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We study quasi-two-dimensional dipolar Bose gases in which the bosons experience a Rashba spin-

orbit coupling. We show that the degenerate dispersion minimum due to the spin-orbit coupling, combined

with the long-range dipolar interaction, can stabilize a number of quantum crystalline and quasicrystalline

ground states. Coupling the bosons to a fermionic species can further stabilize these phases. We estimate

that the crystalline and quasicrystalline phases should be detectable in realistic dipolar condensates, e.g.,

dysprosium, and discuss their symmetries and excitations.
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Quasicrystals are exotic spatially ordered states of matter
that have no periodic crystal lattice [1,2]. Quasicrystalline
states have been observed in metallic alloys [3,4] and
colloids [5], and engineered in photonic crystals [6].
Quasicrystals differ dramatically from crystals in their
mechanical [1,6] and electronic properties [1]; like most
crystals, however, the existing quasicrystals are classical,
in the sense that quantum statistics does not affect the
crystalline order. Thus, the unconventional excitations,
defects, and melting transitions [7,8] that arise when trans-
lational order is intertwined with Bose condensation (as in
liquid-crystalline states of paired electrons [7,9–11]) cannot
be accessed with existing quasicrystals. Even classical qua-
sicrystals have unconventional excitations (e.g., phasons [1]
and imperfect dislocations [12]); their quantum analogs
should therefore be unusually rich in such excitations and
associated phenomena [13]. While quantum (quasi)crystals
are difficult to realize in solid-state systems, ultracold
atomic gases offer naturally quantum-degenerate, tunable
platforms for studying the interplay between (quasi)crystal-
linity and Bose condensation. Indeed, various proposals for
studying the resulting ‘‘supersolid’’ and ‘‘supersmectic’’
phases exist [14–24]. However, these proposals chiefly con-
sider two-dimensional stripes and triangular-lattice crystals.

In this Letter, we present an approach for realizing more
general crystalline and quasicrystalline states of ultracold
bosons (Fig. 1). We consider bosons subject to a Rashba
spin-orbit coupling, which gives rise to a single-particle
dispersion minimized on a circle in momentum space
[25–28]. This momentum-space circle sets the lattice spac-
ing; (quasi)crystalline phases correspond to condensation
at a discrete set of momenta on it. The Rashba coupling
alone does not generate nontrivial crystals: Rashba-
coupled bosons [24,26–34] exhibit a striped state, involv-
ing condensation at two opposite momenta, and a spatially
homogeneous state, involving condensation at a single
momentum, as well as possible uncondensed states [35].
However, as we show here, adding a second length scale
via dipolar interactions can stabilize nontrivial crystalline

and quasicrystalline states (Fig. 1). This stabilization takes
place through a mechanism that differs from the conven-
tional accounts of quasicrystalline ordering [36,37]. All the
spatially ordered states we find are inherently quantum
mechanical, in that the relative U(1) phases of their
momentum components affect the crystallinity; we show
that they also exhibit additional, distinctively quantum-
mechanical ‘‘phason’’ excitations.
We estimate that these crystalline and quasicrystalline

states are achievable in realistic experiments and can, in
addition, be easily detected via time-of-flight imaging, as
their momentum distributions are sharply peaked at recip-
rocal lattice vectors. Although we focus on ultracold
atomic realizations, the results of the present work might
also apply to certain magnetic systems, such as MnSi [38],
in which the spin-wave dispersion has a circular minimum.
Model.—The model we consider here comprises two-

dimensional dipolar bosons, subject to a Rashba spin-orbit
coupling. The Hamiltonian can be written as
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FIG. 1 (color online). Ground-state phase diagram of two-
dimensional Rashba-coupled dipolar bosons. The horizontal
axis is the parameter R—defined in the text—which measures
the ratio of the dipolar interaction to the contact interaction. The
vertical axis is k0dz, where k0 is the Rashba coupling strength
and dz is the transverse confinement. In the region marked QC0,
the system exhibits quasicrystalline phases involving � 7 pairs
of momenta.
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H ¼ H0 þHint; (1)

where

H0¼ 1

2m

X

k;��

�y
�ðkÞ½k2���þ�ðk����Þ � ẑ���ðkÞ (2)

is the single-particle Hamiltonian, with a circular disper-
sion minimum at k0 � �=2. Various schemes exist (see,
e.g., Ref. [25]) for realizing H0 using multiple Raman-
coupled internal states; such schemes should be possible to
realize in strongly dipolar Bose-Einstein condensates such
as those in dysprosium [39,40] and erbium [41], whose
ground states have many Zeeman sublevels [42].

