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Superconducting pairing in resonant inelastic x-ray scattering
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We develop a method to study the effect of the superconducting transition on the resonant inelastic x-ray
scattering (RIXS) signal in superconductors with an order parameter with an arbitrary symmetry within a
quasiparticle approach. As an example, we compare the direct RIXS signal below and above the superconducting
transition for p-wave-type order parameters. For a p-wave order parameter with a nodal line, we show that,
counterintuitively, the effect of the gap is most noticeable for momentum transfers in the nodal direction. This
phenomenon may be naturally explained as a type of nesting effect.
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I. INTRODUCTION

The description of many-body systems is usually only
practical in terms of simplified low-energy theories. Such
theories are indispensable and describe a large variety of
measurements such as conductance and magnetic response.
However, measurements based on scattering techniques often
probe wider energy scales. Indeed, powerful probes such
as resonant inelastic x-ray scattering (RIXS) are allowing
unprecedented access to a wide range of excitations in
superconducting and magnetic systems. In particular, the
superconducting gap scale is tiny in comparison with band
energies of most materials and often below the experimental-
energy-resolution scale. It is therefore of interest to ask to what
extent details of low-energy theories, such as the gap function,
are observable through RIXS. Recently, it was suggested
that RIXS can distinguish between different phases of the
order parameter [1,2]. This dependence is studied through the
dynamical structure factor, which is shown to discriminate
between singlet and triplet pairing. The structure factor itself
is related to the RIXS signal only in the limit of ultrashort
core-hole lifetime, for which a more elaborate treatment is
needed [3].

Here, we set out to examine the effect of superconducting
pairing on the RIXS mechanism within a simple mean-
field BCS picture, which includes the effect of core-hole
potential and goes beyond the ultrashort core-hole lifetime
approximation which is used to relate RIXS to dynamical
structure functions. We derive a general formula for the RIXS
intensity for an arbitrary quadratic Fermi Hamiltonian, with
anomalous pairing �, as expressed in Eq. (3) together with
(11). This result generalizes the quasiparticle approach of
[4], where the computation of RIXS spectra was performed
using a model of noninteracting quasiparticles but including
an interaction with a positively charged core hole via exact
determinant methods. This formalism allows us to compute
the characteristics of the signal by numerically evaluating (11).
Moreover, the computations can be done for arbitrary band
structures using relatively straightforward numerical means.

As a demonstration of the method, throughout the paper
we will concentrate on p-wave superconducting states. The
p + ip superconductors are of great current interest. Such
superconductors can support unpaired Majorana fermions at
cores of (half-quantum) vortices [5,6] and allow for non-

Abelian statistics [7,8]. Remarkably, we find that the RIXS
signal is sensitive to the presence of a superconducting gap �,
even down to a scale where � is quite small (a few percent)
compared to the value of band parameters. In particular, going
through the superconducting phase transition � acquires a
nonzero value, and we expect the RIXS spectra to experience
a significant change.

Resonant inelastic x-ray scattering is an important tech-
nique for the investigation of a large variety of excitations
in correlated systems. Its main advantage is the wide range
of energy scales to which it is sensitive: from low-energy
excitations, such as phonons, to charged excitations of several
eV. Another advantage is that it is a bulk measurement.
The physical mechanism at play in a RIXS experiment is a
second-order photon absorption process, involving a shake-up
of the system due to an abrupt appearance of a core-hole
potential. The nonequilibrium process involved may be rather
complicated, and thus the interpretation of experimental
measurements may not be straightforward.

