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We explore the high-temperature dynamics of the disordered, one-dimensional XXZ model near the
many-body localization (MBL) transition, focusing on the delocalized (i.e., “metallic”) phase. In the
vicinity of the transition, we find that this phase has the following properties: (i) local magnetization
fluctuations relax subdiffusively; (ii) the ac conductivity vanishes near zero frequency as a power law; and
(iii) the distribution of resistivities becomes increasingly broad at low frequencies, approaching a power
law in the zero-frequency limit. We argue that these effects can be understood in a unified way if the
metallic phase near the MBL transition is a quantum Griffiths phase. We establish scaling relations between
the associated exponents, assuming a scaling form of the spin-diffusion propagator. A phenomenological
classical resistor-capacitor model captures all the essential features.
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Noninteracting electrons in disordered media display
a uniquely quantum phenomenon known as Anderson
localization [1]; when all electronic states are Anderson
localized, dc transport is absent. Evidence from perturba-
tive [2–4], numerical [5–8], and rigorous mathematical
approaches [9] suggests that the main features of Anderson
localization (in particular, the absence of diffusion and
dc transport) persist in the presence of interactions. The
resulting phase, known as the many-body localized (MBL)
phase [10], has a number of remarkable features: a system
in the MBL phase is nonergodic—i.e., its many-body
eigenstates violate the eigenstate thermalization hypothesis
[8,11,12]—and supports extensively many local conserved
quantities [13–18]. Consequences of MBL such as slow
entanglement growth [13,19–21] and unconventional phase
transitions [22–29] have been analyzed and their exper-
imental implications discussed [30–35].
While there has been a great deal of recent work

establishing the existence and properties of the MBL
phase, little is known about the transition between the
MBL and delocalized phases. It is expected that, for
sufficiently weak disorder and strong interactions [3,4],
eigenstates should remain ergodic and transport should be
diffusive, as in clean nonintegrable systems [36]. However,
it has been proposed that diffusivity and/or ergodicity may
break down as the MBL transition is approached [37,38],
even before transport vanishes. Thus, there might be an
intermediate phase, or phases, between the conventional
metallic phase and the MBL phase.
In this Letter, we provide numerical evidence that an

intermediate, nondiffusive phase, indeed exists. To this end,
we examine the dynamical properties of the random-field,
spin-1=2 XXZ chain at intermediate disorder strengths
(i.e., in the vicinity of the MBL transition), using exact

diagonalization. In particular, we examine the infinite-
temperature, low-frequency behavior of the optical con-
ductivity σðωÞ, and the long-time dependence of the
return probability CzzðtÞ. These probes are complementary:
σðωÞ probes long-wavelength behavior, while CzzðtÞ is a
local probe.
Our numerical results indicate that both of these quan-

tities exhibit anomalous power laws that vary smoothly as
a function of the disorder strength in this intermediate
regime. Specifically, σðωÞ ∼ ωα and CzzðtÞ ∼ t−β, with the
scaling relation αþ 2β ¼ 1 (Fig. 1). Furthermore, we

FIG. 1 (color online). The phase diagram of the random field,
XXZ model for Jz ¼ 1. hmax characterizes disorder strength.
As the disorder is increased, the system transitions smoothly into
a subdiffusive Griffiths-like phase with an anomalous diffusion
exponent β and exponent α characterizing low-frequency optical
conductivity, which satisfy the scaling relation αþ 2β ¼ 1. The
MBL transition is predicted to occur where σðωÞ ∼ ω. Within
precision, it coincides with the transition point determined from
the level statistics parameter r (see main text).
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compute the full distribution D½ρðωÞ� of resistivities ρ at a
fixed sample size as a function of frequency; we find that
the width of this distribution diverges in the low-frequency
limit as ΔρðωÞ ∼ 1=ωα0 . Such behavior is characteristic of a
quantum Griffiths phase [39], in which power-law corre-
lations emerge due to the interplay between the exponential
rareness of large insulating regions and their exponentially
large resistance. We account for these scaling relations by
postulating a scaling form of the spin-diffusion propagator
and a phenomenological resistor-capacitor model with
power-law-distributed resistors.
As our work was nearing completion, a related numerical

