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We propose a novel realization of Kondo physics with ultracold atomic gases. It is based on a Fermi sea

of two different hyperfine states of one atom species forming bound states with a different species, which

is spatially confined in a trapping potential. We show that different situations displaying Kondo physics

can be realized when Feshbach resonances between the species are tuned by a magnetic field and the

trapping frequency is varied. We illustrate that a mixture of 40K and 23Na atoms can be used to generate a

Kondo-correlated state and that momentum resolved radio frequency spectroscopy can provide unam-

biguous signatures of the formation of Kondo resonances at the Fermi energy. We discuss how tools of

atomic physics can be used to investigate open questions for Kondo physics, such as the extension of the

Kondo screening cloud.
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Introduction.—Significant advances in quantum optics,
such as in cooling, trapping, and manipulating ultracold
atoms, have lead to the realization of a plethora of exciting
many-body phases in a controlled manner [1,2]. An impor-
tant drive for this field is that many of these phases and
their description in terms of model Hamiltonians are of
great interest in condensed matter physics, such that a
fruitful interplay of these fields has developed. It has, for
instance, been possible to realize superfluid phases both in
fermionic and bosonic systems and the transition to a Mott
insulating regime [3–8].

An intriguing many-body effect in condensed matter
physics is the Kondo effect. It occurs when itinerant fer-
mions interact with magnetic impurities, such as, for
instance, a small concentration of Fe in Au. The orbital
occupation of the impurity must be such that there is an
unscreened spin present, i.e., in the simplest case a local-
ized state occupied by a single electron. The essence of the
Kondo effect is then that at low temperature this electron
spin forms a many-body bound state with the itinerant
electrons and becomes magnetically screened. Crucial for
this magnetic screening are second-order processes which
lead to frequent spin flips. This Kondo-correlated state
leads to a distinctive feature in the resistivity (Kondo
minimum) and was also observed as enhanced transport
in quantum dots [9,10].

In spite of decades of intense research [11], there remain
unresolved questions. For instance, a Kondo screening
cloud with a certain spatial extent and characteristic oscil-
lations was predicted [11–14]; however, its experimental
observation has remained elusive. On increasing the impu-
rity concentration from very few to a full lattice, the Kondo
clouds overlap and the localized spins interact with each
other via the so-called Ruderman-Kittel-Kasuya-Yoshida
(RKKY) coupling, mediated by the itinerant fermions.
This generates a competing effect to the Kondo screening

and leads to a transition to a magnetically ordered state of
the spins. The Kondo lattice problem is of paramount
importance for the understanding of heavy fermion sys-
tems and quantum criticality [15,16]; however, it is very
hard to analyze it theoretically beyond the mean field level.
Here, we propose an experimental setup based on ultracold
atoms to realize single impurity and lattice Kondo situ-
ations. The Kondo scale is shown to be accessible by
current experimental techniques.
In the field of ultracold atoms, a lot of progress has

recently been made for manipulating mixtures of different
species that offer the unique possibility to selectively trap
one species and to handle heteronuclear Feshbach reso-
nances producing molecular bound states [17–22]. These
developments are important ingredients for our proposal.
The main idea is to allow atoms of a Fermi sea to form
bound states with a different, spatially confined atom, the
impurity [see Fig. 1(a)]. We consider two species of
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FIG. 1 (color online). (a) Schematic picture of an atomic
bound state of an a species atom with a b species atom in a
harmonic trap with oscillator length aho. (b) Schematic plot of
the effective scattering length a� close to a Feshbach resonance
for a case where the a" ¼ a# is satisfied within a suitable regime

of parameters for Kondo physics given by the boundaries ðcl; cuÞ
as explained in the text.
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ultracold atoms with mass ma, mb. Species a is fermionic
and is prepared in two different hyperfine states labeled
by a spin index �. Species b, which can be a fermion or
boson, is subject to a strong harmonic confining potential.
The bound states for the hyperfine states correspond to the
unscreened spin in the Kondo problem. In order for the
Kondo effect to occur the bound states need to obey certain
conditions. First, the bound state between the a and b
atoms needs to be well occupied; however, the atoms
should not be too tightly bound such that second order
spin flip processes—important for the Kondo effect—can
occur frequently. This implies a certain regime for the
effective scattering lengths a� bounded by cu and cl as
shown in Fig. 1(b). Second, the bound state energies should
be very similar, since a difference of their energy will favor
a certain polarization of the spin, like a magnetic field,
which suppresses the Kondo effect. The bound state ener-
gies of atoms a with b, Eb;�, generally depend on the