In the process, photons with energy ω and momentum q are
scattered, and the outgoing photons have energy ω − �ω and
momentum q + Q (we take � = 1 throughout). A complete
description of the RIXS intensity would require considering
the full interacting dynamics of the sample, which is too hard
to achieve. Below we will start from the standard approach,
using the Kramers-Heisenberg cross section [9]:

I (ω,k,k′) ∝
∑
f

|Ffg|2δ(Eg − Ef + �ω), (1)

with

Ffg =
∑
l,n

eiQ·Rn
〈f |dn|l〉〈l|d†

n|g〉
Eg + ω − El + i�

. (2)

Here, |f 〉,|g〉 are the initial and final states, respectively, of
the electron band, and Ef,g are their energies. The operator
dn creates a quasiparticle in a conduction band at site Rn.
The states |l〉 are the set of eigenvectors of the intermediate
Hamiltonian Hn = H + Vn, where the remaining core hole
is interacting with the conduction band through a potential
Vn. The form of the potential Vn may be arbitrary. In this
paper we used both the local form Vn = Ucd

†
ndn, describing an

on-site interaction with a local core hole, and Vn = Ucd
†
ndn +

U ′
c

∑
|Rn−R′

n|=1 d
†
n′dn′ to account for the effect of the Coulomb
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interaction on the neighboring sites. Here, � is the inverse of
the core-hole lifetime, and we take a typical value of order
0.1 eV.

It is important to note that the Kramers-Heisenberg formula
(1) is incomplete in that it does not properly account for
the photoelectron-core-hole Coulomb interaction (see, e.g.,
[10,11]). Here, however, we neglect such effects as we are
only interested in the physics involving the band structure.
Indeed, these effects (for example, mixing between L2 and L3

absorption edges) are more pronounced in lighter elements,
while in heavier elements of interest for high-Tc superconduc-
tivity as well as the p-wave system described here, the L2,L3

separation in energy is very large (of order 20 eV for Cu and
130 eV for Ru).

II. AN EXACT DETERMINANT FORMULA USING
MAJORANA FERMIONS

Following [4], we write the intensity as

I ∝
∫ ∞

−∞
ds

∫ ∞

−∞
dt

∫ ∞

−∞
dτeiω(τ−t)−is�ω−�(t+τ )

×
∑
mn

eiQ(Rm−Rn)Smn, (3)

with

Smn = 〈eiHτ dne
−iHnτ d†

ne
iHsdmeiHmtd†

me−iH (t+s)〉. (4)

As long as the various stages in the time evolution are governed
by quadratic Fermi operators, (4) can be calculated by exact
diagonalization methods. Consider fermions on a lattice with
N = L × L sites, governed by a mean-field Hamiltonian:

H =
∑
i,j

hij d
†
i dj + �ijdidj + H.c. (5)

To handle arbitrary superconducting pairing �ij , we represent
the fermion creation and annihilation operators in terms of 2N

Majorana fermions ck defined as

ck =
{

dk + d
†
k k = 1,2, . . . ,N,

i(d†
k−N − dk−N ) k = N + 1,N + 2, . . . ,2N

(6)

and satisfying the relation {ci,cj } = 2δij . The Hamiltonian (5)
can be reexpressed in terms of the Majorana fermions as

H =
∑
ij

hij cicj , (7)

with h being the antisymmetric matrix:

h = 1

4

(
iIm(h + 2�) iRe(2� + h)

iRe(2� − h) iIm(h − 2�)

)
. (8)

Traces involving quadratic Hamiltonians of the form
A = aij cicj , where aij is an antisymmetric matrix, can be
calculated by using the counting statistics formulas presented
in, e.g., [12]. As shown in the Appendix, the trace formula

Tr(eA1 · · · eAn ) =
√

det(1 + e4a1 · · · e4an) (9)

leads, in the direct RIXS case, to the three distinct contributions
to Smn,

Smn = Smn
1 + Smn

2 + Smn
3 . (10)

The contributions are detailed in the Appendix, but we mention
that in the absence of a core-hole potential S2 contributes only
to the elastic signal, while in the absence of superconducting
pairing, S3 vanishes. We note that the sign of the square root
in Eq. (9) is determined to be consistent with the analyticity
of the expression as a function of t,s,τ . The first term is given
explicitly by

Smn
1 =

√
det(F )(�n,m + �n+N,m+N − i�n+N,m − i�n,m+N )

× (�m,n + �m+N,n+N − i�m+N,n + i�m,n+N ). (11)

