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We consider the dynamics of a Bose-Einstein condensate with two internal states, coupled through a
coherent drive. We focus on a specific quench protocol, in which the sign of the coupling field is suddenly
changed. At a mean-field level, the system is transferred from a minimum to a maximum of the coupling
energy and can remain dynamically stable, in spite of the development of negative-frequency modes. In the
presence of a nonzero detuning between the two states, the “charge” and “spin” modes couple, giving rise
to an unstable avoided crossing. This phenomenon is generic to systems with two dispersing modes away
from equilibrium and constitutes an example of class-Io nonequilibrium pattern formation in quantum
systems.
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Nonequilibrium conditions often lead to the spontaneous
formations of regular patterns. This effect can be predicted
by the appearance of dynamical instabilities at finite mo-
mentum, finite frequency, or both. For classical dissipative
systems, several types of pattern formations were reviewed
and classified byCross andHohenberg [1] (seeTable I).With
the advent of isolated quantum systems and, in particular,
ultracold atoms, it is natural to inquire whether this phe-
nomenon still occurs in the absence of a dissipative bath.
Examples of pattern formation in unitary quantum systems
were indeed observed in the roton softening of dipolar
condensates [2] and in the dynamics of spinor condensates
[3–7]. They can be described as mode-softening effects, in
which the energy of a particularmode is reduced by changing
the parameters of the system, until it reaches zero and the
mode becomes unstable. This mechanism leads to unstable
modes with finite momentum and vanishing real frequency
and to the formation of a static pattern (class Is).
In this Letter, we describe a generic mechanism for the

formation of oscillatory patterns (class Io) in unitary quan-
tum systems, with a finite wave vector and a finite real
frequency. As we explain in detail below, this type of
instability occurs every time a dynamically stable mode
crosses an energetically stable one (see Fig. 1). For example,
this situation can be realized in tunneling-coupled conden-
sates [8] and antiferromagnetic spinor condensates [9]. To
observe it in a simple setting, we consider spinor condensates
with an external coherent drive inducing Rabi oscillations
between the states.
A system of this type was recently realized by Nicklas

et al. [10], with two hyperfine states of 87Rb coupled by a
field close to atomic resonance. In this experiment, the
initial state corresponded to a fully polarized condensate
and the dynamics was induced by suddenly switching on
the driving field. In contrast, we consider here the effects of

a quench in the phase of the field. At a mean-field level, the
system jumps from a minimum to a maximum of the energy
and can remain dynamically stable. By considering the
Bogoliubov excitations around this state [11], we find that
instabilities necessarily arise around specific wave vectors,
determined by an interplay between kinetic energy, coher-
ent pump, and interactions.
To develop insight into the different types of pattern

formation, we briefly review the stability conditions of
quadratic modes in unitary quantum systems. Small fluc-
tuations around a stationary state can be energetically
stable, dynamically stable, or unstable. For a single degree
of freedom, the energetically stable mode is illustrated by a

TABLE I. Classification of dynamical instabilities as static (s)
and oscillatory (o), with examples of dissipative (classical) and
unitary (quantum) systems. The focus of the present work is in
the quantum domain of class Io.

Class Dissipative Unitary Dispersion

Is
(k0 ≠ 0,
ω0 ¼ 0)

Eckhaus instability
in convection;
Turing
instability in
morphogenetics

Mode softening
in 2D dipolar
condensates
and spinor
condensates

IIIo
(k0 ¼ 0,
ω0 ≠ 0)

Belousov-
Zhabotinsky
chemical
reactions

Pairing
instability
near
Feshbach
resonances

Io
(k0 ≠ 0,
ω0 ≠ 0)

Convection
in binary
mixtures

Unstable
avoided
crossing in
spinor
condensates
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harmonic oscillator: H ¼ 1
2
ωðp2 þ x2Þ. The mode is char-

acterized by a ground state and a real frequency ω.
In contrast, the dynamically stable mode is exemplified
by H ¼ − 1

2
ωðp2 þ x2Þ. The dynamics are identical to the

previous case (with the same frequency of oscillations),
but all states now have negative energies and the system
cannot represent thermal equilibrium. Finally, a mode can
be dynamically unstable, illustrated by an inverted har-
monic potential: H ¼ 1

