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The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-
rangeCoulomb repulsion and the cavity-induced interactions. The latter are due tomultiple scatterings of laser
photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon
decay.We study the stationary states of ions coupledwith amode of a standing-wave cavity as a function of the
cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb
crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in
specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of
friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity
nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics
coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures
controlled by the cavity parameters andby the ions’phase. These features are imprinted in the radiation emitted
by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
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Cavity quantum electrodynamics (CQED) with cold
atomic ensembles provides exciting settings inwhich to study
the physics of long-range interacting systems [1,2]. The latter
are found when the interparticle potential in D dimensions
exhibits a scaling with the distance r slower than 1=rD [3].
This property is of relevance from the nuclear scale to
astrophysical plasmasand leads tononadditivityof theenergy,
whose consequences are, among others, ensemble inequiva-
lence and metastable states with diverging lifetimes [3].
The dynamics of atoms in single-mode high-finesse

resonators exhibits several analogies with well-known theo-
retical models of the statistical mechanics of long-range
interacting systems [4]. High-finesse cavities, in fact, trap
photons for a sufficiently long time such that multiple
scatterings can occur among the atoms inside the resonator.
This gives rise to an effective interatomic potential whose
range can scale with the size of the system [5] and that can
induce spontaneous atom ordering [6,7] even in one dimen-
sion [8]. Additionally, the system is intrinsically out of
equilibrium because the resonator dissipates light; thus,
nontrivial phases are observed only in the presence of an
external drive. Under these premises, photon shot noise gives
rise to global retardation effects, which can effectively cool
the atomic motion [1,4,8].
The interparticle forces in general compete with these

dynamics.When the interactions are short ranged, at ultralow
temperatures their interplaywith the cavity potential can give
rise to exotic phases, which tend to maximize photon
scattering into the resonator and, thus, the strength of the
long-range intracavity potential [1,7,9–11]. To a large extent,
however, it is unknown how these dynamics are modified as

the range of the competing interacting potential is increased.
This question acquires further relevance in view of exper-
imental setups trapping cold ionswithin high-finesse cavities
[12–18].
In this Letter we theoretically characterize the effect of

cavity backaction in the presence of the competing
Coulomb interaction between N ions with the same charge
q and mass m. The ions are confined by an external trap
inside a standing-wave resonator of wavelength λ, in the
geometry illustrated in Fig. 1(a), where their motion is
assumed to be one dimensional along the x axis. This setup
is expected to simulate the Frenkel-Kontorova model [19–
21], which describes a chain of elastically bound particles
subjected to an external periodic potential (substrate) in one
dimension [12,13,22–25] and reproduces the salient fea-
tures of stick-slip motion between two surfaces. When the
periodicity λ=2 of the cavity optical lattice is incommen-
surate with the characteristic interparticle distance d of the
ions (and the cavity nonlinearity is negligible), the ions’
ground state can be either sliding or pinned: in the sliding
phase the forces giving rise to sticking can cancel, so that
the minimal force for initiating sliding vanishes. Static
friction becomes significant when ions are pinned by the
cavity potential; in this case, their distribution can still be
incommensurate with the lattice periodicity, exhibiting
defects (kinks). In the FK model the sliding and pinned
phases are separated by the Aubry transition, whose
control field is the relative amplitude of the periodic
potential [26–28], and whose hallmark is the abrupt growth
of the lowest phonon frequency (phonon gap) [29]. In a
finite chain with free ends and an inversion-symmetric
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potential, this transition is characterized by symmetry
breaking [21,28].
This behavior is substantially modified when the peri-

odic potential of the resonator mediates a long-range inter-
action among the atoms in the dispersive regime of CQED
[1,30].Here, the coupling at strength g to a cavity fieldmode,
with spatial mode function cosðkxÞ and k¼2π=λ, induces
the conservative potential ℏU0n̂ cos2ðkxÞ for sufficiently
large detuning Δ0 ¼ ωc − ωel between the frequencies
of the cavity mode and ion dipolar transition. Then, the
potential amplitude is proportional to the intracavity
photon number operator n̂. The strong-coupling regime
of CQED is reached when the dynamical Stark shift
per atom U0 ¼ g2=Δ0 is such that NjU0j=κ > 1, with κ
the cavity loss rate [1,30]. In this regime, the mean
intracavity photon number n̄ ¼ hn̂i; thus, the depth of
the cavity optical lattice is a nonlinear function of the ions
positions [31],

n̄ ¼ jηj2=½κ2 þ ΔeffðfxjgÞ2�; ð1Þ
where η is the amplitude of the driving field and