The interaction Hint, including both contact and dipolar
terms, is assumed to be a density-density interaction. This
assumption generally holds for the contact interaction;
the dipolar interaction is also chiefly density-density if
the states used to give the spin-orbit coupling are large-
spin states, such asmF ¼ 7, 8 in dysprosium. (Wilson et al.
[43] have considered the opposite limit of strongly spin-
dependent dipolar interactions.) The full interaction takes
the momentum-space form

Hint ¼
Z

d2k�k��kUðkÞ; (3)

where �k � R
d2xeik�x½�y

þðxÞ�þðxÞ þ�y�ðxÞ��ðxÞ� and
UðkÞ is given by [44,45]

UðkÞ ¼ Uð0Þ
�
1� Rkdzw

�
kdzffiffiffi
2

p
��

; (4)

where dz is the confinement strength in the z direction;

Uð0Þ is the overall strength; R � ð3=2Þ ffiffiffiffiffiffiffiffiffi
�=2

p
=ð1þ g0=gdÞ,

where g0 and gd are the contact and dipolar scattering
lengths, respectively; and wðzÞ � expðz2ÞerfcðzÞ. For
R ! 0, this interaction becomes purely contact; for
R> 2=3, the dipolar interaction overcomes the contact
interaction, and UðkÞ changes sign at large k [Fig. 2(a)].
This regime, in which we find nontrivial ground states, is
naturally achieved in dysprosium [39] and can be engi-
neered even for less dipolar species such as chromium by
tuning the contact interaction to zero via a Feshbach
resonance.

Mean-field analysis.—We now turn to a mean-field
analysis of Eq. (1). We make the following ansatz for a
crystalline state with paired momenta:

�ðxÞ ¼
ffiffiffiffiffiffiffiffi
n

2M

r XM

i¼1

2
4eiðki�xþ�þ

i Þ
1

ei	i

 !

þ e�iðki�xþ��
i Þ

1

�ei	i

 !3
5; (5)

where n is the total density, 	i is the angle between ki and
the x axis, and M is the number of density waves compos-
ing the (quasi)crystal. The restriction to equal-weight

states is justified in the Supplemental Material [48]; the
assumption of paired momenta is justified below (and also
by renormalization arguments [28]). For such states, the
interaction energy density per particle is given by

E ¼ Uð0Þ þ 1

ð2MÞ2
X

i�j;�
Uðjki � kjjÞF�

ij ; (6)

where F�
ij � 2þ cosð�ijÞ þ cosð�ij þ 2	ijÞ � cosð�ij þ

	ijÞ � cosð	ijÞ, �ij � ð�þ
i � ��

i Þ � ð�þ
j � ��

j Þ, and 	ij
is the angle between components i and j on the dispersion
minimum (chosen to be 	 �=2). The �-dependent terms
arise because of scattering processes of the form

�y
k1;�

�y
�k1;�

�k2;���k2;�. In states where the momenta

are not paired, these processes do not exist; thus, the
mean-field energy of such states is generically higher,
justifying our neglect.
We now consider the limiting cases. The simplest limit is

the pure contact interaction limit R ¼ 0, for which UðqÞ �
Uð0Þ is constant. In this limit, for a generic M-component
state,

E ¼ Uð0Þ
�
1þ 1

M2

X

i<j

f1þ cosð�ij þ 	ijÞ cos	ijg
�
: (7)

