bosons to the fermions by a scaling analysis ( ~r ! �~r,

� ! ��, � ! �=�, and c ! c =�3=2 in d ¼ 3) around
this fixed point (uf ¼ 0 ¼ ubf ¼ 0) which shows that ubf
is irrelevant, ubf ! ubf=�. An alternative scaling scheme

[15], leading to the same conclusion is discussed in the
Supplemental Material [14]. Moreover, assuming tf � tb,

the bare couplings uf and ubf are small (see Supplemental

Material [14]). This does, however, not imply that ubf can

be set to zero as upon integrating out the fermions it
generates a marginal long-ranged interaction of �, see
below. uf is marginal and leads for uf > 0 to p-wave

superfluidity.
We first assume that the pairing instability of the Fermi

surface can be neglected as either uf is repulsive or so

small that the transition temperature is smaller than T.
Because of the irrelevance of ubf one can integrate out

the fermions perturbatively to obtain a purely bosonic
theory with a modified quartic interaction term

Sint¼
Z
½u0þu1fð!=vFqÞ��	

k�q;��!�
	
k0þq;�0þ!�k0;�0�k;�:

(5)

The ! and q dependence of the new interaction vertex
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fðxÞ ¼ ix

2
ln

�
ixþ 1

ix� 1

�
(6)

is inherited from the fermionic density-density correlation
function. We obtain u1 
 u2bf�ð0Þ ¼ 64v2

svF ¼ 4
�

vF

vs
ub,

where �ð0Þ is the fermion density of states. The local
interaction u0 also receives a correction, u0 
 ub þ u1.

To investigate the fate of the critical point we set up a
perturbative renormalization group (RG) by integrating out
momenta with�e�l < jqj<�. A rescaling, k ! ke�l and
! ! !e�zl, restores the original cutoff �. Because of the
! dependence of the interactions, already to one-loop
order one obtains self-energy corrections which are ab-
sorbed by rescaling of the field � and a correction to the
dynamical critical exponent z (see Supplemental Material
[14]). A complication is that higher-order long range terms
of the form unfð!=vfqÞn are generated during the RG

flow. The scaling is therefore determined by coupled equa-
tions for the dimensionless coupling constants gnðlÞ ¼
unðlÞ=ð8�2v3

sÞ and the dimensionless Fermi velocity
�ðlÞ ¼ vFðlÞ=vs.

d�

dl
¼2

3

X1
m¼1

f�mð�Þgm;

dg0
dl

¼�10g20�12g0
X
m

fgmð�Þgm�4
X1

m;n¼1

fgmþnð�Þgmgn;

dgn
dl

¼�2
Xn
m¼0

gn�mgm�4gn
X1
m¼0

fgmð�Þgm; n>0; (7)

where f�mð�Þ ¼ 4�
�

R1
0

3�2x2�1
ð�2x2þ1Þ3 fðxÞmdx and fgmð�Þ ¼

4�
�

R1
0

1
ð�2x2þ1Þ2 fðxÞmdx are functions of �ðlÞ.

In solving for the flow we keep terms with n < nmax and
find that the resulting flow converges with nmax (keeping
10–15 terms is enough in practice, see Supplemental
Material [14]). This scheme works well since the newly
generated interactions are all irrelevant. In two dimensions,
where they are relevant the proliferation of terms can be
avoided by introducing an auxiliary field [16].
Typical RG trajectories in the subspace g1 versus g0 are

shown in Fig. 2. Initially, both g0 and g1 drop but the flow
of g1 is much slower due to its nonlocal nature. Therefore
g1 is finite when g0 reaches zero, driving g0 to negative
values through the last term in the flow Eq. (8) for g0. This
leads to a first-order transition.
In the RG approach described above we have neglected

the induced attraction uf between fermions, which would

lead to a pairing instability and opening of a gap � 

EF expð�8�vs=vFÞ in the Fermi surface. Such a gap sup-
presses the nonlocal couplings at low energies vs�e�l <�.
Therefore, if the coupling constants gn have not yet driven
the local coupling g0 negative at that scale, the first order
transition will be avoided. Numerical solution of the flow
equations suggest that this is the case if the bare ratio
vF=vs < 0:18, while for vF=vs > 0:18 we expect a first
order transition. In either case the Fermi surface is
expected to give way to a small p-wave gap near the
transition for T ! 0.
Our analysis applies to a number of other QCPs where

bosonic and fermionic degrees of freedom coexist.
Consider, for example, a metallic commensurate antiferro-
magnet, where the shape of the Fermi surface is such that

the ordering wave vector ~Q does not connect different parts
of the Fermi surface. In such a situation only a quadratic
coupling of fermions to a z ¼ 1 bosonic QCP survives. Our
analysis shows that in d ¼ 3 this coupling will render the

FIG. 2 (color online). RG flow for three different values of
the bare Fermi velocity vF=vs using nmax ¼ 13 (see text). The
inset is a zoom near g0 ¼ 0 showing that for the three larger
values of vF=vs the local interaction is driven to negative values
before the flow is cut off at the scale of the pairing gap � ¼
�F expð�8�vs=vFÞ. For these values we expect a fluctuation
driven first order transition.

