
Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems:
Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

Mehrtash Babadi,1 Eugene Demler,2 and Michael Knap2,3,4
1Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA

2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

4Physik Department, Walter Schottky Institut, and Institute for Advanced Study,
Technische Universität München, 85748 Garching, Germany

(Received 26 April 2015; published 12 October 2015)

We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-
dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for under-
standing quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken
continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean
field for describing the real-time quantum dynamics of generic spin-1=2 systems. This is achieved by
mapping spins to Majorana fermions followed by a 1=N expansion of the resulting two-particle-irreducible
effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution
of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with
diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or
antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic
modes being thermally populated at different effective temperatures and by a hierarchical relaxation
process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-
Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable
collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified
experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas
microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014)].
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I. INTRODUCTION

The equilibration of isolated quantum many-body sys-
tems is a fundamental and ubiquitous question in physics. It
plays a central role in understanding a broad range of
phenomena, including the dynamics of the early Universe
[1], the evolution of neutron stars [2], pump-probe experi-
ments in condensed-matter systems [3], and the operation
of semiconductor devices [4]. The simplest perspective on
the problem is to recognize a dichotomy between ergodic
and nonergodic systems. The former exhibit fast relaxation
to local equilibrium states occurring at microscopic time
scales, followed by a slower relaxation process to global
thermal equilibrium described by classical hydrodynamics
of a few conserved quantities [5–7]. In contrast, nonergodic
systems possess an extensive set of conservation laws that
prevent their thermalization [8,9].

Recent theoretical and experimental investigations of
strongly correlated systems, however, suggest significant
refinements to this dichotomy. For instance, certain systems
can be trapped for long times in quasistationary “prether-
malized” states with properties strikingly different from
true thermal equilibrium [10]. Examples include nearly
integrable one-dimensional systems [11–15] and systems
with vastly different microscopic energy scales in which
slow dynamics results from the slow modes providing
configurational disorder and thereby localizing the fast
modes [16–18]. Even subtler examples of slow dynamics
include the Griffiths phase of interacting disordered sys-
tems [19,20] and translationally invariant systems in higher
dimensions with emergent slow degrees of freedom
[10,21–29].
In this work, we discuss the emergence of slow dynamics

and prethermalization in translationally invariant spin
systems that possess continuous symmetries. In higher
dimensions, these systems can exhibit thermodynamically
stable symmetry-broken phases along with gapless
Goldstone modes. Here, we show that the relaxation
dynamics of low-energy initial states that allow symmetry
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breaking upon thermalization is remarkably different from
the relaxation of high-energy states, thereby establishing a
connection between aspects of equilibrium and nonequili-
brium phenomena in these systems. In particular, the slow
Goldstone modes in the former case result in the emergence
of long-lived nonthermal states with a hierarchical relax-
ation dynamics that closely resembles aging in systems
with quenched disorder. A nonperturbative treatment and
beyond mean-field corrections are both found to be crucial
for describing the relaxation process.
We specifically study the dynamics of the three-dimen-

sional (3D) isotropic Heisenberg model initially prepared in
a spiral state; see Fig. 1(a). Our choice of spin spiral states
is motivated by the following considerations. First, the
winding of a spiral Q serves as a tuning parameter for
the energy density of the state. The full spectrum of the
Heisenberg model is traversed from ferromagnetic (FM) to
Néel antiferromagnetic (AFM) states upon sweeping Q
from 0 to π, respectively. In light of the eigenstate thermal-
ization hypothesis (ETH) [30–32], the energy density of the
initial state fully determines the fate of all local observables
at late times in ergodic systems. One of the main objectives
of this work is to understand the route toward thermal-
ization of these states. Second, spiral states represent

different mean-field solutions of the classical Heisenberg
model, all of which are thermodynamically unstable with
the exception ofQ ¼ 0; π. The fluctuation-induced destruc-
tion of the initial order and the emergence of thermody-
namically stable ordered or disordered phases at longer
times is another question we address here. Last, spin spiral
states have been recently realized in one and two dimen-
sions using ultracold atoms in a quantum gas microscope
[33,34]. An extension of these experiments to three
dimensions makes a direct experimental scrutiny of our
predictions possible.
Our results indicate that spiral states tuned toward FM or

AFM states exhibit a slow hierarchical relaxation and can
come arbitrarily close to a dynamical arrest; see Figs. 1(b)
and 1(c). Surprisingly, the relaxation dynamics is neither
compatible with the trivial relaxation to local thermal
equilibrium and slow hydrodynamic evolution, since the
spin current is not conserved, nor with the linearized
dynamics of the collective modes, which predicts expo-
nentially growing out-of-plane instabilities. In fact, we find
the instabilities to self-regulate and slow down signifi-
cantly. As we elaborate in the following sections, the
physical phenomena discussed here are expected to gen-
eralize to a broad range of models that exhibit a finite-
temperature phase transition between a disordered and a
symmetry-broken phase.
The relaxation of the Néel spin spiral state with Q ¼ π

has been previously studied in the 1D Heisenberg model
[33,35–37]. In contrast to the 3D case studied in the present
work, the 1D Heisenberg model does not exhibit a
symmetry-broken thermal phase and, in turn, cannot
exhibit the type of prethermalization we discuss here.
More recently, the dynamics of the Néel state in the
Fermi-Hubbard model on an infinite-dimensional Bethe
lattice has been investigated [38]; however, the approach to
the steady state could not be studied due to the small
effective exchange interaction.
From a technical perspective, our investigation of the

nonequilibrium dynamics of spiral states has been enabled
by developing a nonperturbative field-theoretic formalism
applicable to generic spin-1=2 systems for arbitrary initial
states and geometries, which we refer to as the “spin-2PI”
formalism. This is achieved using a Majorana fermion
representation of spin-1=2 operators [39,40], enlargement
of the spin-coordination number by a replica-symmetric
extension, and ultimately a systematic 1=N fluctuation
expansion of the real-time two-particle-irreducible (2PI)
effective action [41,42].
The recent rapid progress in the phenomenology of

far-from-equilibrium quantum dynamics and its broad
applications has been enabled by similar nonperturbative
functional techniques. Examples include extensive studies
of the OðNÞ model in nonequilibrium [43–45]; thermal-
ization, prethermalization, and nonthermal fixed points
[10,22,46–48]; particle production; reheating and defect

FIG. 1. Relaxation of spin spiral states in the 3D isotropic
Heisenberg model. (a) The system is prepared in a spin spiral
state in the xy plane with the winding Q ¼ ðQ;Q;QÞ as tuning
parameter. The figure illustrates the case Q ¼ π=2. (b) The real-
time evolution of the transverse magnetization M⊥ for three
different Q as indicated in the plot. For Q ¼ 7π=8, a hierarchical
relaxation process emerges with a nonthermal plateau at inter-
mediate times. The time scale is switched to logarithmic at tJ ¼ 5
for better visibility. (c) A global view of the spiral dynamics.
Nonthermal plateaus appear near Q ∼ 0; π.
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generation in inflationary universe models [49–53]; and
dynamics of ultracold fermionic and bosonic gases
[54–56]. The present work is the first to utilize this
powerful technique to study the far-from-equilibrium
dynamics of interacting quantum spin systems.
Understanding the emergence of slow dynamics near

thermodynamic phase transitions has implications reaching
far beyond the domain of condensed-matter physics. For
instance, studies of nonequilibrium quantum fields in the
context of inflation and early Universe dynamics have
suggested that the slowing down of quantum evolution near
phase transitions is a plausible explanation for the large
number of light particles and broken symmetries in the
observable Universe [57]. Given that the experimental
verification of theories about early Universe phenomena
are typically rather indirect, experiments with synthetic
many-body systems that allow precise monitoring of real-
time dynamics close to phase transitions could play an
important role in elucidating the emergence of slow
evolution. The dynamics of various interacting spin sys-
tems have been already investigated in experiments with
synthetic quantum matter, including domain formation in
spinor condensates [58,59], the precise measurement of the
evolution of spin flips in the ground state of 1D lattice spin
systems [60–63], quantum coherences in long-range mod-
els [64], and the relaxation dynamics of spin spiral states in
1D and 2D Heisenberg models [33,34]. The experimental
observation of the dynamical phenomena discussed here
are thus expected to be within close reach.
This paper is organized as follows: In Sec. II, we

introduce the spin-2PI formalism, a technique we develop
to study the dynamics of interacting spin systems.
Complementary technical details are presented in the
Appendix. We discuss the relaxation of spin spiral states
in Sec. III. The phenomenon of dynamical slowing down
and arrest will be presented Sec. III A, the long-time
thermalization in Sec. III B, and the dynamic formation
of correlations and instabilities in Sec. III C. We conclude
our findings in Sec. IV.