The second term is always positive, except for M ¼ 1 (in
which case it is absent); therefore, the ground state is
always a stripe, with E ¼ Uð0Þ. Provided that UðqÞ> 0
for all q, this situation obtains, and the ground state
remains a stripe.
We now turn to the dipole-dominated limit in which

UðqÞ< 0 for large q; in this limit, the parameter tuning
between different phases is k0dz, the ratio of the spin-orbit-
coupling scale to the transverse confinement scale. For
k0dz 
 1, the interaction potential takes the form UðkÞ �
Uð0Þð1� Rk0dzÞ> 0, so the additional terms in Eq. (6) are
positive, and a stripe is still the lowest-energy state. In the
opposite limit k0dz � 1, however, UðkÞ is attractive
between points that are sufficiently far apart on the
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FIG. 2 (color online). (a) Interaction potential UðqÞ as a func-
tion of momentum q for R ¼ 0:6 (dashed line) and R ¼ 1 (thick
line). The inset shows the interaction potential in momentum
space due to a single condensate at k0ŷ in the R ¼ 1 case; the
color coding matches that in the main panel and indicates that the
interaction energy is attractive for a condensate sufficiently far
away in momentum space. (b) Ten-component (pentagonal) qua-
sicrystal pictured in momentum space; dashed squares show
typical momentum combinations that are coupled by interactions.
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dispersion minimum, thus favoring multicomponent crys-
tals and quasicrystals.

Directly minimizing the interaction energy, Eq. (6) in
this regime yields the phase diagram in Fig. 1; we see that
increasing k0dz gives rise to crystals and quasicrystals with
increasingly many momentum components. This feature
can be understood heuristically as follows. The interaction
potential [Fig. 2(a)] is negative and approximately constant
for kdz � 1; thus, one can think of it as having a repulsive
core at k & 1=dz and a constant attractive tail of strength
U1 at k * 1=dz. Thus, the interaction energy is minimized
by fitting as many condensates as possible around the
dispersion minimum at a momentum spacing � 1=dz; in
the Supplemental Material [48], we show that the energy of
a generic M-component state is then

E ¼ Uð0Þ � jU1j
2M

�
ðM� 1Þ þ X

n	ðM�1Þ=2
2 cosðn�=MÞ

�
;

(8)

which is minimized by increasingM until it is �k0dz. The
resulting state can be regarded as a Wigner crystal on the
dispersion ring, in addition to being a real-space (quasi)
crystal. In general, such an M-component arrangement
does not correspond to any periodic crystal lattice; how-
ever, it does have sharp Bragg peaks, by construction, and
is therefore a quasicrystal [1].

We now return to the results found by minimizing
Eq. (6) and plotted in Fig. 1, and note two features missed
by the heuristic analysis. (1) We find no asymmetric crys-
tals; i.e., all states we have found involve condensation at
an evenly spaced set of points on the dispersion minimum.
(2) States with even M appear less stable than those with
odd M; thus, for example, the square lattice (M ¼ 2)
occupies less of the phase diagram than the odd-M states,
and states with M ¼ 4, 6 are always higher in energy than
the nearest odd-M state. This can be attributed to the fact
that such states have momentum components separated by
�=2, for which the 	-dependent terms in Eq. (6) vanish.

We also note that, in the above discussion, we have
labeled the phases by their pattern of spin-up (or spin-
down) densities. Thus, for example, the phase we denote
as a ‘‘stripe’’ is actually a spin-density wave with uniform
total density [27]. Furthermore, our square-lattice phase
has only a unidirectional density wave in the total density,
as the spin-up and spin-down components form square
lattices that are mutually out of phase [Figs. 3(a) and 3(b)].