2
ωðp2 − x2Þ. Periodic oscillations

are replaced by exponential growth, associated with an
imaginary frequency iω [12]. As demonstrated below, the
notion generalizes to complex frequencies with real and
imaginary components, implying both oscillatory and
exponential dynamics.
We now consider the fluctuations of a many-

body translation-invariant system. A collective mode is
represented by a sum of harmonic oscillators
H ¼ P

k � 1
2
ωðkÞðp−kpk � x−kxkÞ, where the three stabil-

ity scenarios are possible for each k. In particular, we
consider two coupled modes described by

H ¼
X
k

1

2
p†Mppþ 1

2
x†Mxx ð1Þ

with MpðkÞ and MxðkÞ 2 × 2 matrices, p ¼ ðp1;k; p2;kÞ⊤,
and x ¼ ðx1;k; x2;kÞ⊤.
To diagonalize the system and find the Bogoliubov

modes, we use a dynamical method similar to the formal-
ism of Rossignoli and Kowalski [13]. We first compute
the equations of motion of xi;k and pi;k in the Heisenberg
picture

d
dt

�
x

p

�
¼

�
0 Mp

−Mx 0

��
x

p

�
: ð2Þ

We then define the Bogoliubov operators as the linear
combination bi;k ¼ a1x1;k þ a2x2;k þ a3p1;k þ a4p2;k sat-
isfying iðd=dtÞbi;k ¼ ωi;kbi;k. Going to the second time
derivative, we finally obtain

a⊤ω2
i;k ¼ a⊤

�
MpMx 0

0 MxMp

�
ð3Þ

with a⊤ ¼ ða1; a2; a3; a4Þ. The squared frequenciesω2
i;k are

given by the eigenvalues of MxMp or MpMx.
Knowing how to diagonalize systems of the form (1), we

introduce a simple model of level crossing with

Mp ¼
�
ω1ðkÞ 0

0 ω2ðkÞ

�
; Mx ¼

�
ω1ðkÞ ε

ε ω2ðkÞ

�
; ð4Þ

where ε is some coupling introduced between the two
modes. For ε ¼ 0, the two modes are decoupled and the
eigenfrequencies of the system are simply ω1ðkÞ and ω2ðkÞ.
If ωiðkÞ > 0, the mode is energetically stable, while if
ωiðkÞ < 0, it is only dynamically stable. For ε ≠ 0, the
original modes are mixed and we find the Bogoliubov (or
eigen)frequencies by diagonalizing MxMp for each wave
vector k:

ω2ðkÞ ¼ ω2
1 þ ω2

2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω2
1 − ω2

2

2

�
2

þ ε2ω1ω2

s
: ð5Þ

The dynamics only depend on the squared eigenfrequen-
cies, and by convention, we choose them to have positive
real components, whichever the sign of ω1;2. At a level
crossing, defined by jω1j ¼ jω2j, the squared frequency
difference is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ω1ω2

p
. If both modes are

energetically stable (ω1;ω2 > 0), the difference is real,
and one obtains the usual avoided level crossing [Fig. 1(a)].
In contrast, if one mode is energetically stable (ωi > 0) and
the other only dynamically stable (ωj < 0), the frequency
difference becomes imaginary and the avoided crossing
unstable [Fig. 1(b)].
In thisLetter,weconsider anexperimental system inwhich

this unstable avoided crossing naturally arises: a condensate
with two internal degrees of freedom [14–19] (states j1i and
j2i, separated by the energy ℏω) coherently coupled by a
radio-frequency (rf) field [20]. The rf coupling contribution
to theHamiltonian isHrf ¼ −αðeiνtψ̂†