Here �n,m,�n,m are elements of the 2N × 2N matrices,

� = eihseihmt ei(τ−t−s)hG−1(1 − Nβ)e−i(τ−t−s)he−ihmt ,

� = ei(τ−t−s)hNβF−1, (12)

where Nβ = 1
1+e−4βh , K = e−4ihnτ e4ihse4ihmt e4i(τ−t−s)h, F =

1 − Nβ + KNβ , G = 1 − Nβ + NβK . Here, hm represents
the Hamiltonian with the core hole at position m [i.e., Hm =∑

ij (hm)ij cicj ]. We stress that the Eqs. (3), (4), and (11) are
valid for any type of mean-field pairing and are the main
technical result. We now turn to applying these for a particular
pairing of p-wave form.

III. APPLICATION TO A p+ip SUPERCONDUCTOR

To be concrete, we take a minimal toy model for a p-wave
superconductor. We use a two-dimensional spinless fermionic
system on a square lattice with superconducting gap �. In
the Hamiltonian (5), we choose band structure parameters
sometimes used for strontium ruthenate, Sr2RuO4. Following
[13], we choose hii = −μ, hi,i+x̂ = hi,i+ŷ = −t1, hi,i±x̂±ŷ =
−t2. To get a px + ipy superconducting state, we take, to
be concrete, �i,i+x̂ = �, �i,i+ŷ = i�, with (μ,t1,t2,�) =
(1.15,0.8,0.3,0.05)ε, where ε ∼ 0.2 eV [14]. In comparisons
with Sr2RuO4, the Hamiltonian (5) is associated with the so-
called γ band of the dxy orbitals in ruthenate. The signal may
also get contributions from additional quasi-one-dimensional
bands associated with dxz,dyz orbitals, with hopping ∼ε. We
have also carried out explicit calculations for the dxz and dyz

bands; however, we focus here on the γ band.
To explore the role of the superconducting gap, we

calculated the RIXS intensity across the superconducting
phase transition using Eq. (11). As is shown in Fig. 1, for
Q = 0.15(π,0),0.1(π,0), the main effect seems to be the
shift of spectral density to higher energies: the intensity
decreases for small energy transfer and increases for large
energy transfer, and the shift is not simply proportional to
�; another observable effect is the increase in intensity at
the peak. Calculations were carried out at zero temperature
both in the presence of and without the gap (we have found
that thermal corrections beyond the presence of the gap do
not play a significant role in the RIXS signal). The bottom
panels in Fig. 1 exhibit the spectral shift caused by including a
core-hole potential in the calculations. Introduction of a core
hole tends to shift spectral weight to higher energy exchanges
due to the available Coulomb potential. This contribution is
taken into account exactly in the full formalism developed
between Eqs. (3) and (11) and is vital for a full comparison
with possible experiments. However, we have found that in
most of the calculations a qualitative description of the effects
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FIG. 1. Top: RIXS intensity across the transition for a px + ipy

superconductor [left: Q = 0.1(π,0); right: Q = 0.15(π,0)], Uc = 1ε,
for different values of � (in units of ε). � increases the spectral weight
for higher energy exchanges, shifts the peak position, and increases
the intensity. Notice the shift of the peak position is not linear in �.
Bottom: spectral shift due to core-hole potential compared to Uc = 0
for � = 0.05ε.

of a finite gap � on the intensity curves works quite well
already at Uc = 0 and will be described below.

The spectral density flow to higher energy can be simply
understood by noting that the main contributions to RIXS
intensity occur due to the generation of electron-hole pairs in
which one of them is close to the Fermi level. In the presence
of pairing, states close to the Fermi level are unavailable: the
incoming photon must first overcome the energy gap, and thus
the energy difference in the subsequent electron-hole pair is
higher. On the other hand, as we see below, surprisingly, the
increase in intensity at a direction Q is not directly related to
the pairing �Q at that wave vector.