ΔeffðfxjgÞ ¼ Δc − NU0BNðfxjgÞ: ð2Þ

The detuning Δc ¼ ωp − ωc of the pump from the cavity
frequency is thus shifted by NU0BNðfxjgÞ, where the
function BN ¼ P

j cos
2ðkxjÞ=N depends on the ions’

positions xj along the cavity axis and is the so-called
bunching parameter, as it measures their localization at the
potential minima. This frequency shift is at the origin of the
nonlinear dependence of n̄ on fxjg and gives rise to a
deformation of the effective potential that the ions expe-
rience, as shown in Fig. 1(b), which can be expressed in
terms of the effective mean-field potential

Vcav ¼ −ðℏjηj2=κÞ arctan½ΔeffðfxjgÞ=κ�; ð3Þ
and whose derivation is reported in Refs. [31,32]. Its
functional dependence is reminiscent of the nonlinearly
deformable potential discussed in Refs. [33,34]. Potential
Vcav, however, also mediates a multibody long-range
interaction between the ions and thus acts as a globally
deformable potential, since the potential depth depends on
the global variable BN . It competes with the potential V ion
due to the Coulomb repulsion within the external harmonic
trap, which orders the ions along the x axis [35,36], and
whose axial component reads

V ion ¼
1

2

XN

j¼1

mω2x2i þ
q2

4πϵ0

X

j>i

1

jxj − xij
; ð4Þ

with ω the trap frequency along x. In the absence of the

cavity, the equilibrium positions fxð0Þi g form a chain; the

interparticle distance dj ¼ xð0Þjþ1 − xð0Þj is inhomogeneous
but almost uniform at the chain center [37], where it takes
the minimal value d. Within the resonator the ions’
equilibrium positions fx̄jg are the minima of the total
potentialV ¼ V ion þ Vcav. We choose the trap frequencyω
to ensure an incommensurate ratio between λ and d, such
that the dynamics are intrinsically frustrated.
The strength of the cavity-mediated interactions is

controlled by the cooperativity C ¼ NU0=κ, which scales
the strength of the nonlinear shift in Eq. (2). For jCj ≪ 1
the mean photon number is independent of the ions’
positions. In this limit Vcav ≈ V0

P
j cos

2ðkxjÞ and the total
potential V can be mapped to the FK model [13,22,23]. The
sliding-to-pinned transition is then expected at a critical
value of the potential amplitude Vc

0 ∝ η2C, and occurs at
smaller values of η with increasing jCj, as illustrated in
Fig. 1(c). The sign of U0, and thus of C, determines the
features of the pinned phase: for C > 0, a pinned configu-
ration minimizes BN , since the minima of Vcav are at the
nodes, while for C < 0 it maximizes BN . As jCj increases,
the cavity potential changes shape, as in Fig. 1(b), and it
strongly depends on the value of BN through the shift in
Eq. (2): for a fixed detuning Δc, the resonance Δeff ¼ 0 is
fulfilled for certain values of BN , and thus for specific
phases. For jΔcj > κ, the resonance can directly separate the
regime where the minima are either spikes or flat bottomed.

