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We explore the dynamics and the steady state of a driven quantum spin coupled to a bath of fermions,
which can be realized with a strongly imbalanced mixture of ultracold atoms using currently available
experimental tools. Radio-frequency driving can be used to induce tunneling between the spin states.
The Rabi oscillations are modified due to the coupling of the quantum spin to the environment, which
causes frequency renormalization and damping. The spin-bath coupling can be widely tuned by adjusting
the scattering length through a Feshbach resonance. When the scattering potential creates a bound state, by
tuning the driving frequency it is possible to populate either the ground state, in which the bound state is
filled, or a metastable state in which the bound state is empty. In the latter case, we predict an emergent
inversion of the steady-state magnetization. Our work shows that different regimes of dissipative dynamics
can be explored with a quantum spin coupled to a bath of ultracold fermions.
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Ultracold atomic systems provide a versatile laboratory to
explore real-time many-body dynamics due to their long
coherence times and tunability [1,2] and, in particular, to
study rich impurity physics [3–10]. In recent years, much
progress has been achieved in realizing quantum impurities
interactingwithmany-bodyenvironments.Examples include
quantum degenerate gases consisting of a single atom type,
where a few atoms are transferred to a different hyperfine
state [11–15], ions immersed in quantum gases [16–18],
and strongly imbalancedmixtures ofmultiple atomic species
[19–22]. Impurity atoms generally have several hyper-
fine states that interact differently with the host particles.
Coherent control of these states allows one to probe the influ-
ence of environmental coupling on impurity dynamics, e.g.,
in Fermi polarons, which are impurities dressed by particle-
hole pairs [23–27]. So far, experimental studies focused
mostlyonthespectralproperties [11,20,21]andmass renorm-
alization [12,14] of polarons. However, very recently Rabi
oscillations ofmoving quantum spins, encoded in two hyper-
fine states of the impurity atoms, have been explored [20],
which gave further insights into polaron dynamics.
Inspired by the tremendous experimental progress, here

we analyze the dynamics of a quantum spin interacting with
an ultracold fermionic bath [Figs. 1(a) and 1(b)]. We con-
sider a situation where the spin performs radio-frequency
(rf) driven Rabi oscillations, and study their frequency
renormalization and damping due to spin-bath interactions.
We find that this system realizes various regimes of dissi-
pative dynamics. Moreover, we predict an emergent inver-
sion of the steady-state magnetization when the scattering
potential creates a bound state yet the driving is tuned
to a metastable state in which the bound state remains
unoccupied.

We consider an experimentally relevant situation where
the host fermions interact with the impurity via contact
interactions, such that only s-wave scattering is important.
Without loss of generality, we assume that only one of the
spin states, j↑i, interacts with host fermions with scattering
length a, while the other, j↓i, does not. This scenario has
been experimentally realized, e.g., in [20,21]. We mostly
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FIG. 1 (color online). (a) A driven quantum spin, which is dis-
sipatively coupled to a bath of fermions, can be experimentally
realized with localized impurity atoms (sphere with arrow) that
are immersed in a Fermi gas (small spheres). (b) Two hyperfine
states of the impurities are driven by rf fields of strength Ω0 de-
tuned from the bare transition by Δ. (c) The sign of the steady-
state magnetization mz of the driven quantum spin is shown as a
function of inverse scattering length 1=kFa and detuning Δ=EF.
Along the solid lines mz vanishes and nontrivial power-law fre-
quency renormalizations and damping of the Rabi oscillations are
found. A transition from normal mz > 0 to inverted mz < 0 mag-
netization emerges below the metastable state, red shaded area.
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focus on the case when the quantum spin can be treated as
immobile (this is true when the impurity is localized by a
strong potential [28] or is very heavy compared to host fer-
mions). Two cases should be distinguished: (1) a < 0,
when the impurity potential does not create a bound state,
and (2) a > 0, when a bound state exists [29,30]. We show
below through analytic arguments and numerical simula-
tions that in both cases, in the low-energy limit, our prob-
lem maps onto the spin-boson model with an Ohmic bath,
characterized by the low-energy spectral density JðωÞ ¼
2αω [31–33], where α is the dimensionless coupling stren-
gth that is widely tunable by changing the scattering length
a. Further, the energy difference between the two states in
the spin-boson model is controlled by the frequency of the
driving field.
In case (1), a < 0, the dissipative coupling can be

related to the scattering phase shift at the Fermi level,
δF ¼ −tan−1ðkFaÞ, via

α1 ¼
δ2F
2π2

: (1)