II. THE SPIN-2PI FORMALISM

Consider a generic Hamiltonian describing the pairwise
interaction between localized spin degrees of freedom on a
given lattice L:

Ĥ ¼ 1

2

X
j;k∈L

Vαβ
jk Ŝ

α
j Ŝ

β
k; ð1Þ

where V is an arbitrary interaction, j and k denote lattice
sites, and fŜαg are spin-1=2 operators. Summation over the
repeated spin indices is assumed. Had Ŝ been classical
angular momentum variables, the Hamiltonian dynamics of
the system would be governed by the (nonlinear) Bloch
equation:

dSj

dt
¼ φj × Sj; φα

j ¼
X
k∈L

Vαβ
jk S

β
k: ð2Þ

In case of quantum spins, the Bloch equation only describes
the evolution of the spin expectation values hŜi to the extent
of which the mean-field ansatz hŜjŜki ≈ hŜjihŜki is valid.
The latter, however, is only justified for lattices with large
coordination number, high spin particles, or in the presence
of a high-temperature bath. The crucial role of quantum
fluctuations in the dynamics of isolated spin-1=2 systems in
finite-dimensional lattices is beyond the reach of semi-
classical methods and demands a more careful treatment.
Here, we propose a formalism for transcending

the mean-field approximation for spin evolution by a
systematic inclusion of quantum corrections. This is
achieved using functional methods and a variant of the
large-N expansion technique. As a first step, we con-
struct an auxiliary model in which each spin is replicated
N times, and each bond is promoted to N2 bonds between
the replicas, with equal weight but with an overall scale
factor of 1=N. The Hamiltonian of the auxiliary model is
written as

ĤN ¼ 1

2

X
j∈L

�X
k∈L

Vαβ
jk

1

N

XN
σ0¼1

Ŝβ;σ
0

k

�XN
σ¼1

Ŝα;σj : ð3Þ

The initial state jΨ0i is also subsequently promoted to an

uncorrelated product in the replica space ⨂
N

σ¼1

jΨ0iσ. The
original problem is recovered by setting N ¼ 1. We refer to
the sum appearing in the parentheses in Eq. (3) as the
exchange-field operator φ̂j, which plays the role of an
effective fluctuating magnetic field with which the spins
interact. The described large-N construction effectively
increases the coordination number of each spin z to Nz,
thereby suppressing the fluctuations of φ̂j according to the
law of large numbers φ̂j ¼ φc;j þOð1= ffiffiffiffiffiffi

Nz
p Þ, where

φc;j ≡ hφji is the mean exchange field. In the limit of
infinite N, the exchange-field operator becomes effectively
classical such that mean-field dynamics of the original
model Ĥ emerges as the asymptotically exact description of
the dynamics in limN→∞ĤN . For large but finite N, the
fluctuations of φ̂ are small but not negligible and can be
systematically incorporated into the dynamics order by
order in 1=N. This program can be carried out within the
functional method of 2PI effective actions. Crucially,
truncating the expansion at a finite order in 1=N and
taking the limit N → 1 yields nonperturbative and con-
serving approximations for the spin dynamics. We refer to
this method as the spin-2PI formalism, which is illustrated
schematically in Fig. 2. In brief, spins precess about a self-
consistently determined exchange mean field, and quantum
spin fluctuations are mediated by the local and nonlocal

FAR-FROM-EQUILIBRIUM FIELD THEORY OF MANY- … PHYS. REV. X 5, 041005 (2015)

041005-3



exchange of a real-vector boson whose propagator is
suppressed by a factor of 1=N.
In the remainder of this section, we briefly outline the

field-theoretical developments that underlie the spin-2PI
formalism. Complementary technical details are given in
the Appendix. A path integral for the spin-1=2 operators is
constructed using a representation invoking Majorana
fermions [39,40]:

Ŝj ¼ − i
2
ηj × ηj: ð4Þ

The Majorana operators at each site fη1j ; η2j ; η3jg satisfy the
Clifford algebra fημj ; ηνkg ¼ δjkδ

μν, from which the SUð2Þ
algebra for spins ½Ŝαj ; Ŝβk� ¼ iδjkεαβγŜ

γ
j and the Casimir

condition S2
j ¼ 3=4 follow. The latter ensures a faithful

spin-1=2 representation without introducing any unphys-
ical states and obviates the necessity of using constraint
gauge fields in contrast to the Schwinger slave-particle
approach [65]; see the Appendices of Ref. [66] for a
detailed treatment of the Majorana representation for spin-
1=2 operators.
Replacing the spin operators in Ĥ using Eq. (4), the

Hamiltonian is mapped to that of a many-body system of
Majorana fermions with quartic interactions. The large-N
program can be identically followed by replicating the slave
Majorana particles and assigning a replica index to each.
We proceed by constructing a path integral for the
Majorana fermions using fermionic coherent states on
the closed-time-path (CTP) Schwinger-Keldysh contour.
The Lagrangian is given as

L½η� ¼ 1

2

X
j∈L

XN
σ¼1

ηα;σj i∂tη
α;σ
j

þ 1

8N

X
j;k∈L

XN
σ1;σ2¼1

Vαβ
jk ðηj × ηjÞα;σ1ðηk × ηkÞβ;σ2 :

ð5Þ

The exchange field is introduced by a Hubbard-
Stratonovich decoupling of the quartic term using a real-
vector boson φj on each lattice site. The nonequilibrium
exchange mean field φc, exchange-field-fluctuation propa-
gator D, and Majorana propagator G are introduced as

φcð1Þ ¼ hφ̂ð1Þi;
iDð1; 2Þ ¼ hTC½φ̂ð1Þφ̂ð2Þ�i − φcð1Þφcð2Þ;
iGð1; 2Þ ¼ hTC½ηð1Þηð2Þ�i: ð6Þ

The integer variables are shorthand for the bundle of lattice
site, contour time, spin, and replica index. According to
Eq. (4), the local spin expectation value is proportional to
the fermion tadpole:

hŜαj ðtÞi ¼
1

2
εαβγG

βγ
jj ðtþ; tÞ: ð7Þ

We obtain the real-time evolution equations for G, D, and
φc using the 2PI effective action formalism [41]. The
effective action Γ½G;D;φc� is found by sourcing G, D, and
φc and performing Legendre transformations:

Γ½G;D;φc� ¼
1

2
tr lnG−1 þ 1

2
tr½G−1

0 G� − 1

2
tr lnD−1

−
1

2
tr½D−1

0 D� þ Γint½G;D;φc�; ð8aÞ

Γint½G;D;φc� ¼ − 1

2
tr½M½φc�G� þ

i
2
φcD−1

0 φc þ Γ2½G;D�:
ð8bÞ

The bare Majorana and exchange propagators are given as
G−1
0 ð1; 2Þ ¼ i∂t1δð1; 2Þ and D−1

0 ð1; 2Þ ¼ NðV−1Þδðt1; t2Þ,
respectively. M½φc� is the leading-order (LO) self-energy
[see Eq. (A9)]. The evolution equations follow from
making Γ stationary with respect to G, D, and φc; see
Eqs. (A7a)–(A7c).
Save for Γ2½G;D�, the rest of the terms appearing in

Γ½φc;G;D� scale as OðNÞ and together comprise the LO
approximation. The next-to-leading-order (NLO) correc-
tions and beyond are represented by Γ2½G;D�, which
formally corresponds to the sum of 2PI vacuum diagrams
arising from the cubic interaction vertex:

FIG. 2. The spin-2PI formalism illustrated. The spins (green
arrows) precess about a fluctuating exchange field (uncertain blue
arrows). The quantum fluctuations of the exchange field are
mediated by real-vector bosons (wiggly lines) and are suppressed
by a factor of 1=N, permitting a systematic expansion.
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ð9Þ

The 1=N expansion of Γint to the next-to-next-to-leading
order (NNLO) is diagrammatically given as

Γ

ð10Þ

We have used the stationarity condition, Eq. (A7c), to omit
φc in favor of G in the LO interaction terms. The Feynman
diagram rules are given in Appendix A 2.
Truncating the 1=N expansion of Γ at a finite order and

settingN ¼ 1 yields systematic improvements of the mean-
field spin dynamics. The ensuing approximate theories are
self-consistent and nonperturbative by construction and
respect the conservation laws associated with the global
symmetries of the microscopic action, such as magnetiza-
tion and energy. The latter is crucial for the long-time
stability of the nonequilibrium dynamics.
The Bloch equation is recovered upon truncating Γ at the