IV. THE Uc = 0 APPROXIMATION

As stated above, many interesting differences in the RIXS
signal below and above the superconducting transition can be
observed already for small Uc. In this limit we can compute the
RIXS more efficiently using perturbation theory. We consider
an expansion in terms of Uc for Ffg in (2). For a simple on-site
core-hole potential V we write

G = (Hm − Eg + i� + ω)−1

∼ G(0) − UcG
(0)(d†

mdm)G(0) + · · · ,

where G(0) = (H − Eg + i� + ω)−1 is the propagator with
no core hole. From here on we take only the lowest-order
contribution, where Uc = 0. The theory is then exactly
solvable in terms of the eigenstates of the static problem, and
we can calculate the intensity efficiently. We first solve the
energy spectrum by switching to momentum space and writing

the Hamiltonian in the standard Bogoliubov–de Gennes form:

H = 1

2

∑
k

[d†
k dk]

[
εk �k

�∗
k −εk

][
dk

d
†
−k

]
. (13)

Here, εk = −μ − 2t1[cos(kx) + cos(ky)] − 4t2cos(kx)cos(ky),
and �k = 2i�[sin(kx) + i sin(ky)]; the Hamiltonian is diago-
nalized by a Bogoliubov transformation,

dk = u∗
kbk + vkb

†
−k,

d
†
−k = −v∗

kbk + ukb
†
−k. (14)

The energy of the excitation is now Ek =
√
ε2

k + |�k|2, |uk|2 +
|vk|2 = 1, and uk

vk
= �k

Ek−εk
; the ground state is annihilated by

all bk , and Ffg in Eq. (2) is now given explicitly by

F0
fg =

∑
k1,k2,r

eir·(k1−k2+Q) vk1uk2

Ek2 + ω + i�
〈f |b†−k1

b
†
k2

|g〉. (15)

From (15) we see that in the quasiparticle picture, the con-
tribution to RIXS intensity comes from pairs of quasiparticles
with momenta k and k + Q and energies Ek and −Ek + �ω.
When there is no pairing term, these are an electron and a hole,
and in the presence of a pairing term, these are the Bogoliubov
quasiparticles. Going to the superconducting phase, the energy
spectrum becomes Ek =

√
ε2

k + |�k|2; when |εk| 	 |�k|, we
have Ek ∼ |εk|, which is the case in most of the Brillouin
zone as |�| is small compared to other band parameters. Thus
the change in the RIXS intensity comes mainly from pairs
where at least one quasiparticle is close to the Fermi surface,
where the energy spectrum and density of states change
significantly. For a pair of quasiparticles, one close to the Fermi
surface, where |εk1 | < �k1 , with Ek1 ∼ |�k1 | and Ek2 ∼ εk2 ,
we have �ω ∼ |�k1 | + εk2 . The same pair without the pairing
term will contribute to the intensity at �ω ∼ εk2 . In Fig. 2
we show the intensity as a function of Q and �ω, as
calculated from the lowest-order contribution (15) for the
p + ip superconducting state in comparison with its normal
state. Figure 2 shows that for small Q, the intensity is enhanced,
which is consistent with having an energy gap forcing larger
energy transfers for two quasiparticles near the Fermi sea.

A yet more intriguing situation is that of a superconducting
order like px + py which, as opposed to px + ipy , exhibits
nodal lines. Nodal lines are unusual but, in principle, allowed
for p-wave systems, both for so-called unitary and nonunitary
states [15]. In Fig. 3 the RIXS intensity in the nodal
and antinodal directions, (1,−1) and (1,1), respectively, are
depicted for such pairing. There is a striking breaking of the
symmetry between the two directions as a result of the pairing.
In the absence of pairing, the intensity in the two directions
is the same. To see this, consider an electron-hole pair with
momenta (kx1 ,ky1 ), (kx1 + q,ky1 + q) and energies ε1, ε2 which
contributes to the intensity at �ω in the (1,1) direction.
Another electron-hole pair with (kx1 ,−ky1 ), (kx1 + q,−ky1−q)
will have the same energies since ε(kx,ky) = ε(±kx,±ky) but
will contribute intensity in the (1,−1) direction.

