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We study the nonequilibrium dynamics of a coherently split one-dimensional Bose gas by measuring

the full probability distribution functions of matter-wave interference. Observing the system on different

length scales allows us to probe the dynamics of excitations on different energy scales, revealing two

distinct length-scale-dependent regimes of relaxation. We measure the crossover length scale separating

these two regimes and identify it with the prethermalized phase-correlation length of the system.

Our approach enables a direct observation of the multimode dynamics characterizing one-dimensional

quantum systems.
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The nonequilibrium dynamics of many-body quantum
systems and their pathway towards equilibrium is of fun-
damental importance in vastly different fields of physics.
Open questions appear, for example, in high-energy phys-
ics for understanding quark-gluon plasma [1–3], in cos-
mology for describing preheating of the early Universe [4],
or in the comprehension of relaxation processes in
condensed-matter systems [5,6].

Because of their isolation from the environment and
their tunability, ultracold atom systems have triggered
many studies of nonequilibrium dynamics in closed inter-
acting quantum systems, with particular interest drawn to
quantum quenches [7,8]. Important questions are related
to systems where the dynamics is constrained by several
constants of motion [9] and to the possible description of
nonequilibrium states by generalized statistical mechanics
ensembles [10,11].

Recently, we reported the experimental observation of
prethermalization in a coherently split one-dimensional
(1D) ultracold Bose gas [12], made possible by a charac-
terization of the dynamical states through measurements of
full distribution functions [13,14]. Prethermalization [15]
was understood as the rapid relaxation to a steady state
exhibiting thermal-like properties but differing from the
true thermal equilibrium that is eventually expected to
occur on longer time scales [16–20].

In this Letter, we study the relaxation process [21]
leading to the prethermalized state by measuring the full
(probability) distribution functions (FDFs) of phase and

contrast of matter-wave interference. We probe the 1D
system on different length scales to investigate its
multimode dynamics, which reveals two distinct regimes
separated by a characteristic crossover length scale. We
measure this characteristic length scale and identify it
with the effective thermal phase-correlation length of the
prethermalized system.
We prepare a quasi-1D Bose gas of several thousand

87Rb atoms in an elongated (along the z direction) mag-
netic microtrap on an atom chip [22] at a (tunable)
temperature between 20 and 120 nK. The gas is coherently
split along the radial (x) direction using a symmetric
radio-frequency dressed-state double-well potential [23],
creating two uncoupled 1D gases separated by a distance
of 3:1 �m [Fig. 1(a)]. The longitudinal and radial trap
frequencies in the double well are 7 Hz and 1.4 kHz,
respectively, and the size of the system in the longitudinal
direction is typically 100 �m (see Supplemental Material
[24]). The system is then held in the double-well trap for a
variable evolution time te before being released and allowed
to fall under gravity during a time of flight of 16 ms. The
resulting matter-wave interference pattern [Fig. 1(b)] is
recorded using absorption imaging [25] and contains infor-
mation about the local relative phase�ðzÞ ¼ �1ðzÞ � �2ðzÞ
between the two halves of the system, with �1;2ðzÞ being the
fluctuating phase profile of each individual gas.
In 1D systems, spatial fluctuations arising from excita-

tions at different wavelengths strongly affect the physics
[26], and probing the system on variable lengths L repre-
sents a filter for the effects of these excitations [27]. In
our experiment, we integrate the interference pattern lon-
gitudinally over a length L and extract a line profile from
which a contrast CðLÞ and a phase �ðLÞ are obtained
[Fig. 1(c)]. Repeated realizations allow us to measure the
FDF of phase and contrast for different evolution times
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te and integration lengths L. Our measured FDFs are
presented in Fig. 2.