1ψ̂2 þ e−iνtψ̂†
2ψ̂1Þ,with

α > 0 the Rabi frequency, ν the frequency of the field, and ψ̂†
1

and ψ̂†
2 bosonic creation operators for states j1i and j2i. In the

interaction frame with respect to H0 ¼ ℏνðψ̂†
2ψ̂2 − ψ̂†

1ψ̂1Þ,
time dependence is canceled and the Hamiltonian becomes

Ĥ ¼
Z
ddx

X
i

− ψ̂†
i
∇2

2m
ψ̂ i þ

λi
2
ψ̂†
i ψ̂

†
i ψ̂ iψ̂ i þ λ12ψ̂

†
1ψ̂

†
2ψ̂2ψ̂1

þ δ

2
ðψ̂†

2ψ̂2 − ψ̂†
1ψ̂1Þ − αðψ̂†

1ψ̂2 þ ψ̂†
2ψ̂1Þ; ð6Þ

wherewe set ℏ ¼ 1,m is the mass of the atoms, δ ¼ ω − ν is
the detuning, and the dimension d ¼ 1; 2; 3. The parameters
λ1, λ2, and λ12 describe state-dependent local interactions,

k k

(a) (b)

FIG. 1 (color online). A toy model illustration of the (a) stable
and (b) unstable avoided level crossings. A mode with a linear
dispersion (ω1 ∝ k) is mixed with a mode of constant frequency
(ω2 ¼ const). In (a), both modes are energetically stable
(ω1;ω2 > 0); in (b), the second mode is only dynamically stable
(ω2 < 0). The real component of the resulting eigenfrequencies is
the solid blue line (positive by convention) and the imaginary
component the dashed red line.
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which can be tuned with the aid of a Feshbach resonance (see
Ref. [21] for a review).
The equilibrium properties of the Hamiltonian (6) are

well understood [11]. In the absence of the coherent drive
(α ¼ 0), the population of each state is fixed and the system
undergoes a miscible-immiscible phase transition, depend-
ing on the relative strength of the interactions [22]. If
jλ12j <

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
, the gas is miscible; i.e., it is energetically

favorable to have both species share space. Alternatively, if
λ12 >

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
, the gas is immiscible: the phase-separated

state has the lowest energy. Finally, if λ12 < −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
, the

system collapses. We note that phase transitions are
signaled by dynamical instabilities. For example, immis-
cibility is triggered by waves of population imbalance
(“spin mode”) becoming unstable at long wavelength and
pushing the gas towards the phase-separated state.
In the presence of a coherent drive, the mean-field phase

diagram of the Hamiltonian (6) can be found by replacing
the field operator by a classical field ψ̂ i ≈ Ψi ¼ ffiffiffiffi

ni
p

e−iθi

and looking for stationary solutions ΨiðtÞ ¼ Ψið0Þe−iμt to
the Gross-Pitaevskii equations [17]. This approach leads to
two main families of solutions, characterized by the phase
difference θ ¼ θ1 − θ2: when θ ¼ 0, the coupling energy is
minimal, and when θ ¼ π, it is maximal. For each value of
θ, there can be up to three stationary solutions correspond-
ing to different values of the population imbalance n1 − n2
[23]. Here, we consider only the symmetric solution
n1 ¼ n2, which leads to simpler analytical results and
can be prepared experimentally.
To study the stability of the mean field, we introduce

small quantum fluctuations, approximating ψ̂ i ≈Ψi þ
e−iθi

P
k≠0ðeikx=

ffiffiffiffi
V

p Þai;k in Eq. (6) and expanding up
to second order. For stationary mean fields, the linear
term cancels and we are left with a quadratic bosonic
system [24]. For convenience, we introduce the cano-
nically conjugated variables xi;k ¼ ða†i;−k − ai;kÞ=i

ffiffiffi
2

p
and

pi;k ¼ ða†i;−k þ ai;kÞ=
ffiffiffi
2

p
, which are, respectively, linked to

phase and density fluctuations [25]. In this basis, the
Hamiltonian takes the form (1) with the matrices Mp
and Mx given by

Mp ¼ 2

�
λ1n1 λ12

ffiffiffiffiffiffiffiffiffiffi
n1n2

p
λ12

ffiffiffiffiffiffiffiffiffiffi
n1n2

p
λ2n2

�
þ αcosθ

0
B@

ffiffiffiffi
n2
n1

q
−1

−1
ffiffiffiffi
n1
n2

q
1
CA

þ k2

2m

�
1 0

0 1

�
þ δ

2

�−1 0

0 1

�
;

Mx ¼ αcosθ

0
B@

ffiffiffiffi
n2
n1

q
−1

−1
ffiffiffiffi
n1
n2

q
1
CAþ k2

2m

�
1 0

0 1

�
þ δ

2

�−1 0

0 1

�
;

ð7Þ

and we can use Eq. (3) to find the eigenmodes.