LO level; see Appendix A 3. Truncations at NLO and
beyond give rise to memory effects due to the dynamical
fluctuations of the exchange field and result in a two-time
Kadanoff-Baym integro-differential equation instead of the
mean-field Bloch equation; see Eqs. (A13a)–(A14b).
Finally, higher-order correlators, in particular, the spin-
spin correlator iχð1; 2Þ≡ hTC½Ŝð1ÞŜð2Þ�i − hŜð1ÞihŜð2Þi,
can be reconstructed with the knowledge of G and D by
solving the nonequilibrium Bethe-Salpeter integral equa-
tion on the Schwinger-Keldysh contour; see Appendix A 3.
We remark that in systems with large spin-coordination

number z, fluctuations of the exchange field are inherently
suppressed and the expansion parameter is more accurately
identified with 1=ðzNÞ. Therefore, the large-N expansion of
the spin-2PI effective action in models with z≳ 1 is
expected to be controlled and rapidly converging, even
after taking the limit N → 1. Studies of the OðNÞ model
show that the most important correction to the mean-field
(LO) approximation is captured by the NLO “fluctuation-
exchange” diagram, along with negligible quantitative
corrections from the subleading terms [67,68].
The replica-based 1=N expansion proposed here differs

from the usual semiclassical 1=S expansion in significant
ways even though they improve upon the same mean-field
limit. For instance, the replicated Fock space of a single
spin is reducible and has many more states compared to a
pure spin-N=2 representation. A technical advantage of our
approach is that it preserves the underlying spin-1=2
degrees of freedom, which in conjunction to the
Majorana representation leads to the familiar diagrammatic

and functional methods. As discussed before, these tools
significantly simplify and streamline the calculation of
higher-order corrections. Furthermore, there is no preferred
axis for spin quantization in the spin-2PI formalism,
allowing us to study magnetically ordered and disordered
states in a unified way.

III. RELAXATION OF SPIN SPIRAL STATES
IN THE 3D HEISENBERG MODEL

In this section, we investigate the unitary evolution of the
spin spiral state on a 3D cubic lattice

jspðQÞi ¼ e−i
P

j
Q·RjŜ

z
j ⨂
j∈Z3

j →ij; ð11Þ

under the isotropic Heisenberg Hamiltonian Ĥ ¼
−JPhijiŜi · Ŝj using the spin-2PI formalism developed
in the previous section. Here, j →ij denotes the x-polarized
state on lattice site j. The spiral is prepared in the xy plane
with a winding wave vector Q. We assume ferromagnetic
couplings J > 0 for concreteness, even though the sign of
the J does not affect the unitary evolution due to the time-
reversal symmetry of the Heisenberg model.
The spiral state jspðQÞi is a simultaneous eigenstate of

ŜaðQÞ≡ T̂ aR̂zðQaÞ, a ¼ x; y; z, where T̂ a and R̂zðQaÞ
denote the translation by one lattice site along the a axis
and rotation by angle Qa about the z axis, respectively. The
translation and rotation symmetries of the isotropic
Heisenberg model imply ½Ĥ; Ŝa� ¼ 0, so that the spiral
state jspðQÞi remains a simultaneous eigenstate of ŜaðQÞ
at all times in the course of unitary evolution. As a result,
the out-of-plane magnetization hŜzjðtÞi vanishes identically,
and the spiral magnetic order with the initial winding Q
persists at all times. The transverse magnetization

M⊥ðQ; tÞ≡ 1

L3

X
j∈L

e−iQ·Rj ½hŜxjðtÞi þ ihŜyjðtÞi� ð12Þ

is the only degree of freedom at the level of single spin
observables. Also, M⊥ðk; tÞ ¼ 0 for k ≠ Q. We remark
that even though the magnetization dynamics is signifi-
cantly constrained at the level of single spin observables by
symmetries, arbitrary spin correlations are allowed to form
in the course of evolution, including both in- and out-of-
plane spin correlations at arbitrary wave vectors.
A simplifying aspect of the present problem is that

the apparently broken translation symmetry of the
spiral state can be restored using an “unwinding” unitary

transformation ÛQ ≡ ei
P

j
Q·RjŜ

z
j under which the

spiral state transforms into a uniform x-polarized product
state j ~Ψ0i ¼ ÛQjspðQÞi ¼⊗j j →ij. The unwinding
transformation, however, transforms the Hamiltonian
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Ĥ → ~H ¼ ÛQĤÛ†
Q to an anisotropic Heisenberg model

with a Dzyaloshinskii-Moriya term:

~H ¼ −JX
hj;ki

½ŜzjŜzk þ cosQ · ðRj −RkÞðŜxj Ŝxk þ Ŝyj Ŝ
y
kÞ

− sinQ · ðRj −RkÞðŜxj Ŝyk − Ŝyj Ŝ
x
kÞ�: ð13Þ

The translation invariance of the initial state in the spiral
frame significantly simplifies the structure of the spin-2PI
equations: G and Σ become local in the real space while D
depends only on the distance between the sites. These
simplifications hold for arbitrary truncations of Γint.
Additionally, the bosonic self-energy Π becomes local in
the real space at the NLO truncation. The magnetization is
nonvanishing only along the x direction in the spiral frame
due to the symmetry considerations mentioned earlier. The
quantities calculated in the spiral frame can be readily
transformed to the lab frame using appropriate rotations. In
particular, Eq. (7) gives M⊥ðQ; tÞ ¼ ð1=2ÞG23;>ðt; tÞ with
G calculated in the spiral frame. We choose the winding to
be along the diagonal direction Q ¼ ðQ;Q;QÞ hereafter
and refer to the spiral winding with the single scalar
Q ∈ ½0; π�.
At the LO level, the spin dynamics is governed by the

Bloch equation, Eq. (2). The exchange mean field φc is
parallel to the local magnetization at all lattice sites in a
spiral state, implying the absence of any dynamics. In other
words, the spiral states are fixed points of the mean-field
dynamics for all windings Q.
Going beyond the LO dynamics and including the

exchange-field fluctuations by taking into account the
NLO corrections, the spiral state exhibits an intriguing
fluctuation-induced relaxation dynamics. States with differ-
ent windings have different energy densities, along with
different strengths of in-plane and out-of-plane spin fluc-
tuations, and are found to relax in strikingly different ways.
As we discuss below, these factors conspire to give rise to a
nontrivial hierarchical relaxation scenario for spiral states
lying close to thermodynamically stable orders, exhibiting
prethermalization [10], and dynamical arrest resembling
glassy systems [69].

A. Relaxation and dynamical arrest
of the transverse magnetization

The spiral state for Q ¼ 0 is a fully polarized FM
eigenstate of the Heisenberg model and is therefore sta-
tionary. The Q ¼ π spiral, on the other hand, corresponds
to an uncorrelated Néel state which in three dimensions has
a large overlap with the correlated AFM state lying at the
upper end of the spectrum of the FM Heisenberg model. As
a result, the system is expected to achieve a steady state
marked with a finite staggered magnetization after a short
course of dephasing dynamics, provided that the generated
effective temperature is below the ordering temperature.

The evolution of M⊥ is shown in Fig. 1(b) for several
choices ofQ, along with a global surface plot forQ ∈ ½0; π�
and tJ ∈ ½0; 30� in Fig. 1(c). The stationarity of the FM
state (Q ¼ 0) and the rapid settlement of the Néel state
(Q ¼ π) to a steady state with finite staggered magnetiza-
tion is observed.
Short-time dephasing dynamics.—For all Q, the first

stage of dynamics is a short-time relaxation of the form
M⊥ ≈ 1=2 − νQt2 arising from the dephasing between
the eigenstates that overlap with the spiral. A straight-
forward calculation using the short-time expansion hŜðtÞi ¼
hŜi0 þ ith½Ĥ; Ŝ�i0 þ ½ðitÞ2=2�h½Ĥ; ½Ĥ; Ŝ��i0 þ � � � gives
νQ ¼ 3

8
J2ðcosQ − 1Þ2. The values of νQ extracted from

the numerically obtainedM⊥ are in agreement with the exact
result; see Fig. 6. The second stage of relaxation dynamics
depends on the winding of spiral and is either directly
thermalizing or exhibits long-lived prethermalized states
preceding the true thermalization. We discuss these cases
separately.
Spiral states with Q ∼ π=2.—Spin spiral states with Q ∼

π=2 have a high-energy density with respect to both the FM
and the AFM states. Thus, Q ∼ π=2 spiral states overlap
with a large number of eigenstates of the Heisenberg
model. Such a broad superposition of states lead to fast
dephasing, which is found to be within a few exchange
times. Our results indicate a rapid onset of exponential
decay M⊥ ∼ e−γQt with the fastest rate occurring at
Q ¼ 0.55ð1Þπ ∼ π=2.
Spiral states with Q ∼ 0 and Q ∼ π.—A complex multi-

scale relaxation scenario emerges for spirals with windings
tuned to Q ∼ 0 and Q ∼ π, lying close to FM and AFM
magnetic orders, respectively. The transverse magnetiza-
tion exhibits an intermediate plateau for these initial states
which appears continuously upon tuningQ; see Fig. 1. The
plot of M⊥ shown in Fig. 1(b) for Q ¼ 7π=8 displays the
intermediate plateau followed by relaxation at later times.
As Q is tuned closer toward 0 or π, the lifetime of the
plateau increases abruptly and the magnetization comes to a
dynamical arrest. We investigate the nature of such long-
lived plateaus in more detail in the following sections.