FIG. 1 (color online). (a) An array of cold ions in the optical
lattice of a high-finesse cavity is an exotic realization of the
Frenkel-Kontorova (FK) model. The cavity is pumped by a laser
with amplitude η and decays at rate κ, and the intracavity photon
number is determined by the ion density; this gives rise to a globally
deformable potential which depends nonlinearly on the ions’
positions. (b) The functional form of the cavity-induced potential
for one particle. In the pinned phase, the shape is approximately
sinusoidal for jCj < 1, and for jCj > 1 it becomes flat everywhere
except in the vicinity of minima (C > 0) or maxima (C < 0).
(c) Sketch of the phase diagram for the stationary state as a function
of η and of the cavity nonlinearity C (cooperativity). Typically for
jCj > 1 bistable phases can be observed (shown by the hatched
region), signifying that superlubric or stick-slip dynamics are found
depending on the variation of η with time.
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In order to evaluate the ions’ phase we define an
appropriate thermodynamic limit: since C ∝ N, we scale
U0 ∼ 1=N to ensure that the resonance is at the same value
of BN [38]. To fix the ratio d=λ, the trap frequency is scaled
as ω ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNÞp

=N [36]. The equilibrium positions of the
ions in the total potential are numerically determined as a
function of η, C, and Δc, and their stability is checked by
means of a linear stability analysis. We characterize the
stationary state by determining the corresponding bunching
parameter and by classifying it in terms of a sliding
or pinned phase. For this purpose, we compare the
minimum phonon frequency [22,23] and an analog of
the depinning force in the classical FK model [13,23,24],
which is evaluated following the procedure discussed in
Ref. [24,32]. For C > 0, for instance, the trap center
(x ¼ 0) is at a maximum, so for an odd number of ions,
the sliding-to-pinned transition can be observed through the
sudden displacement of the central ion from the origin. For
larger C a finite force is required to restore the symmetry of
the system. At this transition we verify that the phonon gap
is zero, and in the pinned regime it increases monotonically.
Analogous considerations apply for C < 0, where the
maxima of the potential are at the antinodes of the field
(in this case the center of the trap is shifted by λ=4 to obtain
a symmetry breaking). We check that the values of η and C
found by the symmetry-breaking transition are the same at
which the phonon gap starts to increase [32].
The resulting phase diagram is shown in Figs. 2(a) and

2(b) for 11 ions and as a function of η and C forΔc ¼ 0 and
Δc ¼ −2κ, respectively, using the parameters of Ref. [12].
It exhibits sliding (S), pinned (P), and bistable phases
(hatched). The color code gives the corresponding value of
BN . We have checked that the diagram remains substan-
tially unvaried as the number of ions is scaled up according
to the thermodynamic limit, apart from the bistable phases

at C > 0, as we discuss below. We first consider the
transition line, delimiting the S phase. This moves to
smaller values of η as jCj increases. For jCj < 1, the
backaction due to the resonator can be neglected and the
line follows the expected behavior for the FK limit, with
η ¼ ηc ∼ 1=

ffiffiffiffiffiffijCjp
. Here, it separates the S from the P phase

and exhibits the typical features of the Aubry transition. At
larger values it changes functional dependence. Moreover,
sliding and pinned phases can coexist for jCj > 1 about the
transition line, a typical feature of a first-order transition.
The bistable areas at C > 0, however, are of different

nature than the ones for C < 0. For C > 0 they are due to
finite-size effects. As C increases, in fact, the effective
cavity potential becomes flat except for the nodes, where it
exhibits tight minima, see Fig. 1(b). Thus, this potential
supports a stable sliding phase that is symmetric about the
center, where the ions in general experience a flat potential.
As N is varied, bistability is still observed, but it qualita-
tively changes its features. The bistable region in Fig. 2(b)
for C < 0 is instead due to the resonance Δeff ¼ 0, and
remains unvaried as N is scaled up according to our
prescription. This resonance occurs for specific values of
BN , and thus for specific sets of fx̄jg. Analogous reso-
nances have been reported in experiments with cold atoms
in resonators [39–41] and in theoretical works on similar
setups [9,31,42]. In our case the bistability indicates that
either superlubric or stick-slip behaviors can be encoun-
tered depending on how the intensity η is varied in time.
Figure 2(c) shows the phase diagram for C ¼ −2 and as a
function of η and Δc. For this parameter choice, the
resonance Δeff ¼ 0 exists only for Δc < 0, with values
varying between the minimum and the maximum value of
−2BNκ, and is thus dependent on the bunching parameter.
The bunching parameter is a particularly relevant quan-