study by Bar-Lev et al. [40] appeared. While our numerical
results are consistent with those of Ref. [40], we are also
able to provide an analytic understanding of the subdiffu-
sive phase (see also Ref. [41]).
Numerical simulations.—We work with the XXZ model

given by the Hamiltonian

H ¼
X
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where hiji implies sites i and j are nearest neighbors. The
local magnetic field values hi are picked uniformly from
the range ½−hmax; hmax�; hmax characterizes the strength of
the disorder. The exponents α; β presented in Fig. 1 were
extrapolated from finite size results computed using system
sizes L ¼ 12; 14; 16 (see the Supplemental Material [42]),
while results in Fig. 2 correspond to L ¼ 14. We use J ¼ 1
as the unit of energy, and choose the interaction strength to
be close to the Heisenberg point, Jz ≲ 1, as finite-size
effects are more severe for Jz=J ≪ 1. The XXZ chain is
expected to exhibit an infinite-temperature transition to the
MBL phase at a critical hmax [5]. In what follows, we
restrict ourselves to infinite temperature and choose the
subspace of total magnetization

P
iS

z
i ¼ 0.

The real part of the optical conductivity σðωÞ in linear
response reads
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where m, n are the many-body eigenstates of the system
with energies Em, En, which we evaluate using exact
diagonalization, ωmn ¼ Em − En, and T is the temperature
(we set ℏ ¼ kB ¼ 1). The first line of Eq. (2) is the
Lehmann representation of TσðωÞ, given in terms of a
sum over local current operators ji, which are related
to the spin operators using the continuity equations,
ji − jiþ1 ¼ ∂tS

z
i . The second line of Eq. (2) is the limiting

behavior of TσðωÞ as T → ∞. In the remainder of the
Letter, the factor T is implicitly understood when we refer
to the conductivity σðωÞ. In our numerics, we use a
Lorentzian form for the δ function with a width
η ∼ Δ=102, where Δ ¼ hmax

ffiffiffiffi
L

p
=2L is approximately the

average level spacing ∼10−3–10−2 for the system size
L ∼ 14 and disorder strengths hmax ∼ 1.5–3.5 that we
explore. The precise value of η is unimportant, so long
as it is appreciably smaller than Δ (see the Supplemental
Material [42]). The return probability, Ci

zzðtÞ, is defined as
Ci
zzðtÞ ¼ 4hSzi ðtÞSzi ð0Þi, where i is any site on the chain.

Since we are interested in describing the phase close to the
MBL transition, we also require an additional, independent,
method to identify the transition point.
Following Ref. [5], we consider the level statistics

parameter rm ¼ δm−=δmþ, where δm� are the energy
differences between eigenstate m and the two adjacent
eigenstates with δm− < δmþ. The average over all eigenstates
m, r ¼ hrmi, is known to assume different values, r ∼ 0.39
and r ∼ 0.53 in the cases of the MBL and the conducting
phase, respectively. We crudely estimate the MBL tran-
sition as the point when r is halfway between these values,
as determined for a L ¼ 16 system (dashed line at hmax ≈ 3
in Fig. 1).

FIG. 2 (color online). Behavior of (a) optical conductivity σðωÞ, (b) return probability CzzðtÞ, and (c) width ΔρðωÞ of the distribution
of resistivities as a function of frequency (magenta). All plots are for Jz ¼ 0.8, and disorder strengths as indicated in the legend. The fits
(green) are power laws of the form Czz ∼ 1=tβ, σðωÞ ∼ ωα, and ΔρðωÞ ∼ 1=ωα0 . The inset in (c) shows the relative power γ ¼ α0 − α
governing the scaling of the ratio ΔρðωÞ=hρðωÞi of the width and the mean of the resistivity distribution.
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Numerical results.—Our numerical results on the
dynamic observables are summarized in Fig. 2. Both the
optical conductivity and the return probability obey power-
law behavior over multiple decades. For the exponents
defined by σðωÞ ∼ ωα and CzzðtÞ ∼ 1=tβ, respectively, we
numerically find the scaling relation αþ 2β ≈ 1; the
physical origin of this relation is discussed below. This
scaling relation also holds in the diffusive regime, where
one expects that CzzðtÞ ∼ 1=