B. Prethermalization vs thermalization

Because of the nonintegrability of the 3D Heisenberg
model, the energy distribution of spin fluctuations is
expected to approach a thermal population in the long-
time limit, according to the ETH [30–32]. We investigate
the nature of steady states emerging in the dynamics by
calculating the spin-spin correlation and response func-
tions, corresponding to the Keldysh (K) and retarded (R)
components of the CTP spin-spin correlator χðt; t0Þ, by
solving the nonequilibrium Bethe-Salpeter equation (see
Appendix A 3). At thermal equilibrium, these quantities are
related via the bosonic fluctuation-dissipation relation
(FDR):
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iχKðωÞ ¼ −2 cothðω=2kBTÞIm½χRðωÞ�; ð14Þ
where T is the effective temperature. Here, ω refers to the
Fourier frequency in the time difference t − t0 in the steady
state achieved at long times. Likewise, one can define an
effective temperature for the exchange-field fluctuations
using the bosonic FDR betweenDK andDR. We refer to the
temperatures obtained from local spin χ and exchange
fluctuations D as Tspin and Tfluct, respectively.
The effective temperatures obtained from the FDR in the

steady state are shown in Fig. 3(a). For all spiral windings
Q, we find that FDR is satisfied to an excellent degree for
both local spin- and exchange-fluctuation correlators once
the steady state is reached; see Fig. 3(b). However, as we
discuss below, the effective temperature obtained from spin
and exchange fluctuations may disagree with each other.
This allows us to distinguish prethermalization from true
thermalization.

Thermalization of spiral states with Q ∼ π=2.—For a
range of spiral wave vectors π=4≲Q≲ 3π=4, the steady-
state temperatures obtained from all bosonic modes, i.e.,
local and nonlocal in- and out-of-plane spin and exchange-
field fluctuations, agree with each other, suggesting the
complete thermalization of the system and in accordance
with the ETH.
Spirals with Q ¼ π=2 flow to an infinite-temperature

thermal state, which is understood from the duality
Q → π −Q, J → −J present in the classical Heisenberg
model. This classical duality extends to the quantum
Heisenberg model in the high-temperature regime. The
duality point Q ¼ π=2 further marks the resonance from
positive temperatures forQ < π=2 to negative temperatures
for Q > π=2; see the inset of Fig. 3(a). The T < 0 thermal
states of the FM Heisenberg model with coupling −jJj
correspond to T > 0 states of the AFM Heisenberg model
with coupling þjJj, and vice versa. Negative-temperature
states naturally arise in isolated systems with bounded
energy spectra as legitimate thermal states and occur when
the initial energy density lies closer to the upper edge of the
energy spectrum.
Prethermalization of spiral states with Q ∼ 0; π.—For

spiral states with Q ∼ 0; π, where the system develops
a prethermal plateau, the effective spin- and exchange-
field-fluctuation temperatures disagree, even though the
FDR is satisfied well for each mode individually. This
finding supports the prethermalized nature of such steady
states. It is understood that the temperatures calculated
within the prethermal plateau [shown as shaded regions in
Fig. 3(b)] correspond to the effective temperature of
individual modes and not the true thermodynamical tem-
perature. We expect the two temperatures to approach each
other at longer times once the system exits the prether-
malized plateau and progresses toward a fully thermalized
state.
The spiral state with Q ¼ 0 is an exact ground state of

the system, and FDR yields T ¼ 0 as expected. In contrast,
the Q ¼ π state approaches a finite temperature, which is
understood by the fact that the uncorrelated Néel state must
be “dressed”with spin correlations before the steady state is
reached; see the inset of Fig. 3(a). The disparity between
the evolution of Q ¼ 0 and Q ¼ π states reveals the
quantum mechanical nature of spins and the breakdown
of the classical duality Q → π −Q in the low-temperature
regime.
The 3D Heisenberg model exhibits a finite-temperature

equilibrium phase transition from the disordered para-
magnetic phase to the ordered FM or AFM phase, depend-
ing on the sign of the exchange coupling J. For the spiral at
Q ¼ π, the FDRs of the spin fluctuations are not well
fulfilled at accessible times while those for exchange-field
fluctuations are. The temperature extracted from the latter
jTfluctðQ ¼ πÞj ¼ 0.82J lies below the AFM ordering

FIG. 3. Thermalization of the spin spiral state. (a) The effective
inverse temperature of local spin Tspin and local exchange-field
fluctuations Tfluct obtained from the fluctuation-dissipation rela-
tions in the steady state. The two temperatures are in agreement
for spiral windings near Q ∼ π=2, supporting the true thermal-
ization of the system. The temperatures calculated in the
prethermalized plateaus Q ∼ 0; π (shaded regions) disagree with
each other and generically differ from the temperature of the true
thermal states that emerge at later times. Inset: The temperature
kBT as a function ofQ (same data as in the main panel) displays a
resonance from positive infinite temperature to negative infinite
temperature at the classical duality point Q ¼ π=2. (b) The
approach of Tfluct to the steady state (light to dark) as obtained
from fluctuation-dissipation relations forQ ¼ π=4 (left) andQ ¼
π (right). The steady-state temperatures are shown on the plots.
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temperature TAFM
c ¼ 0.946ð1ÞJ. The latter has been

obtained from quantum Monte Carlo simulations [70].
Crucially, the near-thermal distribution of fluctuations in

the prethermalized plateaus, the stability of FM and AFM
ordered phases at finite energy densities in the 3D
Heisenberg model, and the proximity of Q ∼ 0; π spiral
states to these stable orders allow us to draw a connection
between the long-time stability of such spiral states and
spontaneous symmetry breaking at equilibrium: The spiral
winding Q sets the energy density of the system and
subsequently the effective temperature TðQÞ in the pre-
thermal state. TðQÞ approximately dictates the magnitude
of spin fluctuations on the top of the spiral states which
locally resemble either FM or AFM for Q ∼ 0; π.
Depending on Q, TðQÞ can either lie below or above
the critical transition temperature TFM

c or TAFM
c , thereby

providing an approximate condition for the local stability of
the spiral order. We will study the global instability of the
spiral states and their destruction at longer times in the next
section.
According to the above discussions, the connection

made between the emergence of slow dynamics and
symmetry breaking at equilibrium essentially hinges on
the eigenstate thermalization hypothesis and the Mermin-
Wagner theorem. Therefore, this connection is expected to
reach beyond the present discussion and to generalize to a
broader range of initial states and models that exhibit
spontaneous continuous symmetry breaking.

C. Instabilities and correlations

The dynamical stabilization of spirals near the FM and
AFM orders, and consequently the appearance of prether-
mal plateaus, were understood on the basis of thermody-
namical arguments in the previous section. However, even
though the spiral states are fixed points of the mean-field
dynamical equations, they are unstable and have a tendency

to form out-of-plane textures as the energy of spiral states
can be reduced by an appropriate out-of-plane tilt.
Therefore, in a thermodynamical ensemble where arbitrary
out-of-plane fluctuations are allowed, these saddle points
fail to give rise to symmetry-broken states, leaving Q ¼ 0
and Q ¼ π as the only thermodynamically stable orders in
the Heisenberg model. Therefore, the present situation must
be regarded from the perspective of quantum dynamics,
i.e., the unitary evolution of a pure state jspðQÞi rather than
the statistical fluctuations in a mixed thermodynamical
ensemble. Here, the system remains in a pure state at all
times and the magnetic order is confined to the xy spiral
plane due to the symmetries discussed at the beginning of
Sec. III. It is therefore conceivable that symmetry-protected
dynamical constraints allow thermodynamically unstable
saddle points to become long-lived states in the course of
unitary dynamics.
Out-of-plane instability.—The out-of-plane instability of

the spiral state in the Heisenberg model can be studied
either by performing a linear response analysis of the Bloch
equations, or similarly from the Holstein-Primakoff spin-
wave analysis. Either way, the dispersion of out-of-plane
spin waves forming on the top of the spiral is found as
ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k − Δ2

k

p
[33,71], where

ϵk ¼ −JSX
3

d¼1

½ð1þ cosQ · êdÞ cosk · êd − 2 cosQ · êd�;

Δk ¼ −JSX
3

d¼1

½ð1 − cosQ · êdÞ cosk · êd�: ð15Þ

Unstable modes arise when ωk assumes imaginary
values. Except for Q ¼ 0; π=2; π, one always finds such
unstable modes: for Q < π=2, the fastest-growing mode is
k ¼ ðk; k; kÞ with k ¼ cos−1½cos2ðQ=2Þ� along with a
sharp cutoff jkj ≤ Q; for Q > π=2, unstable modes occur