For the shortest evolution time (1.5 ms in Fig. 2), we
observe high contrasts and small phase spreads for all
lengths L, which demonstrates the coherence of our split-
ting process. After splitting, the phase fluctuations corre-
sponding to the different excitations grow in magnitude,
resulting in a scrambling of the relative phase field �ðzÞ.
These spatial fluctuations of �ðzÞ manifest themselves in a
randomization of the phase in the interference patterns and
in a decrease of the contrast, which depends on the probed
length scale L. For short L values, the sparsely populated
high-momentum modes satisfying k > 2�=L do not lead
to contrast reduction, resulting in a ringlike shape of the
FDFs; this is the phase-diffusion regime (A in Fig. 2).
For long L values, many modes satisfying k > 2�=L are
populated and their dynamics leads to a scrambling of
�ðzÞ within the probed integration length, resulting in a
significant reduction of the probability of observing a high
contrast and a disklike shape of the FDFs; this is the
contrast-decay regime (B).

At increasingly longer evolution times (te > 10 ms),
the FDFs do not change significantly, revealing the emer-
gence of a steady state characterized by a crossover length
scale between the phase-diffusion (A) and contrast-decay
(B) regimes. In our previous work [12], we identified this
steady state as a prethermalized state.

We now quantitatively analyze our observations in
the framework of an integrable Luttinger liquid (LL)

theory. To describe the dynamics, we consider the LL
Hamiltonian

Ĥ ¼ @c

2

Z L=2

�L=2
dz

�
K

�
ðr�̂Þ2 þ �

K
n̂2ðzÞ

�

determining the time evolution of the operators �̂ðzÞ and
n̂ðzÞ representing the relative phase and the relative density
of the system, respectively [21,27]. Here, c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

�g=m
p

is
the sound velocity, K ¼ ��� is the LL parameter charac-
terizing the strength of the interactions, and � ¼ @=mc is
the healing length; � is the 1D density in each half of the
system, g ¼ 2@!?as is the 1D coupling constant, m is the
mass of the 87Rb atom, as is the scattering length, and !?
is the radial trapping frequency (see Supplemental Material

[24]). The time evolution of n̂ðzÞ and �̂ðzÞ can be described
in Fourier space by a set of uncoupled harmonic oscillators
of collective modes with momentum k and energies @!k �
@cjkj, where the LL Hamiltonian is diagonal [14].
The rapid splitting process prepares a coherent super-

position of the atoms in the two wells, resulting in high
relative density fluctuations hn̂2kit¼0 ¼ �=2 and small

FIG. 2 (color). Multimode dynamics revealed by FDFs of
matter-wave interference. The probability density of contrast
CðLÞ and phase �ðLÞ of interference patterns is measured for
each integration length L (horizontal axis) and evolution time te
(vertical axis). Red and blue denote high and low probability,
respectively, and the color map is rescaled for each plot. For each
value of L, the right (left) columns correspond to the experi-
mental data (theoretical calculations) and full cloud to L ¼
100 �m [33]. At te ¼ 1:5 ms, the high contrasts and small phase
spreads demonstrate the coherence of the splitting process. As
time evolves, a steady state emerges and two distinct length-
scale-dependent regimes appear: the phase-diffusion regime (A)
and the contrast-decay regime (B). For short (long) L values, the
phase is random and the probability of observing a high contrast
is high (low), resulting in a ring (disk) shape in the density plot.
The theoretical calculations take into account the technical noise
on the relative atom number between the two wells (standard
deviation measured to be 5% of the total atom number) and the
error associated with the fitting of the interference patterns.
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FIG. 1 (color online). Matter-wave interferometry and corre-
lation measurements. (a) The experiment is initiated by coher-
ently splitting a single quasi-1D Bose gas into two uncoupled
gases using a horizontal double-well potential. The system is
then held to evolve for a variable evolution time te before being
released from the trapping potential. The contrast of the resultant
interference pattern is a direct measure of the relative phase
fluctuations (b). Integrating the interference pattern over a length
L and fitting the resulting line profile (c) gives the phase �ðLÞ
and the contrast CðLÞ, which are plotted as circular statistics (d).
(e) The whole process is repeated many times (typically 150) to
map the FDF for a particular length scale L and evolution time
te. The point plot in (e) is then converted into a density plot (f).