Even richer is case (2), a > 0, where depending on the driv-
ing frequency, the physics of the driven quantum spin is
governed by effective spin-boson models with two different
couplings. When the driving frequency is such that the
bound state is populated during the Rabi oscillations, the
coupling constant of the equivalent spin-boson model is

α2 ¼
ðδF=π þ 1Þ2

2
: (2)

It is, however, also possible to tune the frequency to a meta-
stable state with an unoccupied bound state. In that case,
the coupling constant of the equivalent spin-boson model is
given by α1, as in case (1). This allows one to explore a
much broader range of coupling parameters, and, in parti-
cular, to approach the overdamped regime [31]. Further, the
dissipative phase transition of the spin-boson model at α¼1
[31] can be explored with a multicomponent Fermi bath.
Model.—Our system is described by an effective one-

dimensional Hamiltonian

Ĥ ¼ Ĥ0 þ j↑ih↑j ⊗ V̂ þ Ω0σ̂x − Δσ̂z; (3)

where Ĥ0 ¼
P

kϵkc
†
kck is the Hamiltonian of the host fer-

mions and V̂ ¼ V
L

P
k;qc

†
kcq is the contact impurity scatter-

ing potential. The last two terms of Eq. (3) model the rf
driving of the two impurity spin states j↓i, j↑i. The param-
eters Ω0 and Δ represent the tunneling amplitude between
two spin states and the detuning, and can be independently
controlled in experiment by changing the strength and fre-
quency of the rf field. We will be interested in the situation
where at t < 0 the spin is in the j↓i state, and fermions are
in the ground state jFSi. The driving is turned on at t ¼ 0.

We will explore how the populations of the two spin states,
nσ ≔ hn̂σðtÞi, σ ∈ f↓;↑g, which are readily accessible in
experiments, evolve with time.
Relation to spin-boson model.—In order to establish a

low-energy description of our model for the case a < 0
(no bound state), we bosonize Hamiltonian (3) [4,34–37]
and find

Ĥ ¼
X

q

vFjqjb†qbq þ
ffiffiffiffiffiffiffi
2α1

p
πvF

X

q>0

�
q

2πL

�
1=2

ðb†q þ bqÞσ̂z

þ Ω0σ̂x þ ϵσ̂z; (4)

which corresponds to the spin-boson model with an Ohmic
bath and dimensionless coupling α1. Equation (1) relates α1
to the parameters of the microscopic model.
The energy of the j↑i state is renormalized by the inter-

actions with the Fermi sea (3) [38]:

ΔE ¼ −
Z

EF

0

dE
π

δð
ffiffiffiffiffiffiffiffiffiffi
2mE

p
Þ; (5)

where m is the mass of host atoms and EF is the Fermi
energy. Thus, the two families of states, one involving
the j↓i state and the other the j↑i state, become effectively
degenerate when the detuning compensates the energy
renormalization, i.e., Δ ¼ ΔE. Generally, the energy differ-
ence is ϵ ¼ −Δþ ΔE, which describes the effective bias of
the quantum spin. The effective bias ϵ, determines the
steady-state magnetization mz≔limt→∞fhn̂↑ðtÞi−hn̂↓ðtÞig
[39,40], whose sign we plot in Fig. 1(c) as a function of
the detuning Δ and the scattering length a. For ϵ ¼ 0,
i.e., along the solid red line, mz ¼ 0.
For a > 0, the situation is more involved, because of the

presence of the bound state whose population dynamics
influences the oscillations of the quantum spin. The oscil-
lations occur between two families of states, one with the
quantum spin in the j↓i state and the other with the quan-
tum spin in the j↑i state. Our finding is that the latter can be
either the ground state of the spin-up sector jΨg

↑i in which
the bound state is occupied, or the metastable state jΨm

↑ i in
which the bound state is empty.
In order to understand the two regimes and their proper-

ties, it is instructive to consider the correlation function
FðtÞ ¼ hΨ↓je−iĤtjΨ↓i. It should be noted that FðtÞ deter-
mines spectral, rather than dynamical properties, yet, it will
give us useful intuition. Following Yuval and Anderson
[41,42], FðtÞ can be represented as a perturbative series
in Ω0, where at order n the spin flips n times at times
t1; t2;…; tn. This reduces the problem to understanding
the response of the Fermi gas to a potential introduced
at t1; t3; :::::; tn. In the absence of the bound state, such
responses have a characteristic form of a Cauchy determi-
nant [41]. The only parameter that enters those expressions
is α1. To obtain FðtÞ, one then should sum over different
spin flip times.
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When the impurity potential creates a bound state, the
response of the Fermi gas for a given spin trajectory con-
tains different contributions, coming from the intermediate
states in which the bound state is either filled or empty.
However, when detuning is such that jΨ↓i is resonant with
either the metastable jΨm