FIG. 4. The evolution of spin correlations. Top panels: Growth rate of out-of-plane instable modes obtained from a linear response
analysis. Bottom panels: Numerically calculated correlation function hŜzkŜz−kiðtÞ ¼ iχzz;Kk ðt; tÞ as a function of the lattice wave vector
k ¼ ðk; k; kÞ within the spin-2PI formalism including NLO corrections. (a) Q ¼ 3π=8, (b) Q ¼ π=2, and (c) Q ¼ 3π=4. The inset in
(c) shows the connected part of the in-plane correlations hŜþk Ŝ−−kiðtÞ.
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for jk − πj ≤ Q, with the fastest mode always being the
staggered k ¼ π mode, independent of Q.
A simple estimate for the lifetime of the prethermal

plateaus is obtained by calculating the time it takes for the
typical unstable out-of-plane collective mode to grow to
Oð1Þ. The rationale behind this estimate is that the in-plane
order can not coexist with strong enough out-of-plane
fluctuations. Expanding around Q ¼ 0; π, we obtain a
scaling t ∼ 1=Q2 for the FM-like and t ∼ 1=ðπ −QÞ for
the AFM-like spirals, up to logarithmic corrections.
However, the lifetime of plateaus as found from the
spin-2PI formalism exceeds the above estimates; in par-
ticular, as Q is tuned closer toward 0 or π, we observe a
faster increase of the lifetime of prethermal plateaus. As we
discuss below, the increased lifetime can be explained on
the basis of the self-regulation of out-of-plane spin
fluctuations.
The top panels in Fig. 4 show Im½ωk� for several values

of Q, along with the evolution of equal-time out-of-plane
spin correlations iχzz;Kk ðt; tÞ ¼ hŜzkðtÞŜz−kðtÞi obtained by
solving the nonequilibrium Bethe-Salpeter equation in the
NLO approximation; see the bottom panels of Fig. 4.
Further, the connected part of in-plane correlations
iχþ−;K

k ðt; tÞ ¼ hŜþk ðtÞŜ−−kðtÞi − hŜþk ðtÞihŜ−−kðtÞi is shown
in the inset of Fig. 4(c).
At t ¼ 0, spin correlations are 0 in accordance with the

initial spiral state jspðQÞi being an uncorrelated product
state. The out-of-plane correlations form at times t ∼ J. The
most enhanced correlations coincide with the wave vector
predicted by the linear response analysis to a good degree.
The sharp cutoffs predicted by this analysis are found to be
smeared, which is expected due to the mode coupling

embedded in our self-consistent approach. The time scale
for the formation of correlations is found to be on the order
of the dephasing time, reflecting the fact that the short-time
dephasing dynamics and formation of correlations are
manifestations of the same phenomenon.
For spiral states that thermalize within the numerically

achievable time scales, we observe a smooth shift in both
in-plane and out-of-plane spin correlations from the initial
Q-dependent enhanced modes to either k ¼ 0 or k ¼ π,
depending on whether Q < π=2 or Q > π=2, respectively
[see Figs. 4(a), 4(c), and the inset]. Even though the linear
response analysis correctly indicates the wave vector of the
fastest-growing out-of-plane mode, the spin correlations
rapidly saturate to their maximum values, as opposed to an
unbounded exponential growth. A similar rapid dynamical
regulation of the growth of unstable modes was previously
reported in Refs. [22,49] in the context of parametric
resonance in the OðNÞ model. In the present context, this
phenomenon explains why the lifetime of the plateaus
exceeds the estimate obtained from the linear response
analysis and indicates the important role of mode coupling
between spin waves and the necessity of nonperturbative
treatments.
For spiral states that exhibit long-lived prethermal

plateaus, we study the exchange-field correlations D, a
quantity that is closely related to χ but can be calculated for
much longer times with fewer computational resources.
The evolution of Dzz;K

k ðt; tÞ and Dþ−;K
k ðt; tÞ for Q ¼ π=4

and Q ¼ 7π=8 are shown in Fig. 5(a). The former corre-
sponds to a spiral state that thermalizes at about 20J−1,
while the latter exhibits a magnetization plateau up to
τM ∼ 20J−1, as shown in Fig. 1. For t≲ τM, the most

0

10

20

0

10

20

0

10

20

30

0

10

20

30

5

15

15

5

0

10

0

20

40

60

30

0

10

20

30

0

20

40

60

10

20

10

3030

0

10

0

20

3030

0

10

0

20

40

60

0

2

4

6

8

10

 

1 2 3 4 5 10 20 30
0

0.2

0.4

0.6

0.8

1

 
1 2 3 4 5 10 20 30

0

2

 
0 0

FIG. 5. Dynamics of exchange-field fluctuations. (a) The out-of-plane (top) and in-plane (bottom) exchange-field fluctuations as a
function of time and momentum k ¼ ðk; k; kÞ for Q ¼ π=4 (left) and Q ¼ 7π=8 (right). The red lines indicate the most enhanced mode
in the long-time limit; the dashed blue line in the lower right plot corresponds to the k ¼ Q in-plane mode, which initially exhibits the
strongest enhancement of correlations. (b) The evolution of the late-time most enhanced mode forQ ¼ π=4; π=2 (left) andQ ¼ 7π=8; π
(right). In cases where the system thermalizes, left column, SUð2Þ symmetry emerges in the long-time limit, while it is broken in the
prethermal case Q ¼ 7π=8 and for Q ¼ π, right column. In the latter case, the system can exhibit true long-range order, provided its
effective temperature is below the critical temperature of the equilibrium phase transition and can thus be thermal and simultaneously
break SUð2Þ symmetry.
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enhanced in-plane mode occurs at k ¼ Q, which upon
demagnetization smoothly switches to k ¼ π for t≳ τM.
The most unstable out-of-plane mode is always at k ¼ π.
As a further check for thermalizing behavior, we study

the restoration of the SUð2Þ symmetry in the exchange-
field fluctuations Dzz;K

k ðt; tÞ → ð1=2ÞDþ−;K
k ðt; tÞ; see

Fig. 5(b). For Q ¼ π=4 and Q ¼ π=2, we find that the
SUð2Þ symmetry is restored at longer times (left column),
while for Q ¼ 7π=8 and the Néel initial state Q ¼ π, the
SUð2Þ symmetry remains broken at all accessible times
(right column). Notably, the out-of-plane fluctuations for
Q ¼ 7π=8 are found to be an order of magnitude stronger
than the Q ¼ π, in agreement with the previously men-
tioned existence of an unstable out-of-plane mode for the
former state and its absence in the latter.
The magnitude of in-plane fluctuations remain essen-

tially constant in the plateau for Q ¼ 7π=8 (top right),
while the out-of-plane fluctuations monotonically increase
and reach a maximum at t ∼ 20J−1 ∼ τM, precisely when
the prethermal magnetization decays. This finding connects
the decay of the the spiral to the growth of out-of-plane
fluctuations. The time τM also marks a reversal in the trend
of out-of-plane and in-plane correlations. Even though this
change indicates a first step toward establishing SUð2Þ-
symmetric correlations, the condition is far from being
satisfied at t ∼ τM and is bound to occur on much longer
time scales, indicating a hierarchical relaxation scenario
with the relaxation of magnetization preceding the relax-
ation of correlations.
The appearance of long-lived prethermal states and the

hierarchical relaxation is reminiscent of aging dynamics in
classical structural glass models with quenched disorder
[69] and kinematically constrained models [72]. Similar
multiscale glassy relaxation dynamics has been recently
reported in the quench dynamics of fermions in a nearly
integrable 1D model using a different method [15].
Comparison to semiclassical methods.—According to

the discussions presented so far, the relaxation dynamics of
the spiral state accompanies the formation of in- and out-of-
plane quantum correlations in the system. In order to study
the role of correlations further, we compare our predictions
with the results obtained from the discrete truncatedWigner
approximation (dTWA) [73,74], a variant of the semi-
classical TWA method [75] that relies on mean-field
trajectories. The magnetizations obtained from spin-2PI
(solid black lines) and dTWA (dashed blue lines) are
compared in Fig. 6. The two methods generically agree
with the analytic short-time expansion (thick red lines),
with the exception that dTWA does not reproduce the
correct short-time dynamics for small Q; see Q ¼ π=4 in
Fig. 6 [76]. The two methods, however, predict strikingly
different long-time dynamics. Even though dTWA exhibits
some degree of dynamical slowing down for FM-like and
AFM-like spirals, it produces neither the prethermal plateau
for Q ¼ 7π=8 nor the finite steady-state magnetization for

Q ¼ π. We note that the latter is supported by exact
quantum Monte Carlo calculations.