scattering lengths a�, Eb;� ’ �@
2=2mra

2
�, mr ¼ mamb=

ðma þmbÞ, and for a general system those will be very
different. The challenge is then to find a scheme in which
the bound states can be simultaneously tuned to an energy
which is roughly equal and in a suitable regime for Kondo
physics. As we will show, for certain hyperfine states of a
system of 40K and 23Na atoms the effective scattering
lengths intersect in this regime when tuned close to
Feshbach resonances such that Kondo physics is directly
possible. However, for many other systems this fortuitous
meeting of the conditions will not occur. In the
Supplemental Material [23] we show that additional reso-
nances of the confining potential can also be employed to
tune the system into the Kondo-correlated state [24,25].

Physical setup and effective model.—To formalize these
ideas, we first discuss the atomic scattering problem and
then relate the parameters to the low energy effective
model in Eq. (5), which is directly connected to the
Kondo effect. Consider for each component � the two-
particle scattering between species a and b described by a
Hamiltonian of the form,

Hscat ¼ p2
b

2mb

þ 1

2
mb!

2
hor

2
b þ

p2
a

2ma

þ Vðra � rbÞ; (1)

where p�, r� are momenta and positions of the particles,
VðrÞ is the interspecies potential and !ho a scale for the
harmonic confinement. A corresponding length scale is the

harmonic oscillator length aho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=mb!ho

p

. The low en-
ergy form of the effective s-wave scattering amplitude
f�ðkÞ in terms of a� and the effective radius re;� is,

f�ðkÞ ¼ 1

� 1
a�

þ re;�
k2

2 � ik
: (2)

Without the harmonic confinement (!ho ¼ 0) the scatter-
ing problem for each � is characterized by the bare s-wave
scattering length a0;�. In the presence of the harmonic trap

the effective parameters a� and re;� can be calculated

depending on the bare scattering length a0;� [25,26]. One

finds in the Born approximation,

a� ¼ ma

mr

a0;�; re;� ¼ �mr

ma

a2ho
a0;�

: (3)

To tune the bare scattering lengths a0;� by a magnetic field

B, we assume that there is a Feshbach resonance,

a0;�ðBÞ ¼ abg

�

1� �B0;�

B� B0;�

�

; (4)

where abg is the background scattering length, �B0;� the

width and B0;� the position of the resonance.

We describe the low energy physics of the system by an
Anderson impurity model (AIM) [27] of the form,

H ¼ X

k;�

"kc
y
k;�ck;� þX

�

"b;�c
y
b;�cb;� þUnb;"nb;#

þX

k;�

Vk;�c
y
k;�cb;� þ H:c: (5)

Here, cyk;� creates an itinerant fermion with momentum k

and spin projection �, and cyb;� a bound state with energy

"b;�. The states are mixed by the hybridization Vk;�. Three-

particle bound states are assumed to be highly unstable due
to rapid decay into deep two-body bound states [28,29].
Under such conditions it has been shown [30] that the
system corresponds to U ! 1, where the occupation of
those states is suppressed. Particle loss is inhibited in such
situations [30]. The effect of the shallow trapping potential
on the atoms with mass ma is neglected, and hence the
dispersion is "k ¼ @

2k2=2mr [31]. We focus on the case of
three spatial dimensions, where the corresponding density

of states (DOS) per spin is �0ð"Þ ¼ c3
ffiffiffi

"
p

, with c3 ¼
V0k

3
F=ð4�2"3=2F Þ, and "F ¼ ð@2=2mrÞð3�2nÞ2=3. Here, n ¼

Na=V0, where V0 is the volume of the system and Na the
number of particles of species a.
Relation of AIM parameters to scattering parameters.—

The scattering amplitude is related to the T matrix by

f�ðk; kÞ ¼ �V0

mr

2�@2
T�
k;k: (6)