We first consider the symmetric case λ ¼ λ1 ¼ λ2 and
δ ¼ 0, with the mean-field solutions n1 ¼ n2 and θ ¼ 0; π.
In this case, Mx and Mp have the same eigenvectors
for all k and the system decouples into a charge mode
(

ffiffiffi
2

p
xc ¼ x1 þ x2,

ffiffiffi
2

p
pc ¼ p1 þ p2) and a spin mode

(
ffiffiffi
2

p
xs ¼ x1 − x2,

ffiffiffi
2

p
ps ¼ p1 − p2). For the charge

mode, the Hamiltonian is

Hc ¼
1

2

��
nðλþ λ12Þ þ

k2

2m

�
p2
c þ

�
k2

2m

�
x2c

�
; ð8Þ

which does not depend on the coupling α or the phase θ.
The condition for stability is that both terms are positive, or
equivalently, λ12 > −λ. For the spin mode, we obtain

Hs ¼
1

2

��
nðλ − λ12Þ þ 2α cos θ þ k2

2m

�
p2
s

þ
�
2α cos θ þ k2

2m

�
x2s

�
; ð9Þ

and both the coupling strength α and the phase θ will affect
the stability of the system. For α ¼ 0, the stability condition
reduces to the miscibility condition λ12 < λ. For α ≠ 0 and
the equilibrium solution θ ¼ 0, this condition is simply
extended to λ12 < λþ 2α=n [see Fig. 2(a)].
Things get more interesting for the nonequilibrium

solution θ ¼ π. In this case, the coefficient in front of x2s
in Eq. (9) is always negative for small enough k. The

spin stable
charge unstable

spin stable
charge stable

spin unstable
charge stable

0 1 2
0

1

2

3

k

0 1 2
0

1

2

3

k

a 0

3 2 1 0 1 2 3
0.0
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12
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0
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3

k

b
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0.0

0.1

0.2

0.3

0.4

12

FIG. 2 (color online). Stability diagrams of the system for the
symmetric case (λ ¼ λ1 ¼ λ2, n1 ¼ n2, δ ¼ 0), with solutions
(a) θ ¼ 0 (equilibrium) and (b) θ ¼ π (nonequilibrium). The grey
background indicates dynamical instability at small wave vectors.
The insets illustrate the real (solid blue line) and imaginary
(dashed red line) parts of the dispersions of the two modes
(thinner lines for the charge mode and thicker for the spin mode).
The variables are in dimensionless units with m ¼ 1 and ℏ ¼ 1,
and the energy is measured in λn.
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system can nevertheless become dynamically stable when
the coefficient in front of p2

s is negative as well, translating
to the condition λ12 > λ − 2α=n [see Fig. 2(b)]. This is
the result of a competition between the interactions and the
coherent coupling, compensating each other to avoid the
instability. For larger wave vectors, the kinetic energy
k2=ð2mÞ will increase both coefficients until they switch
sign. Except for the special case λ12 ¼ λ (where they are
equal), there will be an unstable interval when one
coefficient is positive and the other negative. This dynami-
cal instability is of type Is, not directly related to mode
softening, and is shown in Fig. 2 (third inset).
If we depart from the symmetric case, by considering

λ1 ≠ λ2 or δ ≠ 0, the matricesMx andMp will generally no
longer have the same eigenvectors and the two modes will
mix. For a small perturbation, the dispersions will be
qualitatively affected only at energy crossings. This occurs
for the nonequilibrium solution θ ¼ π, where the spin
mode, first decreasing in frequency, crosses the charge
mode, as shown in the third inset of Fig. 2. As explained
above, a novel instability arises as the crossing between the
energetically stable charge mode and the dynamically
stable spin mode is avoided [see Fig. 3(a)]. Up to the first
order in the perturbation λ1 − λ2 or δ, the instability is
centered around

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mα

2αþ ðλ12 − λÞn
2αþ λ12n

s
: ð10Þ

The nontrivial dependency on the coupling and interaction
parameters signals that the instability results from a
competition between the two.
We now describe an experimental protocol designed

to probe the interesting properties of the θ ¼ π solution and
its instabilities. In order to achieve the relevant state, we
propose to apply a finite coherent drive α and a large
detuning δ, and start with the atoms in the ground state j1i.