IV. CONCLUSIONS AND OUTLOOK

We formulated a nonperturbative and conserving field-
theoretic technique for describing the far-from-equilibrium
quantum dynamics of strongly interacting spin-1=2 sys-
tems for arbitrary lattices and initial states. Referred to as
the spin-2PI formalism, this method systematically
improves upon the mean-field description by including
quantum fluctuations by means of an asymptotic 1=N
expansion, which is controlled in models with intrinsically
large lattice-coordination number.
We utilized the spin-2PI technique to study far-from-

equilibrium phenomena in spin systems with continuous
symmetries. Specifically, we explored the relaxation
dynamics of spin spiral states in the 3D Heisenberg model,
treating the spiral winding Q as a tuning parameter. Going
beyond the trivial mean-field (LO) dynamics by including
the NLO correction, we found the spiral states with
different windings to relax in remarkably different ways.
In particular, spiral states resembling FM and AFM ordered
states, corresponding to Q ∼ 0 and π, respectively, get
trapped for long times in nonthermal states, i.e., “false
vacuums” whose lifetimes diverge as the windings are
tuned to Q ¼ 0 or π. In contrast, the spiral states far from
Q ¼ 0; π relax rapidly.
We calculated the effective temperature of spin and

exchange-field fluctuations from the fluctuation-dissipation
relation. For Q ∼ π=2 spiral states, all modes reach a single

FIG. 6. Comparison between spin-2PI and semiclassical dy-
namics. The spin-2PI results (solid black lines) are compared to
the semiclassical dynamics obtained from the dTWA (dashed blue
lines). The short-time analytic result from Sec. III A is also shown
for reference (thick red lines). The long-time dynamics of the two
methods are significantly different. In particular, the dTWA is not
capable of describing the long-lived prethermal plateaus in
contrast to the spin-2PI formalism. The scale of the time axis
is switched from linear to logarithmic at tJ ¼ 5 for better
visibility.
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temperature, supporting full thermalization in accordance
with the eigenstate thermalization hypothesis. In contrast,
the different bosonic modes of prethermalizing spirals settle
at different temperatures.
We investigated the dynamical formation of correlations

and found that the collective modes predicted to be unstable
from a linear response analysis are self-regularized at rather
short time scales, demonstrating the importance of the
nonlinear effects and nonperturbative treatments. The
growth of out-of-plane fluctuations causes the eventual
decay of the prethermal states. The restoration of SUð2Þ
symmetry occurs much later after the decay of magneti-
zation, suggesting a hierarchical relaxation reminiscent of
coarsening and aging in classical glassy systems. Our
results can be tested readily in ultracold-atom experiments
with two-component Mott insulators in 3D optical lattices,
such as a 3D extension of the experiments in Refs. [33,34].
This work can be extended in several directions. A

straightforward extension is to investigate the relaxation of
spiral states in anisotropic models, or in lower dimensions.
Another immediately accessible direction is to study spin
systems with long-range interactions, as realized, for
instance, with Rydberg atoms, polar molecules, or trapped
ions, and their instability toward dynamic crystallization.
The effect of small deviations from the initial spiral state on
the quantum evolution could be studied as well. We expect
our predictions to carry over to the case of weakly
disordered initial states, provided that the deviations from
the pristine spiral state remain small by the time the
prethermalization plateau is reached. A conservative bound
for the allowed degree of disorder can be estimated from the
presented linear response analysis; however, a more real-
istic calculation must take into account self-regulation and
slowing down of the unstable modes in the presence of
disorder, which is a computationally challenging task. On
related grounds, it is desirable to study the formation of
topological defects in quenches to the ordered phase,
corresponding to the instantaneous limit of the quantum
Kibble-Zurek mechanism [77,78]. For the 3D Heisenberg
model with SUð2Þ symmetry, topologically stable hedge-
hogs [79] are expected to form with universal scaling laws.
Other possible research directions include extension to
open spin systems, studying the role of NNLO corrections
to assess the robustness of the NLO results, and comparison
with other systematic expansions, such as 1=D expansion
in D-dimensional lattices, and the semiclassical 1=S
expansion.
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APPENDIX: SUMMARY OF THE TRUNCATED
SPIN-2PI FORMALISM AT THE NLO LEVEL

In this Appendix, we provide supplemental material for
the spin-2PI formalism along with a brief account of the
numerical methods. The covered material includes the
explicit derivation of the approximate dynamical equations
from the NLO truncated 2PI effective action and the
reconstruction of real-time spin-spin correlators from the
Bethe-Salpeter equation.

1. Correlation functions on the Schwinger-Keldysh
time contour

In the Schwinger-Keldysh formalism, the nonequili-
brium dynamics of quantum fields is most elegantly
derived from a path integral defined on the round-trip
contour C ¼ Cþ∪C−:

t = t0 t = +∞

The Majorana operators η and real-vector boson φ are
replaced by Grassmann and real-vector-valued variables in
the path integral, along with antiperiodic and periodic
boundary conditions at the contour end points, respectively.
The correlation functions defined on the C contour can be

thought of 2 × 2 matrices in the two-dimensional space of
the contour branch index. For example, the Majorana two-
point correlator G can be explicitly written as

Gðt1; t2Þ ¼
�
Gþþðt1; t2Þ Gþ−ðt1; t2Þ
G−þðt1; t2Þ G−−ðt1; t2Þ

�
; ðA1Þ

where the times appearing in the matrix are ordinary times.
We have dropped the discrete indices for brevity. The off-
diagonal matrix elements are identified with the “lesser”
and “greater” explicitly ordered correlators:

Gþ−ðt1; t2Þ≡ G<ðt1; t2Þ ¼ þihηðt2Þηðt1Þi;
G−þðt1; t2Þ≡ G>ðt1; t2Þ ¼ −ihηðt1Þηðt2Þi: ðA2Þ

The diagonal matrix elements are related to each other by
the virtue of the unitarity of evolution:
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Gþþðt1; t2Þ ¼ þθðt1 − t2Þ½G>ðt1; t2Þ − G<ðt1; t2Þ�;
G−−ðt1; t2Þ ¼ −θðt2 − t1Þ½G>ðt1; t2Þ − G<ðt1; t2Þ�; ðA3Þ

which are identified with the usual retarded and advanced
response functions Gþþ ≡ GR and G−− ≡ GA. While the
lesser and greater correlation functions are independent
functions for Dirac (complex) fermions, they are related to
each other for Majorana fermions by transposition and
negation, as it can be seen from Eq. (A3):

G>ð1; 2Þ ¼ −G<ð2; 1Þ: ðA4Þ
In summary, the two-point correlator of Majorana fermions
on the contour is fully specified by a single real-time
correlator, e.g., G>ð1; 2Þ. It is easily shown that the same
decomposition and relations hold for the Majorana self-
energy Σ. The correlator of real bosons D and the bosonic
self-energy Π admit a similar decomposition, except for the
absence of the relative minus sign in the definition of D>

and D<:

Dþ−ðt1; t2Þ≡D<ðt1; t2Þ ¼ −ihφðt2Þφðt1Þi;
D−þðt1; t2Þ≡D>ðt1; t2Þ ¼ −ihφðt1Þφðt2Þi; ðA5Þ

which imply

D>ð1; 2Þ ¼ D<ð2; 1Þ: ðA6Þ
Similar to Majorana correlators, the two-point correlator of
real bosons on the contour is fully specified by a single real-
time correlator, e.g., D>. The same result holds for the
bosonic self-energy Π.

2. Feynman rules for the spin-2PI formalism

The conventional Feynman diagram rules are used for
interpreting the diagrams appearing throughout this work:

The integer indices refer to the bundle of lattice site and
contour time in the diagrams above. Since the Majorana
fermion propagators possess no charge flow direction, one
may arbitrarily assign a direction to each line. The overall
sign of each diagram, however, must be determined at the
end by counting the number of fermion permutations.
The power counting of the large-N extension is per-

formed as follows: (1) each Majorana fermion loop
introduces a factor of N resulting from the replica summa-
tion and (2) each interaction and boson line introduce a
factor of 1=N.

The vacuum diagrams accompany symmetry factors that
must be worked out case by case. The self-energy Σ;Π and
four-point vertex Λð2Þ diagrams have an extra factor of i and
i2, respectively.