ffiffi
t

p
and σðωÞ ∼ const (thus,

α ¼ 0, β ¼ 1=2). Our results approach diffusive values at
small disorder hmax ≈ 1.5, but we are unable to extract
reliable power laws in this limit. As the system approaches
the MBL transition, α continuously increases toward 1 and
β decreases to 0; β ¼ 0 implies the absence of relaxation,
and marks the transition into the MBL phase. The trend
suggests that at the MBL transition σðωÞ ∼ ω; this differs
sharply from the expectation for a noninteracting Anderson
insulator [48], viz. σðωÞ ∼ ω2 log2ðωÞ.
Next, we look at the distribution D½ρðωÞ� of resistivities

ρ, at a fixed frequency ω. We find that the distribution of
resistivities at a fixed sample size (L ¼ 14) grows increas-
ingly broad at low frequencies; the standard deviation of
sample resistivities at a fixed frequency ω diverges as ω−α0 ;
see Fig. 2. At low frequencies, sufficiently high moments of
the resistivity distribution become ill-defined and we expect
that the distribution approaches a power law PðρÞ ∼ ρ−τ in
this limit. While we are unable to reliably extract the
exponent τ from the data, we will argue below that
our numerical results can be explained using a resistor-
capacitor network which predicts that τ ¼ 2=ðαþ 1Þ in the
Griffiths regime.
Origin of scaling relation αþ 2β ¼ 1.—The origin of

the relation αþ 2β ¼ 1 can be understood as follows. The
relation between length and time in the subdiffusive phase
can be written in the “diffusive” form x2 ∼DðtÞt, where
DðtÞ is a time-dependent diffusion constant. At long times,
the scaling of return probability implies that x2 ∼ t2β in
the subdiffusive phase. Thus, DðtÞ ∼ t2β−1, and from the
Einstein relation σðωÞ ∼Dðt ¼ 2π=ωÞ ∼ ω1−2β.
More generally, the relation αþ 2β ¼ 1 follows if one

assumes that the average spin density propagator takes
the scaling form Gðx; tÞ ∼ t−βϕðx=tβÞ [or, equivalently,
Gðk;ωÞ ∼ ω−1 ~ϕðk=ωβÞ], i.e., if one stipulates that lengths
and times are related exclusively through the dynamical
exponent z ¼ 1=β. A dynamical exponent that smoothly
varies with disorder strength is reminiscent of the zero-
temperature Griffiths phase in random magnets (see
Ref. [43] and references therein). We assume further that
the static compressibility of the system evolves smoothly
near the MBL transition as expected for a high-temperature
system with short-range interactions. From these assump-
tions, it follows (see the Supplemental Material [42]) that
the dynamic structure factor Sðk;ωÞ ∼ ω−1hðk=ωβÞ (where
h is another scaling function; hð0Þ is finite). The dynamic

structure factor is closely related to the momentum-
dependent conductivity [49]: specifically, σðk;ωÞ∼
ω2∂2

kSðk;ωÞ ¼ ω∂2
khðk=ωβÞ. Again, it follows that

σðk ¼ 0;ωÞ ∼ ω1−2β.
Griffiths-phase interpretation.—The reasoning above

related α to β, but did not account for the subdiffusive
behavior itself. We now provide an interpretation of
subdiffusion in terms of Griffiths effects. Near the MBL
transition, one expects the system to consist of metallic
segments separated by insulating barriers, i.e., local regions
where the system parameters favor localization. Barriers
through which the tunneling time is ≳t confine the
magnetization at the time scale t. The scaling between
length and time suggests that the average distance between
such insulating barriers is dðtÞ ∼ tβ. As long as β < 1=2,
the time t spent to tunnel through the insulating regions is
parametrically larger than the time scale to diffuse between
barriers, t ≫ dðtÞ2 ∼ t2β. The long time dynamics is there-
fore limited by these rare insulating regions. When
approaching the diffusive limit β ¼ 1=2, the separation
between barrier tunneling and diffusion time does not exist.
Thus rare barriers cannot be defined and transport is simply
governed by diffusion. From these considerations it follows
that a local charge excess decays to 1=dðtÞ in time t which
yields a return probability CzzðtÞ ∼ 1=tβ.
This picture of insulating barriers also yields the correct