tity, since its value can be extracted from the intensity of the

FIG. 2 (color online). Phase diagram as a function of C and η for (a) Δc ¼ 0, (b) Δc ¼ −2κ. In (c) the phase diagram is plotted as a
function of Δc and η for cooperativity C ¼ −2. Parameters η and Δc are in units of κ. The solid red line indicates the symmetry-breaking
transition from the sliding (S) to the pinned (P) phase, and the hatchedwhite region is an area of bistability. The color codegives the value of
BN forC > 0, and of1 − BN whenC < 0. Subplots (d) and (e) displayBNN vsN forC ¼ 0.5,Δc ¼ 0, where (d) η ¼ 50κ and (e) η ¼ 500κ,
respectively. (f) The individual contributions cos2ðkxjÞ to BN for N ¼ 81 particles, deep in the pinned phase (BN ¼ 1.5 × 10−3) for
C ¼ 0.5. The ions are 174Ybþ and the parameters are jΔ0j ¼ 2π × 12 GHz and κ ¼ 2π × 0.2 MHz; for N ¼ 11 the trap frequency is
ω ¼ 2π × 1.12 MHz, while g is varied in order to sweep over different values of C. The cavity wavelength is λ ¼ 369 nm and the ratio
2d=λ ¼ 7.3507. The center of the harmonic trap corresponds with a maximum of Vcav, ensuring a symmetry-breaking transition. The grey
area in (a)–(c) indicates where the mean phonon number n̄ < 1; outside of this region, our semiclassical analysis is reliable.
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light at the cavity output. In the sliding phase and for
N ≫ 1, the particles are positioned at every point (modulus
λ) of the cavity potential, and thus limN→∞BN ¼ 0.5. In a
commensurate phase, BN → 0 for C > 0 (BN → 1 for
C < 0). At small deviations from this limiting value, BN
is a crude estimation of the kink density. The plots in
Figs. 2(a) and 2(b) show that BN signals the transition from
sliding to pinned when jCj≲ 0.5; however, this is not the
case for larger C. In general, therefore, for BN ∼ 0.5 the
phase is sliding, while for BN<0.05 at C>0 (1−BN<0.05
at C < 0) the phase is tightly pinned. The estimated
kink number Nk ∼ BNN grows linearly with N, as shown
in Figs. 2(d)–2(e): the slope decreases as η and C are
increased but never vanishes, thus showing that the pinned
phase remains incommensurate. Nonetheless, deep in the
pinned phase the ions at the chain edges (where the density
is smaller) organize at commensurate distances with λ, as
depicted in Fig. 2(f). This effect results from the choice of
harmonic confinement, and it shows that the edge ions
enforce a boundary condition restricting the central ones
from becoming truly commensurate.
Additional features of the cavity long-range interaction

manifest in the ions’ vibrations; they give rise to fluctuations
in the potential, which in turn affects the ions’ motion. We
analyze the fluctuations in the linear regime andwedenote δâ
and δx̂j as the quantum fluctuations of the cavity annihilation
operator and of the ion positions about the mean values ā ¼ffiffiffi
n̄

p
and x̄j, respectively, where n̄ is given in Eq. (1) and x̄j are

the minima of V. We decompose the ions’ displacement δx̂j
in the normal modes q̂n ¼ ðb̂n þ b̂†nÞ=

ffiffiffi
2

p
calculated at zero

order in δâ, with b̂n the bosonic operator annihilating a chain
phonon at frequencyωn. Cavity and phonons are coupled by
the linearized Heisenberg-Langevin equations in the pres-
ence of noise due to both the cavity decay and due to an
external damping reservoir coupled with the motion [31,32]