PRL 110, 090405 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

090405-2



relative phase fluctuations h�̂2
kit¼0 ¼ 1=2� [14,24]. In the

experiment, we observe enhanced global phase fluctua-
tions for te ¼ 1:5 ms with respect to quantum noise, which
are attributed to technical noise on the relative atom num-
ber between the two wells. For the dynamics of the con-
trast, the contribution of this technical noise is, however,
negligible compared to that of the initial density fluctua-
tions, for the probed integration lengths (L � �). Focusing
on the contrast thus allows us to directly observe the effect
of quantum noise associated with the splitting process
through the evolution of the many-body system.

The results of the LL calculations, taking into account
our technical noise, are presented in the left columns of
Fig. 2. For all length scales and evolution times, we find
very good agreement between the experimental and theo-
retical FDFs. Our approach gives a direct and intuitive
visualization of the multimode nature of the dynamics in
1D Bose gases [28].

To study the relaxation of the contrast in more detail, in
Fig. 3 we compare the measured mean values of the

integrated squared contrast hĈ2ðL; teÞi to the prediction of
the LL theory, taking into account the imperfections of our
imaging system (see Supplemental Material [24]). We
observe that the characteristic time for the decay of the
contrast is longer for long L than for short L, which is well
captured by ourmodel. For amore quantitative comparison,
we fit the experimental and theory data by an exponential
decay and extract the 1=e time constant. For the experiment,
we find characteristic decay times �expðL¼6�mÞ¼0:53�
0:33ms and �expðL ¼ 100 �mÞ ¼ 2:89� 0:36 ms (stan-

dard error on fitted parameter). Fitting the theoretical

calculations for our measured LL parameter K ¼ 58� 4,
we find �theoðL ¼ 6 �mÞ ¼ 0:40� 0:11 ms and �theoðL ¼
100 �mÞ ¼ 3:15� 0:21 ms, in good agreement with the
observations. The dependence of the relaxation time scale
onL is an additional clear signature of themultimode nature
of the dynamics [14].
Figure 3 also reveals the onset of the prethermalized

state for te > 3� � 10 ms which is characterized by
high (low) contrasts at short (long) integration lengths, in
line with the probability density plots A (B) of Fig. 2. In the
rest of this Letter, we investigate the crossover between
the high contrasts and low contrasts regimes observed in
Figs. 2 and 3.
Within the LL theory, the crossover length scale sepa-

rating the phase-diffusion and contrast-decay regimes can
be calculated analytically [14]: l0¼2@2=mg¼@=mas!?.
For the data in Figs. 2 and 3, we measure !?=2� ¼
1:40� 0:08 kHz and calculate l0 ¼ 15:8� 0:9 �m. To
understand the nature of this crossover length scale, we

consider the decay of the mean squared contrast hĈ2ðLÞi as
a function of L for te > 10 ms (inset of Fig. 4). To fit this
decay, we use our knowledge of the correlation functions
in the prethermalized state, which have been shown to be

FIG. 3 (color online). Contrast dynamics. Measured values of
the mean squared contrast for various integration lengths, cor-
rected for the contrast reduction factor due to the imperfections
of our imaging system (see Supplemental Material [24]). From
top to bottom: L ¼ 18, 40, 60, 100 �m. The lines show the
results of the Luttinger liquid calculations for these integration
lengths. The theory data for all L values have been rescaled by
the same factor of r ¼ 0:74 [34]. Apart from this factor, no
fitting parameter is used. We observe a relaxation process in
which a steady state is established on a time scale depending on
L and corresponding to the dephasing of the different excitations
probed within that L.
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FIG. 4 (color). Comparison of the relative-phase correlation
length of the prethermalized system (�eff) and of a system at
thermal equilibrium (��). Blue squares: values of �eff obtained

by varying the temperature Tinit before splitting the quasicon-
densate (see main text). Error bars denote 1 standard deviation
and are obtained by a bootstrapping method (see Supplemental
Material [24]). The red shaded area corresponds to the 95%
confidence interval around the theoretical calculation (line)
accounting for the uncertainty on the experimental parameters.
Green circles: correlation length �� of a system of two quasi-