scaling of the optical conductivity. We imagine that we
apply a field E that flips at a frequency ω ∼ 1=t. Between
such flips, the charge equilibrates to the (approximately)
linear potential gradient set up by the field between
insulating barriers separated by a length dðtÞ. Thus, at a
position x, the charge flips between �Ex=T in time t. This
requires average current densities of order jjj ∼ EdðtÞ2=tT,
a fraction of which is in phase with the applied field and
thus gives rise to scaling of the real part of the conduc-
tivity, σðωÞ ∼ ω1−2β.
Note that this Griffiths picture is qualitatively distinct

from the situation where only certain rare sites exhibit slow
decay, while on most sites magnetization decays rapidly. In
such a scenario, the subdiffusive behavior would only show
up in the average and not the typical return probability.
Instead, we find subdiffusive decay in both typical and
average correlations (see the Supplemental Material [42]).
RC model.—We now introduce a classical RC network

[50] that captures this Griffiths physics and reproduces
all essential features of our numerical data. The model
[Fig. 3(a)] consists of a chain of resistors with a distribution
PðRÞ ∼ R−τ, each connected to the ground by a capacitor
with a constant capacitance C. A power-law distribution of
resistances can arise naturally in the physical system, as
follows. Suppose the resistance is dominated by randomly
distributed but identical tunneling barriers, such that each
site has a probability p of being a barrier. The probability
of finding a string of N consecutive barriers is then pN .
Standard semiclassical arguments suggest that, if the
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tunneling rate through any barrier of height W is e−W , then
the tunneling rate through a string of N barriers scales as
e−NW ; consequently, if R is the (dimensionless) resistance
of a single barrier, the resistance of a string of N barriers is
RN . Together, these observations imply that the distribution
of resistances must satisfy the relation P½RN �≃ fP½R�gN ,
and hence that P½R� ∼ R−τ for some τ whose value depends
on microscopic details.
We now relate this RC model to our numerical results. To

this end, we note that, for 1 < τ < 2, the average resistance
of the chain in the dc limit ρ̄ðω ¼ 0Þ ¼ R∞

0 PðRÞRdR is
divergent. At any nonzero frequency, however, the capac-
itors have a finite impedance 1=ðωCÞ, and a resistor with
Ri ≫ 1=ðωCÞ disconnects the circuit into separate blocks.
Connecting to our arguments from the previous section, the
average size of such blocks is given by dðωÞ ∼ ω−β, where
β is again the exponent of subdiffusive relaxation, as for
the quantum model; probed on a time scale t, the circuit
consists of disconnected regions of size dð1=tÞ; thus, the
return probability scales as CzzðtÞ≃ ½dð1=tÞ�−1 ∼ ð1=tÞβ.
We can relate β to τ using the following argument. For

1 < τ < 2, the resistance of a block of size d is dominated
by its largest expected resistor Rd, which is given by the
criterion d

R∞
Rd
PðRÞdR ¼ 1 yielding Rd ≃ d1=ðτ−1Þ. The

conductivity of such a block is given by σd ≃ d=Rd, and
through the Einstein relation is related to the time of
diffusion td across such a block, td ∼ d2=σd ∼ d−τ=ð1−τÞ. At
any frequency ω, the size of independent blocks dðωÞ is
such that the diffusion time satisfies td ≃ 1=ω. This yields
dðωÞ ∼ ω−ð1−1=τÞ, i.e., β ¼ 1 − 1=τ. For τ > 2, the distri-
bution PðRÞ yields a well-defined (length-independent)
average resistance, and the Einstein relation yields
dðωÞ ∼ ω−1=2, or β ¼ 1=2. These results concur with
previous more rigorous analyses [50,51].
The conductivity exponent α is determined by reinstating