↑ i or the ground state jΨg
↑i, the

contributions from intermediate states of one kind would
dominate. Contributions of the other kind will oscillate rap-
idly (due to the large energy difference involved) and,
therefore, upon integration, their contribution will become
negligible.
For the case of only one spin flip, when the response

function corresponds to the Anderson orthogonality catas-
trophe [43–45], it is known that both contributions have a
similar power-law form, but with different exponents. The
first contribution (empty bound state) is characterized by
an exponent 2α1, while the second one (filled bound state)
by 2α2. Generalizing this to the case of many spin flips, one
can show, by extending the analysis of Combescot and
Nozières [29], that the second contribution has the same
form as the first one, but with exponent 2α2. Thus, FðtÞ
is characterized by either α1 or α2 depending on the reso-
nance condition.
The above argument strongly suggests that, effectively,

our model becomes equivalent to the spin-boson model
with coupling α2 when Δ¼ΔEþEb−EF, Eb being the
bound state energy [blue line in Fig. 1(c)] and with α1 when
Δ ¼ ΔE [red line in Fig. 1(c)]. To substantiate this expect-
ation, we performed numerical simulations of the spin
dynamics of Hamiltonian (3) using matrix product states
(MPS), where the initial ground state of the system is deter-
mined by density matrix renormalization group [46,47].
The time evolution with switched-on driving field is calcu-
lated with time evolving block decimation [48,49]. We
choose in (3) the dispersion of a one-dimensional lattice
ϵk ¼−2J cos k at half filling [50], for which we find the
relation −kFa ¼ V=vF by comparing the scattering phase
shift of the lattice and the continuum. We measure the occu-
pation of the hyperfine states n̂↓ and n̂↑, respectively, from
which we extract the renormalized Rabi frequency as well
as damping by fitting to a damped, harmonic oscillator
superimposed with a linear slope [37].
Driving at resonance (ϵ ¼ 0).—We first consider zero

effective detuning ϵ ¼ 0 and thus follow the solid lines
in Fig. 1(c), wheremz¼ 0. The numerically calculated time
evolution of n↓ for driving strength Ω0 ¼ 0.1EF, negative
scattering length a < 0, and Δ ¼ ΔE is shown in Fig. 2(a),
solid lines. With increasing interaction strength jkFaj, the
Rabi frequency Ω is strongly reduced while the damping
rate γ is enhanced. n↓ is shown in (b) for positive scattering
length kFa ¼ 2 but different values of the detuningΔ¼ΔE
and Δ ¼ ΔEþ Eb − EF. When tuning to the bound state
branch the dressed Rabi frequency decreases significantly,
illustrating that the coupling α increases due to the increase
of scattering phase shift by π.

To confirm the equivalence of the dynamics to that of the
spin-bosonmodel, we fit the numerical data by the analytical
results obtained from noninteracting blip approximation
(NIBA), which is a weak coupling expansion valid for
α ≪ 1=2 and at short times [31,51]. UnderNIBA the dynam-
ics is divided into coherent and incoherent contributions. The
coherent part consists of dressed Rabi oscillations of fre-
quencyΩwitha superimposedexponential dampingγ,which
are universally related through Ω=γ ¼ − tan π=ð2 − 2αÞ.
The dressed Rabi frequency Ω can be expressed as [31]