FIG. 1 (color online). Schematic phase diagram of the Bose
Fermi mixture at combined integer filling. At weak interaction
the bosons form a BEC and the fermions form a Fermi liquid,
unstable at very low temperature to p-wave pairing. At strong
interactions the system goes into the mixed Mott phase, in which
composite neutral fermions (with respect to total density) still
exist as low energy degrees of freedom. Depending on parame-
ters they can form either a Fermi liquid (FL), a p-wave super-
fluid, or phase separate. The nature of the Mott critical point
depends on how it is approached, by tuning the boson-fermion or
the boson-boson interactions.
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QCP always weakly first order as long as no superconduc-
tivity gaps out the Fermi surface.

Pseudogap.—We now discuss the experimental ramifi-
cations of the quantum phase transition focusing on the
spectral function associated with emission of a fermionic
atom in rf spectroscopy [17,18]. The crucial point is that in
the long-wavelength limit the physical atomic fermions fi
are composite objects in terms of the weakly coupled fields

c and�, fðxÞ � ffiffiffiffiffiffiffiffiffiffi
1=vs

p
�ðxÞc ðxÞ as fi ¼ hyi ci. Hence, the

spectral function should be found from the Green’s func-
tion Gðx; �Þ ¼ h �c ðx; �Þ�	ðx; �Þ�ð0Þc ð0Þi.

For the sake of this discussion, we ignore all logarithmic
corrections which ultimately lead either to p-wave pairing
or the fluctuation induced first order transition. These
subtle effects are noticeable only at exponentially low
energies. The salient features of the spectral function at
higher energies (or temperatures) are captured within the
Gaussian theory obtained from expansion about the saddle
point of Eq. (4), which impliesGðx;�Þ¼Gc ðx;�ÞD�ðx;�Þ,
where Gc is the free fermion Green’s function of the

composite fermions.
In the superfluid side, we can take a Bogoliubov expan-

sion of the order parameter � ¼ �0 þ 	�1 þ i	�2, to
split the bosonic component of the Green’s function
into three contributions: D�ðx; �Þ ¼ j�0j2 þD1ðx; �Þ þ
D2ðx; �Þ. The condensate part j�0j2 combined Gc , gives a

delta function contribution of magnitude j�0j2 dispersing
with the free fermion dispersion. The phonon contribution
leads to a continuous spectrum rising linearly with !.
Another continuous contribution onsets above the energy
gap of the amplitude (or Higgs) mode. All three features
are seen in Fig. 3(a), where the spectral function Aðk;!Þ at
k ¼ kF has been calculated for c=vF ¼ 3 and a quadratic
fermionic dispersion �k ¼ k2=2.

Upon approaching the critical point, the quasipar-
ticle weight Z� j�0j2 �Uc

bb �Ubb decreases to zero.

Correspondingly, a pseudogap develops in the local density
of states, see inset of Fig. 3(a). Directly at criticality,
Ubb ¼ Uc

bb, where Z ¼ 0, the spectral function at k ¼ kF

rises linearly in !, see Fig. 3(a). The underlying quadratic
dispersion of the composite fermions and the linear dis-
persion of the bosonic excitations are clearly visible in
Fig. 3(b).
Finally, inside the Mott phase the bosonic fluctuations

can be treated as a free massive field. Hence, upon con-
volution with Gc one obtains a fully gapped spectral

function despite the existence of a gapless Fermi liquid.
The gapless fermions of the Mott insulator are hidden

from standard single particle probes such as photoemission
or the momentum distribution measured in time of flight.
Interestingly, however, the hidden Fermi surface can be
revealed by noise correlations in time of flight images [19].
The boson-fermion cross correlations at momenta k and
kþ q are directly proportional to the momentum-q distri-
bution of the composite fermions,

hncqi 

X
k

hnfkþqn
b
ki � hnfkþqihnbki: (8)

The approximation becomes exact deep in the Mott

insulating state, where fyi bj ¼ 	ijc
y
i for Ubf, Ubb ! 1.