frequency dependence in the result σd ≃ d=Rd; we find

α ¼ 2=τ − 1 and α ¼ 0 for 1 < τ < 2 and τ ≥ 2, respec-
tively. Combining this with the previous result for β, we
readily find that the scaling relation αþ 2β ¼ 1 is satisfied
for all values of τ. Next, we calculate the scaling of the
width of the resistivity distribution. We again note that
segments of the penetration depth dðωÞ behave independ-
ently of one another and there are L=dðωÞ such segments in
a system of length L. The width of the resistivity distri-
bution can then be shown (see the Supplemental Material
[42]) to satisfy ΔρðωÞ ≈ ΔRðωÞ= ffiffiffiffi

L
p

, where ΔRðωÞ is the
width of the distribution of single resistors: ½ΔRðωÞ�2≡R Rd
0 PðRÞðR− R̄Þ2dR∼ω1−3=τ. This yields α0 ¼ 3=2τ−1=2,
which is slightly greater than α in the range of the Griffiths
phase 1 < τ < 2 [this is reflected in the numerics for the
XXZ model for hmax ≲ 2.5; see inset in Fig. 2(c)], and
slightly beyond into the diffusive phase up to τ ¼ 3.
We have verified these scaling arguments by numerically

solving the RC model (Fig. 3) in both the subdiffusive and
diffusive regime and find good agreement with the ana-
lytical predictions. In particular, we calculate the mean and
width of the finite frequency resistivity distribution and find
that their asymptotic form is a power law; see Fig. 3(b).
To test the relation α ¼ 2=τ − 1, we plot ðαþ 1Þτ=2 as a
function of τ [Fig. 3(c)] and confirm it to be constant in the
subdiffusive regime 1 < τ < 2, while it increases linear in
the diffusive regime τ > 2, where α ¼ 0.
Conclusions.—In this work. we have numerically estab-

lished the following facts about the delocalized phase near
the MBL transition in the disordered XXZ chain. (1) The
conductivity vanishes at low frequencies with the power
law σðωÞ ∼ ωα. (2) Spin transport is subdiffusive, and the
return probability at long times decays as Ci

zzðtÞ ∼ 1=tβ,
with the scaling relation αþ 2β ¼ 1. As the localized phase
is approached, β → 0, and α → 1 while as the diffusive
phase is approached β → 1=2 and α → 0. (3) The distri-
bution of resistivities of a fixed-sized sample grows
increasingly broad at low frequencies, and the width of
this distribution diverges as a power law with exponent
α0 > α at low frequencies. The distribution of resistivities
becomes scale free and presumably power law in the dc
limit. These general observations allow us to identify the
phase as a Griffiths phase. We also derived the central
scaling relation αþ 2β ¼ 1, postulating a scaling form of
the spin-diffusion propagator. We showed that a phenom-
enological, classical RC model allows us to capture the
various features of the Griffiths phase in a simple manner.
Our predictions can be directly tested in experiments with
ultracold atoms in disordered potentials [52–59], polar
molecules [60], nitrogen-vacancy centers in diamond [61],
and thin films [62,63]. Two intriguing aspects of the
Griffiths phase that remain to be addressed in future work
are (i) whether it is ergodic, and (ii) whether any such phase
exists in more than one dimension, where single local
bottlenecks cannot block global transport. It would also be
interesting to understand dynamics in the subdiffusive

FIG. 3 (color online). (a) The RC model. (b) Width of the
finite frequency resistivity distribution ΔρðωÞ (magenta) and its
asymptotic form 1=ωα0 (green) plotted as a function of frequency.
The inset shows γ ¼ α0 − α≳ 0, where α is the exponent of the
average resistivity ρ̄ðωÞ ∼ 1=ωα. (c) ðαþ 1Þτ=2 as a function of τ.
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phase in the context of memory-matrix formalisms, in
particular, the Mori-Lee approach where ergodicity (or lack
of it) can be addressed directly [64,65].
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