δ _̂a ¼ ðiΔeff − κÞδâ − iā
X

n

cnðb̂n þ b̂†nÞ þ
ffiffiffiffiffi
2κ

p
âin; ð5Þ

_̂bn ¼ −ðiωn þ ΓnÞb̂n − iācnðδâþ δâ†Þ þ
ffiffiffiffiffiffiffiffi
2Γn

p
b̂in;n; ð6Þ

where cn denotes the cavity coupling with mode n and Γn
is the mode’s damping rate. The Langevin operators
ζ̂in ¼ âin, b̂in;n have zeromeanvalue and h½ζ̂inðt0Þ; ζ̂†inðt00Þ�i ¼
δðt0− t00Þ. The solutions are stationary when the eigenvalues
possess no positive real parts. For Γn ¼ 0, the stability is
determined by the cavity parameters and is warranted
when Δeff < 0 [the stability diagrams for the plots in
Figs. 2(a)–2(b) are in the Supplemental Material [32]]. In
this regime, retardation processes in photon scattering cool
the chain to effective temperatures T which depend on the
detuning Δc and on the bunching parameter BN. Thus,
the ions stationary state determines the temperature at which
the chain is cooled. In turn, for a givenΔc disparate regions in
Figs. 2(a)–2(c) are generally at different temperatures

because BN and C vary. From Eq. (2), one sees that for
Δc < 0 and C > 0 the ions are always cooled. Cooling for
C < 0 is found by suitablymodifying the cavity detuning. In
order to estimate T, we cast the modes in the form of a
covariance matrix: for the parameters of Ref. [13] and N ¼
11 ions, we find that T ∼ 125 μK can be reached. In this
limit, the standard deviation from the equilibrium positions,
hδx̂2ji1=2, is smaller than λ=2 in the pinned phase; thus, the
classical equilibrium conditions dictate the phases of the
system. This condition can be achieved for any point of
the phase diagram, i.e., also forΔeff > 0, by sympathetically
cooling the chain [43] corresponding to an external reservoir
with Γn > 0 in Eqs. (5)–(6).
The spectrum of the field emitted by the cavity, âout,

contains information about the collective vibrational modes
of the ions within the resonator [44,45]. The output field is
formally connected to the cavity field via the relation âout ¼
âin þ

ffiffiffiffiffi
2κ

p
â [46], and its power spectrum is given by

SðνÞ ∝ h ~̂aoutðνÞ† ~̂aoutðνÞi, where ~̂aoutðνÞ is the Fourier trans-
form of âoutðtÞ [31,32]. Figure 3 displays SðνÞ for param-
eters such that the ions phases are sliding [Fig. 3(a)] and
pinned [Fig. 3(b)]. For each phase we took the same values
of BN but different values of C. The peaks correspond to
vibrational modes coupled to the cavity, and it is apparent
that in the pinned phase more peaks are visible. This is a
result of the broken symmetry induced by the optical lattice
potential. The effect of the cavity backaction is weak in the
sliding phase; the only discernible change in the spectrum
is its relative intensity. In the pinned phase, however, the
intricacies of the backaction are particularly apparent. Here
the spread of the cavity frequencies becomes more sepa-
rated for C ¼ −2 due to the softening of the cavity pinning
[see Fig. 1(b)], resulting in the emergence of three distinct
frequency bands. Contrary to this, whenC ¼ −0.5, the ions
are tightly restricted to the potential minima resulting in a
narrow frequency band.

FIG. 3 (color online). Spectrum at the cavity output SðνÞ (in
arbitrary units) for C < 0 (a) in the sliding phase with
BN ¼ 1–0.45 and (b) in the pinned phase with BN ¼ 1–0.05,
for C ¼ −0.5 (black line) and C ¼ −2 (red line), and for 11
174Ybþ ions, Δc ¼ 0, Γn ¼ 0.1κ, and T ¼ 100 μK. The reso-
nances correspond to vibrational eigenmodes coupling with the
cavity field and change in the pinned phase as C is increased. The
elastic peak at ωp (corresponding to ν ¼ 0) is not reported.
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Our analysis is performed for parameters that are
consistent with ongoing experiments, joining trapped ions
and CQED setups [12–16] where the nonlinearity can be
experimentally tuned by changing the number of atoms. This
study is an exampleof competing long-range self-organization
mechanisms which realizes a new paradigm of the Frenkel-
Kontorovamodel. Aswell as displaying novel phases, such as
bistability induced by the cavity-mediated interactions, the
inherent losses from the cavity can cool the ions in a controlled
manner and allow one to monitor the phases at the cavity
output, thus setting the basis for feedback mechanisms
controlling the thermodynamics of friction.
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