We can express the right-hand side in terms of scattering

properties of the AIM, TA;�
k;k ð! ¼ "kÞ, and from this deter-

mine the model parameters in Eq. (5). The T matrix of the
AIM is given by [11],

TA;�
k;k0 ð!Þ ¼ V�

k;�Gb;�ð!ÞVk0;�; (7)

where Gb;�ð!Þ is the retarded bound state Green’s func-

tion, � ! 0,

Gb;�ð!Þ�1 ¼ !þ i�� "b;� � K�ð!Þ ���ð!Þ: (8)

Generally, impurity properties only depend on the
integrated hybridization term K�ð!Þ ¼ P

kðjVk;�j2=ð!þ
i�� �kÞÞ, where we defined �k ¼ "k ��.
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A full solution of the scattering problem in Eq. (1) yields
f� [25] such that the AIM parameters can be determined
numerically via Eq. (6). Here we take a simplified form,
Vk;� ¼ V�, which is real and constant for "k <�v;� and

zero otherwise. This allows us to derive explicit analytical
expressions. For generic forms of free states and an s-wave
bound state, one sees that the overlap integrals Vk;� vanish

when the wavelength 1=k becomes much shorter than the
typical extension of the bound state a�. From this follows
that a reasonable assumption is �v;� ¼ ð�2=ðkFa�Þ2Þ"F,
with � ’ 1, used in the following. From Eq. (6) we find
then for small k with Eq. (2) and Eq. (7) with � ! 0,

V2
�

"2F
¼

8�
V0k

3
F

2
� jkFa�j � kFre;�

; (9)

such that V2
� � 1=Na and

"b;�
"F

¼ V0k
3
F

4�

�

2

�jkFa�j �
1

kFa�

�

V2
�

"2F

¼ 2

2
�jkFa�j � 1

kFa�
2
� jkFa�j � kFre;�

: (10)

Useful quantities are the hybridization parameter, �� ¼
��0ð"FÞV2

�, which is independent of the volume of the
system, and the important ratio

�"b;�
���

¼ 1

�

�

1

kFa�
� 2

�jkFa�j
�

; (11)

which only depends on kFa�. We can see how the AIM
model parameters depend on a� and re;�, for instance,

�"b� increases with 1=a� for a� > 0. As discussed, a�
and re;� depend on a0;� and thus on the magnetic field B
and the trapping frequency !ho, and this allow us to tune
the model parameters in Eq. (5). We see that in general
both h ¼ ð"b;" � "b;#Þ=2, which acts as a local magnetic

field, and�� ¼ ð�" � �#Þ=2 can be nonzero. For studies of
the AIM the latter is unusual, but it has been discussed in
situations of quantum dots coupled to partly polarized
leads [32–34]. As discussed in the Supplemental
Material, this implies that in general due to second order
processes in the hopping an effective local magnetic field
heff is generated. There, also the mapping of the general
AIM in Eq. (5) to an anisotropic Kondo model with spin-
spin couplings J? � Jz and the derivation of the Kondo
scale TK from scaling equations are explained.

Tuning to the Kondo state.—We now discuss appropriate
parameter regimes to observe the Kondo-correlated state in
more detail. These are meant as guidelines and not strict
boundaries. The first condition (I) is to have small fluctua-
tions of the occupation of the bound state, which can be
expected if �"b;�=ð���Þ> c1. A naive estimate is c1 �
1=2; however, smaller values, c1 � 0:25, also work well as
shown later. The second condition (II) is to have the Kondo
scale in a regime where it can be observed experimentally,
i.e., the experimental temperature Texp � TK. We assume

Texp ¼ �T"F, where �T � 0:01 can be achieved. To

achieve this the bound state must not lie too deep. More
formally, TK depends exponentially on the Kondo coupling
Jz and the asymmetry x ¼ J?=Jz < 1. It follows that Jz
must not be too small and the asymmetry should not be too
large. These couplings depend on the AIM parameters
"b;�, �� (see [23]) and we can obtain a condition of the

form �1=2
P

�"b;�=ð���Þ< c2 with a numerical estimate

c2 � 0:6. Hence, together with (I) we define an interval for
values of �"b;�=ð���Þ, and with the help of Eq. (11) we

can state it as a condition for kFa�,

cl < kFa� < cu; (12)