3. Evolution of correlation functions
in the spin-2PI formalism

The transition from the path integral to the 2PI effective
action Γ½G;D;φ� was briefly outlined in the main text and
is a straightforward generalization of the results of
Cornwall, Jackiw, and Tomboulis [41]. Within this formal-
ism, the evolution equations follow from a variational
principle, reminiscent of Lagrangian dynamics of classical
particles, with the quantum correlators playing the role of
generalized coordinates. Going back to Eqs. (8a) and (8b)
and making Γ stationary with respect to G, D, and φ, we
obtain

G−1 ¼ G−1
0 −M½φc� − Σ½G;D�; ðA7aÞ

D−1 ¼ D−1
0 − Π½G;D�; ðA7bÞ

φμ
c;jðtÞ ¼

1

2N

XN
σ¼1

Vμν
jkϵνγλG

γ;σ;λ;σ
jj ðtþ; tÞ: ðA7cÞ

With the spin, replica, time, and space indices laid out
explicitly, the “bare” fermion and boson propagators are
written as

G−1
0 ð1; 2Þ ¼ δσ1σ2δα1α2δj1j2i∂t1δCðt1; t2Þ;

D−1
0 ð1; 2Þ ¼ NðV−1Þα1α2j1j2

δCðt1; t2Þ; ðA8Þ

respectively. The contour Dirac δ function is defined as
δCðt1; t2Þ ¼ �δðt1 − t2Þ with the � sign corresponding to
t1; t2 ∈ C�, respectively. In Eq. (A7a), M½φc�ð1; 2Þ ¼
−iδσ1σ2δCðt1; tþ2 Þδj1j2φμ

c;j1
ðt1Þεμα1α2 the LO interaction

effect and describes the coupling of Majorana fermions
with the classical spin mean field φc. According to
Eq. (A7c), the latter is instantaneously determined by
the Majorana tadpole contracted with a bare interaction
line. Thus, we find

ðA9Þ

which resembles the familiar Hartree self-energy that
describes the mean-field effects. We emphasize that the
Majorana tadpole is identified with the magnetization in
our formalism. Note that theMð1; 2Þ ∝ δCðt1; tþ2 Þ is instan-
taneous and carries no memory effect. We will later show
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that truncating the approximation at this level and neglect-
ing the self-energies indeed yields the Bloch equation.
Going beyond the LO approximation, Σ½G;D�

and Π½G;D� describe memory effects associated from
the spatiotemporal fluctuations of the exchange field.
By definition, these self-energies are obtained from the
variations of Γ2½G;D�:

Σ½G;D�ð1; 2Þ≡ 2
δΓ2½G;D�
δGð1; 2Þ ;

Π½G;D�ð1; 2Þ≡ 2
δΓ2½G;D�
δDð1; 2Þ : ðA10Þ

We recall that Γ2½G;D� is formally equivalent to the sum of
2PI vacuumdiagrams constructed from the interactionvertex
Lint½η;φ� ¼ i

2
εαβγφ

α
jη

β;σ
j ηγ;σj and admits a systematic expan-

sion in 1=N. Here, we truncate the series at the NLO level:

Γ ðA11Þ

where Πμν
0 ð1;2Þ¼iεμαβενγλ

P
N
σ¼1G

α;σ;γ;σ
j1j2

ðt1;t2ÞGβ;σ;λ;σ
j1j2

ðt1;t2Þ
is the Majorana bubble. Since D ∼ 1=N and the factor of N

results from the replica summation in the Majorana bubble,
we findΓNLO

2 ∼Oð1Þ. Thismust be compared to theLO term
in Γint which is OðNÞ. The resulting NLO self-energies are
given as

ðA12Þ

Having derived the explicit expressions for the self-
energies, we discuss the derivation of evolution equations
as the next step. Our starting points are the coupled Dyson’s
equations given in Eqs. (A7a) and (A7b). Strictly speaking,
Dyson’s equations are differential identities on the contour
functions. They can be cast into a more useful form by
acting them from the left- and right-hand sides by G and D,
respectively, resulting in a set of contour integro-
differential equations:

½iδα1μδj1k∂t1 þ iφν
c;kðt1Þενα1μ�Gμα2

kj2
ðt1; t2Þ ¼ δð1; 2Þ þ

Z
C
dτΣα1μ

j1k
ðt1; τÞGμα2

kj2
ðτ; t2Þ; ðA13aÞ

− ½iδμα2δkj2∂t2 − iφν
c;kðt1Þενμα2 �Gα1μ

j1k
ðt1; t2Þ ¼ δð1; 2Þ þ

Z
C
dτGα1μ

j1k
ðt1; τÞΣμα2

kj2
ðτ; t2Þ; ðA13bÞ

Dα1β1
j1j2

ðt1; t2Þ ¼
1

N
Vα1α2
j1j2

δCðt1; t2Þ þ
1

N
Vα1μ
j1k

Z
C
dτΠμν

kl ðt1; τÞDνα2
lj2

ðτ; t2Þ; ðA14aÞ

Dα1β1
j1j2

ðt1; t2Þ ¼
1

N
Vα1α2
j1j2

δCðt1; t2Þ þ
1

N

Z
C
dτDα1μ

j1k
ðt1; τÞΠμν

kl ðτ; t2ÞVνα2
lj2

: ðA14bÞ

We have defined shorthand δð1; 2Þ≡ δj1j2δα1α2δCðt1; t2Þ,
and the contour integral

R
C dtAðtÞ is interpreted

as
R
∞
t0
dtAðt ∈ CþÞ − R

∞
t0
dtAðt ∈ C−Þ. Equation (A13a)

and its adjoint Eq. (A13b) are referred to as Kadanoff-
Baym (KB) equations. The convolution integrals of
self-energies and correlators manifestly show memory
effects, which is a shared feature of beyond mean-field
approximations.
The spatial structure of Eqs. (A13a)–(A14b) can be

simplified by noting that physical initial states imply initial
correlations between pairs of Majorana operators on the
same site, i.e., Gα1α2

j1j2
ðt0; t0Þ ∝ δj1j2 . Crucially, this property

extends to all times in the KB dynamics, independent of the
order of truncation in 1=N. To see this, one first establishes

that the assumption Gj1j2ðt1; t2Þ ∝ δj1j2 for t0 ≤ t1; t2 ≤ T
implies Σj1j2ðt1; t2Þ ∝ δj1j2 in the same domain. The causal
structure of Eqs. (A13a) and (A13b) subsequently extends
this property to infinitesimally larger domains and even-
tually to all times by induction. Therefore, we can always
make the following simplifying substitution in the KB
equation:

Gα1α2
j1j2

ðt1; t2Þ → δj1j2G
α1α2
j1j1

ðt1; t2Þ;
Σα1α2
j1j2

ðt1; t2Þ → δj1j2Σ
α1α2
j1j1

ðt1; t2Þ: ðA15Þ

The LO approximation.—The KB equations reduce to
the mean-field Bloch equation upon truncation at the LO
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level, which amounts to neglecting fluctuation self-energy
corrections Σ → 0. In this limit, the KB equations
imply

i∂t1G
α1α2;>
jj ðt1; t2Þ þ iφν

c;jðt1Þενα1μGμα2
jj ðt1; t2Þ ¼ 0;

−i∂t2G
α1α2;>
jj ðt1; t2Þ þ iφν

c;jðt2Þενμα2Gα1μ
jj ðt1; t2Þ ¼ 0: ðA16Þ

Subtracting the equations from one another, setting
t2 ¼ t1 ¼ t, and using Eq. (7), we finally obtain

∂thŜjðtÞi ¼ φc;j × hŜjðtÞi; ðA17Þ

which is the Bloch equation as anticipated.
The NLO approximation.—Including self-energy cor-

rections, the time convolutions appearing in the KB
equations prohibit us from arriving at a closed equation
for the equal-time Green’s functions and we inevitably need
to solve for the complete unequal-time Green’s function.
For concreteness, we consider the case of spin spirals
hereafter. The spatial structure of the KB equations can be
significantly simplified by applying the unwinding unitary
transformation, either directly on Eqs. (A14a) and (A14b)
or on the spin Hamiltonian. Either way, the initial spiral
state transforms into an uncorrelated x-polarized FM state
j ~Ψ0i≡⨂

j
j →ij at the expense of an anisotropic interaction

[see Eq. (13)]. The two-point correlator of Majorana
fermions at t ¼ t0 is easily found as

Gα1α2;>
j1j2

ðt0; t0Þ ¼ δj1j2

0
BB@

−i=2 0 0 −i=2
0 −i=2 1=2 0

0 −1=2 −i=2 0

−i=2 0 0 −i=2

1
CCA:

ðA18Þ

The exchange-field correlator at t ¼ t0 is not an indepen-
dent degree of freedom and is determined by Gðt0; t0Þ; see
Eq. (A12). For translationally invariant initial states as
such, G and Σ further become independent of the lattice site.
Furthermore, Dj1j2 depends only on the distance, and at the
NLO level,Πj1j2 is local as well. The simplified structure of
the correlators and self-energies is summarized as follows:

Gð1; 2Þ → δR1R2
Gαβðt1; t2Þ;

Σð1; 2Þ → δR1R2
Σαβðt1; t2Þ;