Ω
Ω0

¼ FðαÞ
�
Ω0

ωc

�
α=ð1−αÞ

; (6)

with FðαÞ≔½Γð1−2αÞcosðπαÞ�1=½2ð1−αÞ� sinfπ=½2ð1−αÞ�g
and ωc is the high energy cutoff of the spin-boson theory.
For Ω0 < ωc this equation gives a reduction of the dressed
Rabi frequency Ω as compared to the driving strength Ω0.
The dashed curves in Fig. 2 are obtained from NIBA with
the high energy cutoff as the only fitting parameter. For
small interaction and at short to medium time scales NIBA
describes the dynamics well.
We extracted the renormalization of the Rabi frequency

for several values of interaction strength and detuning
for Ω0 ¼ 0.05EF and Ω0 ¼ 0.1EF, Fig. 3(a). The branch
present for both positive and negative values of scattering
length is obtained by setting Δ ¼ ΔE, while the second
branch at a > 0 is obtained with Δ¼ΔEþEb−EF. For
small positive kFa the driving cannot couple effectively
to the bound state as its wave function is of small spatial
extend; hence for the ground state branch symbols are
shown for kFa≳ 1. The power-law renormalization (6) of
the dressed Rabi frequency is demonstrated in Fig. 3(b).
Thus, we can conclude that the dynamics of our system
is well described by an effective spin-boson model for both
positive and negative scattering length.
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FIG. 2 (color online). Time dependent occupation n↓ of the
state j↓i at resonance ϵ ¼ 0 for driving strength Ω0 ¼ 0.1EF.
The Rabi oscillations are strongly damped and their frequencies
renormalized. (a) n↓ for negative scattering length kFa ¼
f−0.5;−5.0g. (b) n↓ for the positive scattering length kFa ¼ 2
and rf field tuned to Δ ¼ ΔE and to Δ ¼ ΔEþ Eb − EF, respec-
tively. In all cases the steady-state magnetization is zero. Solid
lines are numerical results from the simulation of (3) and dashed
lines are obtained from perturbation theory.
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Driving off resonance (ϵ ≠ 0).—The case of off-resonant
driving (ϵ ≠ 0) effectively corresponds to a biased spin-
boson model. Depending on the sign of ϵ, the quantum spin
has either positive or negative steady-state magnetization
mz, Fig. 1(c).
In Fig. 4 the numerically evaluated time-dependent occu-

pation n↓, solid lines, is shown for Ω0 ¼ 0.1EF, effective
detuning ϵ¼�0.15EF, and (a) kFa ¼ −2 and (b) kFa ¼ 2.
These numerical results are compared to a weak coupling
expansion to first order in the blip-blip interaction [39,40],
dashed lines. For negative scattering length (a) and ϵ > 0
a quantum spin prepared in j↓i decoheres only weakly, in
agreement with mz < 0, Fig. 1(c). For ϵ < 0 (mz > 0), the
occupation slowly flips with a rate that is indirect propor-
tional to the detuning. In (b) the system is slightly detuned
from the metastable branch. For ϵ < 0 the magnetization
slowly reverts from negative to positive, indicating mz>0,
while for ϵ > 0, the j↓i state remains highly occupied over
long times, supporting the region of inverted magnetization
below the metastable branch shown in Fig. 1(c).
Summary and discussion.—We studied the dynamics of a

driven quantum spin coupled to a fermionic bath which can
be realized with an imbalanced mixture of ultracold atoms.
Two hyperfine states of the minority atoms serve as spin
states and atoms themselves are spatially localized by a
strong optical lattice [28]. We used the mapping to the
spin-boson model to study the problem analytically. For
the unbiased case (ϵ ¼ 0), the spin-boson model exhibits
a dissipative phase transition at coupling α ¼ 1 [31–33].
With a single component bath, the coupling can take values
(1) 0< α1< 1=8 and (2) 1=8 < α2 < 1=2. For a < 0 range
(1) can be explored, while for a > 0 both ranges are acces-
sible. To explore an even broader range of α, one may
consider an impurity immersed in a multicomponent
Fermi gas. Such gases can, e.g., be realized with alka-
line-earth atoms [52–54] that obey SUðNÞ symmetry for
which the coupling constant is enhanced by N compared

to the single-channel case. Thus, for N > 2 it should be
possible to explore the dissipative phase transition.
Qualitatively, the existence of two resonances is reminis-

cent of experiments [20,21], which studied mobile impu-
rities interacting with a three-dimensional Fermi gas. In
this case, at a > 0 stable and metastable polaron branches
have been observed. Moreover, authors of Ref. [20] exper-
imentally studied Rabi oscillations of the impurity spin at
resonance. It should be noted, however, that for a mobile
impurity, effectively, the Fermi gas provides a sub-Ohmic,
rather than Ohmic bath. In this case the effect of the bath
is generally described by damping, and no dissipative
phase transition exists [31]. It is possible, however, that
at short times, and for heavy impurities (as was the case
in Ref. [20]), our results will still be applicable at least
qualitatively.
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