where cl ¼ ð�� 2Þ=ð�2c2Þ, cu ¼ ð�� 2Þ=ð�2c1Þ are
lower or upper boundaries [see Fig. 1(b)]. For �� � 0, an
effective magnetic field is generated, which suppresses
Kondo correlations. It is possible to offset the effective
field with a local magnetic field h, and thus, we define a
third condition (III), �� ¼ �hh: For a symmetric DOS,
�h ’ 0:2 was found numerically [33]; however, for a
general DOS and different cutoffs this may vary (see
Supplemental Material [23]).
To be able to tune to the Kondo-correlated state, it is

necessary to have a system where the Feshbach resonances
for j "i and j #i with the impurity atom have some overlap.
Using the form in Eq. (4) for a0;�, �B0;" and �B0;# need to

have the same sign and jB0;� þ�B0;�j> jB0;��j. Given
the bare scattering lengths a0;� the effective scattering

length including the harmonic potential can be calculated.
For simplicity we use the Born approximation in Eq. (3) in
the following, which was shown to give reasonably accu-
rate results [25]. Hence, the effective scattering lengths can
be tuned close to the Feshbach resonance and it is possible
that at the intersection, a" ¼ a#, Eq. (12) is satisfied. This is
illustrated in Fig. 1(b). As a0;" ¼ a0;#, Eq. (3) implies re;" ¼
re;#, such that h ¼ �� ¼ 0 and automatically conditions

(I–III) are satisfied. Note that if a" ¼ a#, but kFa� > cu, we
can satisfy Eq. (12) by reducing the density n and thus kF.
Experimental system and probe.—For the experimental

realization of our proposal we focus on a system of 40K
with j #i � j9=2;�7=2i and j "i � j9=2;�5=2i hyperfine
states and 23Na in the hyperfine state j1; 1i. In this system
recently molecular states were successfully produced using
interspecies Feshbach resonances [20]. For our purpose,
the Feshbach resonances with B0;" ¼ 106:9 G, B0;# ¼
108:6 G, �B0;" ¼ �1:8 G, and �B0;# ¼ �6:6 G [19] are

suitable. The background scattering length is abg ¼
�690aB, where the Bohr radius is aB ¼ 0:53� 10�10 m.
In the following we use common values in ultracold

gas experiments, n� 1018 m�3, k0F ¼ ½3�2n�1=3 ¼ 1:6�
10�4=aB. A typical trapping frequency is !ho � 100 kHz
[1], such that for 23Na we have aho ¼ 3:12� 103aB. One
has a0;" ¼ a0;# ¼ �1:82abg for

Bs ¼ B0;#�B0;" � B0;"�B0;#
�B0;" ��B0;#

¼ 106:26 G: (13)
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With Eq. (3), this implies k0Fa� ¼ 0:55. Employing the
numerical renormalization group (NRG) [35,36], we cal-
culated the low temperature bound state spectral function,
�b;�ð!Þ, for parameters corresponding to the K-Na system

for the situation where B ¼ Bs in Eq. (13) and we vary
kF=k

0
F, where k0F is as above. The energy scale is set by

"F ¼ 1, and we measure all energies from "F. The numeri-
cal values for the AIM parameters are given in Table I in
the Supplemental Material. The result is shown in Fig. 2(a).
The bound state peaks lie between �8"F (not shown) and
�2"F. Because of interaction effects the peaks are broad-
ened, even though they lie outside the continuum; however,
the width might be overestimated in the NRG calculation.
At ! ¼ 0 we see a clear peak, the Kondo or Abrikosov-
Suhl resonance. We can extract the half width of the Kondo
resonance �K � 0:1"F, which is indicative of the Kondo
scale suitable for experimental observations.