If the detuning δ is adiabatically reduced to a small finite
value, the system will end up in the minimal-energy
solution θ ¼ 0. We then propose to quench the system
by changing α → −α (by introducing a phase shift of π in
the rf field), equivalent to changing θ ¼ 0 → π. The system
is now in the appropriate mean-field state (θ ¼ π, n1 ≈ n2)
that we let evolve for a time t before proceeding to a
measurement.
Because of quantum fluctuations, the unstable modes of

the quenched Hamiltonian will develop and grow expo-
nentially. Charge and spin density waves will form at the
unstable wave vectors, creating regular patterns at the
associated wavelengths. Information about those patterns
can be found in the power spectra of the spin (s) and charge
(c) density fluctuations. Within the approximations of the
present analysis, they are simply given by Ss=cðk; tÞ ¼
2nhps=cðk; tÞps=cð−k; tÞi and plotted in Fig. 3(b). As
expected, both Scðk; tÞ and Ssðk; tÞ show sharp features
at the wave vectors corresponding to the dynamical
instabilities predicted by the dispersion relation shown in
Fig. 3(a). In particular, the charge mode displays only one
dynamical instability at k ≈ 0.7, induced by the unstable
avoided crossing with the (otherwise dynamically stable)
spin mode [26].
In summary, new phenomena occur in the intermediary

regime of coherently driven spinor condensates, where the
coupling strength is comparable to the interaction energy.
By quenching the phase of the driving field, one can induce
a dispersion relation featuring an energy crossing between
an energetically stable charge mode and a dynamically
stable spin mode. Quite generically, such a crossing
becomes unstable when a perturbation is introduced to
mix the modes. For our system, a finite detuning of the
coupling-field frequency suffices. We propose an exper-
imental protocol designed to test our result and predict the
consequences of the instability.
This mechanism, which we term unstable avoided cross-

ing, is a generic feature of systems with two degrees of
freedom in a nonequilibrium state. We note that in tradi-
tional condensed-matter systems, negative frequencies are
usually associated with dynamical instabilities (the Landau
instability in superfluids, for instance). Our results can
explain why, since in the presence of a dissipative bath, any
negative-frequency mode can couple to a stable mode of the
bath with the same (absolute) frequency and become
unstable. In contrast, ultracold neutral atoms are extremely
well insulated from the environment and negative-
frequency modes are dynamically stable.
There are multiple pathways to extend this work. In

particular, we assumed Bose-Einstein condensation, which
does not occur in one-dimensional systems. One might
study whether an avoided level crossing still arises for a
quasicondensed Luttinger liquid. Furthermore, by adding
an optical lattice, an effective momentum cutoff is intro-
duced with the Brillouin zone. By varying the gas density, it
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FIG. 3 (color online). (a) Dispersion relation in the asymmetric
case δ ≠ 0, showing two dynamical instabilities (see the text).
The real part of the frequency is the solid blue line, and the
imaginary part (multiplied by 10 for better legibility) is the
dashed red line. (b) Power spectrum of the charge (dashed line)
and spin (solid line) sectors, showing sharp peaks in Fourier
space where the dispersion relation displays instabilities. Numeri-
cal parameters: λ12 ¼ 1.05λ, α ¼ 0.5λn, δ ¼ 0.1λn, and
t ¼ 40.0ℏ=λn. The variables are in dimensionless units with
m ¼ 1 and ℏ ¼ 1, and the energy is measured in λn.
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should be possible to tune the cutoff and control the
emergence of finite wave vector dynamical instabilities.
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