Stability against collapse.—We now discuss the stability
of the mean-field phases against collapse, which is known
to occur for dipolar Bose gases in certain regimes
[39,44,46]. First, we see from Eq. (8) (which overestimates
the attractive part of the interaction energy and is thus a
lower bound) that the total interaction energy is
always positive, even for pure dipolar interactions [U1 ¼
�0:3Uð0Þ]; thus, all configurations on the dispersion mini-
mum are stable against global collapse. One can also check

that there are no soft modes for k � k0. Adapting Ref. [44]
(see the Supplemental Material [48]), we find that this
stability criterion takes the form

n 	 1=½Uð0Þmd2z� ’ k20=½mUð0Þ�: (9)

In terms of standard experimental parameters, the latter
expression can be rewritten as the criterion that n=k20 &
1=ðk0adÞ, where ad is the scattering length associated with
the dipolar interaction. In general, k0ad 
 1, so Eq. (9) is
satisfied for realistic densities (n=k20 ’ n�2

R & 1, where �R

is an optical wavelength). This contrasts with previous
proposals for realizing crystallinity through roton soften-
ing in dipolar gases [18,44]. The crucial difference
between the two situations is that, in Refs. [18,44], the
dipolar interactions must be strong enough to overcome the
kinetic energy if a crystal is to form, whereas, in the present
case, the Rashba coupling quenches the kinetic energy on a
momentum-space circle, so that some kind of crystal forms
even for very weak interactions. Therefore, in the present
case, the kinetic energy away from the dispersion mini-
mum can be much larger than the interaction energy, thus
ensuring at least the local stability of the ground state.
Symmetries and gapless modes.—We now briefly

enumerate the symmetries and thus the gapless modes
of the M-component states. First, these states are sym-
metric under overall rotations; the corresponding long-
wavelength orientational fluctuations suppress stripe
ordering [29] but not crystallinity. The other symmetries
can be understood as combinations of the 2M condensate
phases of anM-component crystal. These are locked in the
combinations �ij discussed above; we now discuss the

significance of these combinations.

FIG. 3 (color online). Real-space spin and total density plots
for various ordered states. (a) Density of the spin-up component
of the ‘‘square-lattice’’ phase. (b) Total density profile of the
square-lattice phase. (c) Total density profile for the quasicrystal-
line phase; pentagons are guides to the eye. (d)–(f) Total density
profile of the hexagonal phase, as a function of the relative phase
�k [Eq. (10)] of any one of the three condensate pairs. Varying
this phase smoothly from (d) 0 through (f) � corresponds to an
overall translation plus a phason.
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Near a circle in momentum space, kinematic constraints
[47] restrict two-particle interactions to be of two
kinds: namely, forward-scattering processes of the form

ð�y
k�kÞð�y

q�qÞ and ‘‘Cooper-channel’’ processes of the

form�y
k�

y
�k�q��q. The forward-scattering processes are

invariant under the independent rephasing of each conden-
sate; however, the Cooper-channel processes lock certain
combinations of the condensate phases, namely, the �ij.

These processes are invariant under either (a) a global
change of phase or (b) the joint transformations

�k ! �ke
i�k ; ��k ! ��ke

�i�k : (10)

Thus, there are Mþ 1 such modes for an M-component
state. The one symmetry of type (a) is the overall U(1)
symmetry of the condensate, which gives rise to the super-
fluid stiffness. The M remaining symmetries of type
(b) correspond to sliding any one of the density waves
comprising the (quasi)crystal while leaving the others
fixed. Two linear combinations of these generate rigid
translations of the entire spatial structure and correspond
to phonons; these combinations involve choosing �k �
k �G for some G. Note that for a standard Bravais-lattice
crystal (M ¼ 2), all type (b) transformations are phonons.
However, for M> 2, there are M� 2 further symmetries;
these are associated with excitations known as ‘‘phasons’’
[1,36]. Phasons correspond to continuous internal rear-
rangements of a crystal that do not change its energy; a
particularly intuitive example is afforded by the M ¼ 3
hexagonal state. In this state, there is a single phason,
pictured in Figs. 3(d)–3(f); this excitation consists of con-
tinuously changing the density imbalance between the A
and B sublattices of the honeycomb lattice, which leaves
the interaction energy invariant. Note that, unlike the trans-
lational and U(1) symmetries, the symmetry associated
with the phason is an emergent property of the low-energy
theory—one can construct interactions (e.g., three-body
interactions) that violate it, but these are irrelevant at low
densities and energies.