We will now describe experimental signatures to detect
the Kondo-correlated state. The retarded Green’s function
of itinerant states in the presence of nimp impurities is given

by [11],

Gk;�ð!Þ�1 ¼ !þ i�� �k � nimpV
2
�Gb;�ð!Þ; (14)

and �k;�ð!Þ ¼ �ð1=�Þ ImGk;�ð!Þ, � ! 0, is the momen-

tum resolved spectral function. In ultracold gas experi-
ments, �k;�ð!Þ can be measured directly by momentum

resolved photoemission spectroscopy [37–39]. For an im-
purity concentration nimp=Na � 0:03 and parameters cor-

responding to "b=�� ¼ �0:21 in Fig. 2(a), we show
�k;�ð!Þ in Fig. 2(b). The change of the height and width

of the peaks when approaching kF can be easily understood
as due to the coupling of the itinerant states to the Kondo
resonance. In Eq. (14) the imaginary part of Gb;�ð!Þ,
which is proportional to the spectral function �b;�ð!Þ leads
to a broadening of the spectral function, which is most
pronounced close to "k ¼ "F, where the Kondo resonance
lies. This is a striking feature opposite to the usual

scattering mechanisms which increase when moving
away from the Fermi energy. In fact, we can interpret
this is as a self-energy term, �ð!Þ ¼ nimpV

2
�Gb;�ð!Þ,

and this can be extracted [40] by well established tech-
niques developed in angle-resolved photo emission spec-
troscopy [41,42]. Hence, this procedure gives access to the
spectral function in Fig. 2(a) and as such is a direct
signature of the Kondo peak. More conventional radio
frequency (rf) spectroscopy can also provide explicit sig-
natures of the Kondo-correlated state. As discussed com-
prehensively in the Supplemental Material [23], the signal
shows characteristic broadened peaks, which are shifted
from the ones for a system without the Kondo effect. Also
spectroscopy of the species b impurity atom, switching
from an uncorrelated state to a Kondo state, would be very
interesting. Characteristic power law tails can be observed
as discussed in detail in Refs. [43,44].
Addressing open questions.—We discuss now a number

of interesting questions, which can be addressed once the
Kondo-correlated state has been realized. It has been long
argued [11] that the magnetically screened impurity should
be surrounded by a screening cloud with the spatial exten-
sion of order �K ¼ ð@vF=kBTKÞ. However, experimentally
it has not been possible to provide firm evidence for the
Kondo cloud, such that its existence is unclear. A typical
quantity to show Kondo cloud features is the decay of the
equal time spin correlation function hScðrÞsimpi, which is

difficult to access in condensed matter systems. In contrast,
in the proposed ultracold gas system this correlation func-
tion should become accessible by spectroscopic tools [45],
such that �K could be determined and this fundamental
question of Kondo physics be settled. Since our setup
allows us to switch the impurity on and off by optically
changing the hyperfine state of the b species, it would also
be curious to analyze the time scale on which the Kondo
cloud builds up. The proposed setup has also great poten-
tial to shed light on a number of intriguing issues for the
Kondo lattice including the observation of a fractionalized
Fermi liquid (FL�) phase [46] and the occurrence of super-
conductivity close to a quantum phase transitions.
Conclusions.—We have demonstrated how to realize a

Kondo-correlated state for a mixture of ultracold atoms.
The proposed setup, different from a previous proposal
based on alkaline-earth atoms [47], ones related to the
spin-Boson model [48,49] and a bosonic form [50], can
be realized with experimental techniques currently avail-
able. In general, this allows one to analyze field dependent
and anisotropic Kondo physics. We proposed the recently
studied Na-K-mixture as a suitable system and computed
the rf response in a regime well accessible by experiments.
There are numerous possible extension of our work includ-
ing the study of nonequilibrium Kondo physics, Kondo
lattice systems and signatures of quantum criticality. We
point out that geometrical resonances which we discuss in
the Supplemental Material [23] can also appear in l > 0
angular momentum channels even for purely s-wave
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FIG. 2 (color online). (a) Spectral function �b;�ð!Þ for differ-
ent values of "b;�=�� obtained for kF ¼ 1, 0.75, 0:45k0F. The
corresponding values are kFa� ¼ 0:55, 0.41, 0.25 and the com-
plete set of AIM parameters is given in Table I in the
Supplemental Material. The magnetic field B has been tuned
such that a" ¼ a#. (b) Momentum resolved spectral function

�k;�ð!Þ as calculated from Eq. (14) for the case "b=�� ¼
�0:21 with nimp as discussed below Eq. (14).
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scattering between localized and itinerant atoms (see, e.g.,
[25,26]). This may open interesting possibilities for real-
izing multichannel Kondo physics.
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M. Köhl, Nature (London) 480, 75 (2011).
[40] The energy resolution required is set by the peak width in

Fig. 2(b). For nimp=Na � 0:1 the width at k ¼ kF is

�="F � 0:09.
[41] T. Valla, A.V. Fedorov, P. D. Johnson, B. O. Wells, S. L.