condensates in thermal equilibrium, normalized to the mean of
the different densities. Gray shaded area: 95% confidence inter-
val around the theory (dashed line). Inset: estimation of the
correlation length. The filled circles are the values of hĈ2ðLÞi
in the prethermalized state (data of Fig. 3 for te > 10 ms),
normalized to the value at L ¼ 6 �m. The solid line is a fit to
an effective thermal equilibrium theory with the correlation
length being the only free parameter.
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thermal-like [12,14]. Using the direct link between the
mean squared contrast and the relative-phase correlation

function [24,29], a fit of hĈ2ðLÞi allows us to estimate the
effective thermal phase-correlation length �eff of the sys-
tem. For the data in Fig. 4 (inset) we find �eff ¼ 16:6�
0:9 �m, close to the value of l0 calculated above using the
independently determined experimental parameters. Note
that our method of estimating the correlation length does
not require precise measurements of the system parameters
to fit the FDFs but only needs the knowledge that the
correlation functions are effectively thermal.

The equivalence of the crossover length scale l0 and
the effective thermal phase-correlation length �eff can be
understood in the following way. In the case of two
uncoupled quasicondensates in thermal equilibrium with
temperatureT, the thermal phase-correlation length is given
by �� ¼ @

2�=mkBT [30,31]. Due to our rapid splitting

process, the energy initially stored in the system is equally
distributed between the different k modes of the system
[12,14], resulting in thermal-like correlations characterized

by an effective temperature kBTeff ¼ hĤijt¼0 ¼ �g=2. The
effective thermal phase-correlation length can thus be iden-
tified with �eff ¼ @

2�=mkBTeff ¼ 2@2=mg and is equiva-
lent to the crossover length scale l0.

Whereas the prethermalized system reveals thermal-like
correlations, its correlation length �eff depends only on the
1D coupling constant g, in contrast to a system of two
quasicondensates at thermal equilibrium where �� is a

function of density and temperature. To reveal this differ-
ence experimentally, we varied the initial temperature Tinit

of the quasicondensate before splitting and measured the

correlation length by fitting the decay of hĈ2ðLÞi (see inset
of Fig. 4). The temperature before splitting, Tinit, was
obtained through measurements of the second-order corre-
lation function of longitudinal density fluctuations after
time of flight [24,32]. The results (blue squares in Fig. 4)
show the independence of �eff from Tinit. When varying
Tinit, we further observed that the evolution of the FDFs
remained close to that presented in Fig. 2. In particular, the
steady states reached in the evolution exhibited the same
crossover between the phase-diffusion and contrast-decay
regimes. These observations confirm our interpretation of
the crossover length scale l0 as the prethermalized phase-
correlation length �eff of the system. Performing experi-
ments with two quasicondensates in thermal equilibrium
with temperature T and prepared in the same double-well
trap (see Supplemental Material [24]), we observe �� /
1=T (green circles in Fig. 4), emphasizing the different
characteristic scalings of the thermal and prethermalized
phase-correlation lengths. We finally note that the cross-
over length scale l0 determines the prethermalization time
scale (�10 ms in our experiments) through its ratio l0=c
with the speed of sound in the system [21].

In conclusion, we demonstrated the multimode nature
of the dynamics of a coherently split 1D Bose gas using

matter-wave interferometry. Our approach allows the direct
observation of the effect of the quantum noise present in the
initial nonequilibrium state on the evolution of the many-
body system. We showed the emergence of two distinct
regimes of relaxation separated by a characteristic cross-
over length scale, which we identified as the prethermalized
phase-correlation length of the system. This characteristic
length scale 2@2=mg reflects the parametrization of the
many-body theory describing the dynamics of the system
by a single parameter g. For our closed system to thermalize
and the relative-phase correlation length to reach the true
thermal equilibrium value ��, the integrability of the LL

theory needs to be broken. Investigations into the processes
leading to the full thermalization of the system are ongoing.
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