The composite Fermi surface can also be observed byBragg
or lattice modulation probes that couple asymmetrically to
bosons and fermions. The appropriate structure factors will
display a gapless spectrum in the composite Fermi liquid
phase or a small gap in case of p-wave pairing.
Conclusions.—Mixed boson-fermion systems in optical

lattices open a new route, for both theoretical and experi-
mental investigation of unconventional Mott transitions
that entail the destruction of fermionic quasiparticles and
the emergence of hidden Fermi surfaces of composite
particles. We presented a theory that accounts for the
critical behavior of the single fermion spectral function
and gives a simple and tractable example for the emergence
of a pseudogap in a strongly correlated system. While for
d ¼ 3, the nature of the phase transition depends on the
ratio of the interactions, see Fig. 1, it has been shown that in
d ¼ 1 always a single z ¼ 1 transition is expected [20].
An interesting open question is the nature of the possible

tricritical point postulated in Fig. 1 where Ubb 
 Ubf and

two z ¼ 2 transitions meet with the z ¼ 1 critical point.
Interestingly, the generalized Hubbard model (1) exhibits
supersymmetry at Ubb ¼ Ubf, �b ¼ �f and tf ¼ tb [21].

The ground state at the super-symmetric point has no
fermions but may help to elucidate the nature of the
tricritical point for low fermion density. Another open
question concerns the Mott transition in a commensurate
mixture of bosons and spinfull fermions.
We acknowledge useful discussion with S. Trebst,
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FIG. 3 (color online). (a) Spectral function Aðk;!Þ of the
fermions at k ¼ kF in the superfluid phase, critical point, and
Mott insulator (r ¼ �0:04, 0, 0.04, vs=vF ¼ 3). Inset: local
density of states Að!Þ ¼ R

dkAðk;!Þ in the three cases.

(b) The spectral function Aðk;!Þ at the critical point.
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[10] H. P. Büchler and G. Blatter, Phys. Rev. Lett. 91, 130404

(2003).
[11] I. Titvinidze, M. Snoek, and W. Hofstetter, Phys. Rev.

Lett. 100, 100401 (2008).

[12] E. Altman and A. Auerbach, Phys. Rev. Lett. 89, 250404
(2002).

[13] K. Yang, Phys. Rev. B 77, 085115 (2008).
[14] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.109.235304 for de-
tailed derivations and demonstration of convergence of
the hierarchy of scaling equations.

[15] M.A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127
(2010).

[16] S. Sachdev and T. Morinari, Phys. Rev. B 66, 235117
(2002).

[17] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Nature (London)
454, 744 (2008).
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Zwerger, and M. Köhl, Phys. Rev. Lett. 106, 105301
(2011).

[19] E. Altman, E. Demler, and M.D. Lukin, Phys. Rev. A 70,
013603 (2004).

[20] I. Danshita and L. Mathey, arXiv:1204.3988.
[21] Y. Yu and K. Yang, Phys. Rev. Lett. 100, 090404 (2008).

PRL 109, 235304 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

235304-5

http://dx.doi.org/10.1038/nphys2028
http://dx.doi.org/10.1103/PhysRevLett.92.050401
http://dx.doi.org/10.1103/PhysRevA.81.031607
http://dx.doi.org/10.1103/PhysRevA.81.031607
http://dx.doi.org/10.1103/PhysRevA.82.011606
http://dx.doi.org/10.1103/PhysRevA.82.011606
http://dx.doi.org/10.1103/PhysRevLett.95.036403
http://dx.doi.org/10.1103/PhysRevLett.95.036403
http://dx.doi.org/10.1103/PhysRevB.78.045109
http://dx.doi.org/10.1103/PhysRevB.78.035103
http://dx.doi.org/10.1103/PhysRevLett.102.186401
http://dx.doi.org/10.1103/PhysRevB.72.024534
http://dx.doi.org/10.1103/PhysRevB.72.024534
http://dx.doi.org/10.1103/PhysRevLett.91.130404
http://dx.doi.org/10.1103/PhysRevLett.91.130404
http://dx.doi.org/10.1103/PhysRevLett.100.100401
http://dx.doi.org/10.1103/PhysRevLett.100.100401
http://dx.doi.org/10.1103/PhysRevLett.89.250404
http://dx.doi.org/10.1103/PhysRevLett.89.250404
http://dx.doi.org/10.1103/PhysRevB.77.085115
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.235304
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.235304
http://dx.doi.org/10.1103/PhysRevB.82.075127
http://dx.doi.org/10.1103/PhysRevB.82.075127
http://dx.doi.org/10.1103/PhysRevB.66.235117
http://dx.doi.org/10.1103/PhysRevB.66.235117
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1103/PhysRevLett.106.105301
http://dx.doi.org/10.1103/PhysRevLett.106.105301
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://arXiv.org/abs/1204.3988
http://dx.doi.org/10.1103/PhysRevLett.100.090404