Hulbert, Q. Li, G.D. Gu, and N. Koshizuka, Science 285,
2110 (1999).

[42] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod.

Phys. 75, 473 (2003).
[43] C. Latta et al., Nature (London) 474, 627 (2011).
[44] M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D. A.

Abanin, and E. Demler, Phys. Rev. X 2, 041020 (2012).
[45] M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M.D. Lukin,

and E. Demler, Phys. Rev. Lett. 111, 147205 (2013).
[46] T. Senthil, S. Sachdev, and M. Vojta, Phys. Rev. Lett. 90,

216403 (2003).
[47] A. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. Julienne,

J. Ye, P. Zoller, E. Demler, M. Lukin, and A. Rey, Nat.

Phys. 6, 289 (2010).
[48] A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and

P. Zoller, Phys. Rev. Lett. 94, 040404 (2005).
[49] P. P. Orth, I. Stanic, and K. Le Hur, Phys. Rev. A 77,

051601 (2008).
[50] G.M. Falco, R. A. Duine, and H. T. C. Stoof, Phys. Rev.

Lett. 92, 140402 (2004).
[51] E. Vernier, D. Pekker, M.W. Zwierlein, and E. Demler,

Phys. Rev. A 83, 033619 (2011).

PRL 111, 215304 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 NOVEMBER 2013

215304-5

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.89.220407
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature02199
http://dx.doi.org/10.1038/nature02199
http://dx.doi.org/10.1038/nature03858
http://dx.doi.org/10.1038/nature05224
http://dx.doi.org/10.1038/nature05224
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1103/PhysRevLett.86.2854
http://dx.doi.org/10.1103/PhysRevB.75.041307
http://dx.doi.org/10.1103/PhysRevB.77.180404
http://dx.doi.org/10.1103/PhysRevB.77.180404
http://dx.doi.org/10.1126/science.1191195
http://dx.doi.org/10.1103/RevModPhys.79.1015
http://dx.doi.org/10.1103/RevModPhys.79.1015
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevA.85.051602
http://dx.doi.org/10.1103/PhysRevA.85.051602
http://dx.doi.org/10.1103/PhysRevLett.109.085301
http://dx.doi.org/10.1103/PhysRevA.87.010702
http://dx.doi.org/10.1103/PhysRevA.87.010701
http://dx.doi.org/10.1103/PhysRevA.87.010701
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.215304
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.215304
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevA.74.013616
http://dx.doi.org/10.1103/PhysRevA.82.062713
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1016/j.physrep.2006.03.001
http://dx.doi.org/10.1038/nature04626
http://dx.doi.org/10.1126/science.1155309
http://dx.doi.org/10.1126/science.1155309
http://dx.doi.org/10.1103/PhysRevLett.91.127203
http://dx.doi.org/10.1103/PhysRevLett.91.127203
http://dx.doi.org/10.1103/PhysRevLett.91.247202
http://dx.doi.org/10.1103/PhysRevLett.92.056601
http://dx.doi.org/10.1103/PhysRevLett.92.056601
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevLett.98.240402
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1038/nature10627
http://dx.doi.org/10.1126/science.285.5436.2110
http://dx.doi.org/10.1126/science.285.5436.2110
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/10.1038/nature10204
http://dx.doi.org/10.1103/PhysRevX.2.041020
http://dx.doi.org/10.1103/PhysRevLett.111.147205
http://dx.doi.org/10.1103/PhysRevLett.90.216403
http://dx.doi.org/10.1103/PhysRevLett.90.216403
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1103/PhysRevLett.94.040404
http://dx.doi.org/10.1103/PhysRevA.77.051601
http://dx.doi.org/10.1103/PhysRevA.77.051601
http://dx.doi.org/10.1103/PhysRevLett.92.140402
http://dx.doi.org/10.1103/PhysRevLett.92.140402
http://dx.doi.org/10.1103/PhysRevA.83.033619