We find that there are typically additional phasons in
quantum-mechanical (quasi)crystals, when compared with
their classical equivalents. For instance, classically, a tri-
angular lattice has no phasons; similarly, for the Penrose
quasicrystal (M ¼ 5), we find three phasons in the
quantum-mechanical case, whereas classically only two
phasons exist [36]. This difference is ultimately due to
the fact that the classical order parameters for crystallinity
are Fourier components of the density (i.e., a real quantum
field), whereas in the present case, the order parameters are
the Fourier components of the microscopic Bose fields
themselves. Thus, interactions such as �3 or �5 are for-
bidden by U(1) symmetry in the quantum case; for classi-
cal crystallization, the analogous terms would be allowed.
[In the quantum case, the lowest order at which such terms
arise is ð�y�Þ3 and ð�y�Þ5; they are therefore strongly
suppressed at low densities.]

Experimental feasibility.—We now briefly discuss the
experimental feasibility of our proposal. First, we note
that the Hamiltonian (1) can be realized in strongly dipolar
gases [39,41]. For concreteness, we consider dysprosium
[39], in which the dipolar interaction naturally exceeds the
contact interaction (R> 2=3) and quasicrystals can be
stabilized. Moreover, dysprosium has a large ground-state
manifold, permitting the realization of a nearly symmetric
Rashba coupling [25]. We emphasize that a perfectly sym-
metric spin-orbit coupling is not required; nontrivial
crystals and quasicrystals can be stable so long as the
anisotropy is of order Uð0Þn.
Second, we estimate the achievable transition tempera-

tures. As discussed above, the stability criterion permits
experiments at relatively high densities (e.g., spacings
�250 nm), which would boost the achievable con-
densation temperatures, as well as the barriers [�Uð0Þn]
between the various ordered states. Following
Refs. [39,46], let us take all scattering lengths to be

�100a0 (where a0 is the Bohr radius), and dz � n�1=2 �
250 nm. Then, the typical interaction energy scale is
1–5 nK, which is within the scope of current experiments.
Finally, as we briefly discuss in the Supplemental

Material [48], nontrivial crystalline states can be realized
even outside of the strongly dipolar regime (which might
be relevant, e.g., to experiments with chromium [46]) by
coupling the bosons to fermions, which mediate attractive
Ruderman-Kittel-Kasuya-Yosida interactions.
Conclusion.—In this Letter, we have shown that strongly

dipolar Bose gases (such as dysprosium) subject to a
Rashba spin-orbit coupling exhibit a variety of nontrivial
spatially ordered states, including a pentagonal quasicrys-
tal, hitherto unrealized with ultracold atomic gases. These
phases—which can be realized at currently achievable
coupling strengths in experiments with highly dipolar
bosons—are intrinsically quantum mechanical. This work
paves the way for future explorations of the distinctively
quantum-mechanical collective modes, defects, and melt-
ing transitions [7,8] of quantum quasicrystals.
We are grateful to A. Rosch, B. Lev, R. Wilson, and M.

Knap for helpful discussions. S. G. was supported in part
by the Harvard Quantum Optics Center. Work performed at
Argonne National Laboratory (by I.M.) is supported by the
U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357. E. A.D. acknowledges support from
Harvard-MIT CUA, the DARPA OLE program, AFOSR
MURI on Ultracold Molecules, and ARO-MURI on
Atomtronics.
Note added.—Recently, we learned of the complemen-

tary work of Wilson et al. [43]. While the systems consid-
ered are nominally similar, they differ in two crucial
respects: (i) we considered a quasi-2D, homogeneous sys-
tem, whereas Ref. [43] considered a system in a spherical
3D trap; (ii) we considered large-spin states with
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predominantly density-density interactions, whereas
Ref. [43] treated spin-1=2 states with Heisenberg inter-
actions. Thus, the phase diagrams in the two cases are
quite different.
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