Dð1; 2Þ → Dαβ
R1−R2

ðt1; t2Þ⟶F:T:Dαβ
k ðt1; t2Þ;

Πð1; 2Þ → δr1r2Π
αβðt1; t2Þ:

The KB equations can be written explicitly in terms of
G> and D> using the Langreth rules [80]. We quote the
final result, setting N ¼ 1:

i∂t1G
α1α2ðt1; t2Þ þ iφα1μ

c ðt1ÞGμα2;>ðt1; t2Þ ¼
Z

t1

t0

dτ½Σα1μ;>ðt1; τÞ þ Σμα1;>ðτ; tÞ�Gμα2;>ðτ; t2Þ

−
Z

t2

t0

dτΣα1μ;>ðt1; τÞ½Gμα2;>ðτ; t2Þ þ Gα2μ;>ðt2; τÞ�; ðA19aÞ

−i∂t2G
α1α2ðt1; t2Þ þ iGα1μ;>ðt1; t2Þφμα2

c ðt2Þ ¼
Z

t1

t0

dτ½Gα1μ;>ðt1; τÞ þ Gμα1;>ðτ; tÞ�Σμα2;>ðτ; t2Þ

−
Z

t2

t0

dτGα1μ;>ðt1; τÞ½Σμα2;>ðτ; t2Þ þ Σα2μ;>ðt2; τÞ�; ðA19bÞ

Dα1α2;>
k ðt1; t2Þ ¼ Vα1μ

k Πμν;>ðt1; t2ÞVνα2
k þ Vα1μ

k

Z
t1

t0

dτ½Πμν;>ðt1; τÞ − Πνμ;>ðτ; t1Þ�Dνα2;>
k ðτ; t2Þ

− Vα1μ
k

Z
t2

t0

dτΠμν;>ðt1; τÞ½Dνα2;>
k ðτ; t2Þ −Dα2ν;>

k ðt2; τÞ�; ðA20aÞ

Dα1α2;>
k ðt1; t2Þ ¼ Vα1μ

k Πμν;>ðt1; t2ÞVνα2
k þ

Z
t1

t0

dτ½Dα1μ;>
k ðt1; τÞ −Dμα1;>

k ðτ; t1Þ�Πμν;>ðτ; t2ÞVνα2
k

−
Z

t2

t0

dτDα1μ;>
k ðt1; τÞ½Πμν;>ðτ; t2Þ − Πνμ;>ðt2; τÞ�Vνα2

k : ðA20bÞ
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The self-energies Σ> and Π> are read from Eq. (A12).
The last explicit equations are suitable for devising a
numerical forward propagation scheme. Starting from
G0ðt0; t0Þ, we calculate Σðt0; t0Þ and Πðt0; t0Þ from
Eq. (A12) and Dðt0; t0Þ from Eq. (A20a). The casual
structure of Eqs. (A19a)–(A20b) allows us to propagate
fG;Σ;D;Πg in ðt1; t2Þ in discrete time steps of size Δt.
This is achieved using a robust predictor-corrector method
with guaranteed accuracy to OðΔt3Þ.
Calculating spin-spin correlators in the spin-2PI for-

malism.—In the framework of 2PI effective actions, higher-
order correlators are “reconstructed” from the history of
two-point correlators. Here, we are interested in the
connected spin-spin correlator:

iχα1α2j1j2
ðt1; t2Þ ¼ hTC½Ŝα1j1 ðt1ÞŜ

α2
j2
ðt2Þ�i − hŜα1j1 ðt1ÞihŜ

α2
j2
ðt2Þi;
ðA21Þ

where the spin operators are shorthand notations for
Eq. (4). The spin-spin correlator is found from the
Majorana L function, defined as

Lð11̄; 22̄Þ≡ hTC½ηð1Þηð1̄Þηð2Þηð2̄Þ�i − iGð1; 1̄ÞiGð2; 2̄Þ;
ðA22Þ

by contracting ε symbols with its left and right pairs of
fermion lines:

χα1α2j1j2
ðt1;t2Þ¼

i
4
εα1β1γ1L

β1γ1;β2γ2
j1j1;j2j2

ðtþ1 ;t1;tþ2 ;t2Þεα2β2γ2 : ðA23Þ

The L function, in turn, satisfies a nonequilibrium Bethe-
Salpeter equation on the C contour:

Lð11̄; 22̄Þ ¼ Π2ð11̄; 22̄Þ þ
Z
C
d3d3̄d4d4̄Π2ð11̄; 33̄ÞΛð2Þ

× ð33̄; 44̄ÞLð44̄; 22̄Þ; ðA24Þ

where Π2ð11̄; 22̄Þ ¼ Gð12ÞGð2̄ 1̄Þ − Gð12̄ÞGð1̄2Þ and the
2PI irreducible vertex Λð2Þð33̄; 44̄Þ ¼ δ2Γint½G�=δGð33̄Þ×
δGð44̄Þ; here, Γint½G� is given in Eq. (8b) with φc and D
substituted in terms of G from the stationarity condition
Eqs. (A7b) and (A7c).
The NLO effective action yields three contributions to

Λð2Þ:

ðA25Þ

The last symbol stands for the three permutations of the first
three diagrams obtained by ð3 ↔ 3̄Þ, ð4 ↔ 4̄Þ, and
ð3 ↔ 3̄; 4 ↔ 4̄Þ with signs −, −, and þ, respectively.

These vertex corrections are structurally similar to the
random-phase approximation (RPA), Maki-Thompson
(MT), and Aslamazov-Larkin (AL) vertex corrections
accounting for superconducting fluctuations in metals
[81]. Explicitly, these vertex parts are given as

Λð2Þ
RPAð33̄; 44̄Þ ¼

1

2
εα3α3̄μiV

μν
j3j4

1

2
ενα4α4̄δj3j3̄δj4j4̄

× δCðt3; t3̄ÞδCðt4; t4̄ÞδCðt3; t4Þ; ðA26aÞ

Λð2Þ
MTð33̄; 44̄Þ ¼

1

2
εα3α4μiD

μν
j3j3̄

ðt3; t3̄Þ
1

2
ενα3̄α4̄δj3j4δj3̄j4̄

× δCðt3; t4ÞδCðt3̄; t4̄Þ; ðA26bÞ

Λð2Þ
ALð33̄; 44̄Þ ¼ iGβ3β3̄

j3j3̄
ðt3; t3̄ÞiGβ4β4̄

j4j4̄
ðt4; t4̄Þ

×
1

2
εα3β3μiD

μν
j3j4

ðt3; t4Þ
1

2
ενα4β4

×
1

2
εα3̄β3̄μ̄iD

μ̄ ν̄
j3̄j4̄

ðt3̄; t4̄Þ
1

2
εν̄α4̄β4̄ : ðA26cÞ

It is easily noticed that Λð2Þ
RPA ∼Oð1Þ, Λð2Þ

MT ∼Oð1=NÞ, and
Λð2Þ
AL ∼Oð1=N2Þ. Therefore, we may drop the latter if

accuracy at the NLO order is desired.
For translation-invariant states, it can be shown that

Lð11̄; 22̄Þ ∼ Lα1α1̄;α2α2̄
R1−R2

ðt1t1̄; t2t2̄ÞδR1R1̄
δR2R2̄

. Taking a
Fourier transform in R1 −R2 yields decoupled integral
equations for each momentum transfer q. The temporal
structure of the Bethe-Salpeter equation remains formi-
dable. Performing the contour integral and discrete sum-
mations over 3; 3̄ variables in Eq. (A24) and contracting the
right legs according to Eq. (A23), we reach to an integral
equation for the three-time object Γα1α1̄;μ

q ðt1; t1̄; t2Þ≡
ð−i=2ÞLα1α1̄;α2α2̄

q ðt1; t1̄; tþ2 ; t2Þεμα2α2̄ in two contour times
t1; t1̄ (with fixed external time t2).
The first step in solving the Bethe-Salpeter equation is to

recast it in terms of functions of ordinary times. In
comparison to the KB equation, this step is significantly
more involved here due to the complex real-time structure
of three-time and four-time CTP functions and multiple
contour integrals. We leave the cumbersome details for a
separate publication and solely outline the procedure here.
We showed earlier in Appendix A 1 that the four real-time
matrix elements of two-time functions such as G and D can
be fully specified using a single real-time function, e.g., G>.
A similar analysis of Γα1α1̄;μ

q ðt1; t1̄; t2Þ, taking into account
symmetries and unitarity of evolution, reveals that the eight
real-time components of a three-time function as such can
be fully specified by three independent functions.
Accordingly, the contour Bethe-Salpeter equation can be
explicitly written as three coupled two-dimensional integral
equations in ordinary times; the latter is numerically solved
by discretizing the integrals using approximate quadratures
and solving the resulting linear system.
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