The effect of the pairing term can be understood by looking
at F0

fg over the Brillouin zone. In (15), the summation over r
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FIG. 2. RIXS intensity map on the Q, �ω plane in the (11)
and (10) directions (in units of π ). The top panel is in the normal
phase (� = 0), and the bottom panel is the superconducting phase
(� = 0.05ε). The calculation is done using Eq. (15).

FIG. 3. RIXS intensity map for a spinless px + py type of
pairing function [�k = i2�(sinkx + sinky)] with � = 0.05ε in the
antinodal (1,1) and nodal directions (1,−1) for Q. In the absence of
pairing the two directions should have the same intensity; thus the
difference comes purely from the presence of the superconducting
gap. Surprisingly, the effect is more pronounced on the nodal direction
where � = 0.

FIG. 4. Fk over the Brillouin zone for a px + py pairing. The
black lines show the original Fermi surface, red regions denote large
values of Fk from electronlike regions, and the blue regions are
the associated holelike quasiparticles. (a) and (b) Q = (0.25,0.25)π ,
antinodal direction, energy transfer �ω = 0.35ε. (a) � = 0 and (b)
� = 0.05ε. (c) and (d) Q = (0.25,−0.25)π , nodal direction, energy
transfer �ω = 0.35ε. (c) � = 0 and (d) � = 0.05ε. The region
marked with green circles in (d) is the most affected by the pairing.

gives a δ function, and we can write

F0
fg =

∑
k

vkuk+Q

Ek+Q + ω + i�
, (16)

where we took |f 〉 = b
†
−kb

†
k+Q|g〉. When the system is

unpaired, |f 〉 describes a particle-hole pair whose momenta
differ by Q and energies differ by �ω.

We note that the RIXS intensity is the integral over the
Brillouin zone of the function:

F(k) = vkuk+Q

Ek+Q + ω + i�
δ(Ek+Q + Ek − �ω). (17)

To identify the main contributions to the signal in momentum
space we now focus on the behavior of F(k). In practice,
we replace the δ function by δ(E) ∼ e−(E/Eres)2/2, with Eres =
0.1ε, to account for the experimental energy resolution. The
result is shown in Fig. 4. Because of the symmetry of the
Hamiltonian, at � = 0, Fk is the same at Q = (0.25,0.25)π
and Q = (0.25,−0.25)π up to 90◦ rotation. We can now
see why for Q = (0.25,0.25)π , in the antinodal direction,
the effect of pairing is weaker: Fk does not change a lot
after turning on the pairing since the significant regions of
Fk are far from the line kx = ky where the pairing �k =
2i[sin(kx) + sin(ky)] is most significant. However, in the nodal
direction, Q = (0.25,−0.25)π , a pairing term becomes much
more relevant: Fk has significant contributions across the line
kx = ky , and in those regions Fk is sensitive to the pairing term
(denoted by green circles in Fig. 4), resulting in a substantial
change in the RIXS intensity. We thus see that the effect
of pairing on intensity is sensitive to the direction of the
momentum transfer and seems to be enhanced in the nodal
direction.
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V. DISCUSSION AND SUMMARY

We have confined our discussion here to mean-field BCS
and made no speculation about the suitability of the treatment
to strongly correlated systems and its relevance, e.g., to high-Tc

superconductors. At this point, it is worth mentioning, among
the other probes of superconducting states, the electronic
Raman scattering technique. Electronic Raman scattering
essentially measures the dynamical structure factor [16]:

S̃(q,ω) = 1

2π

∫ ∞

−∞
e−iωt 〈ρ̃q(0)ρ̃q(t)〉, (18)

which has a very similar form to the four-point function
measured by RIXS and describes a similar process. In the
limit where qξ � 1, where ξ is the coherent length, there
will be a peak around 2�, which is what we get in the small
momentum limit for RIXS using Eq. (17). Thus, RIXS allows
for a study complementary to that of the Raman technique. It is
also important to note that RIXS is especially interesting away
from the BCS picture, where one can see contributions from
both band structure physics and collective excitations; thus to
differentiate between such effects it is of particular importance
to have a well-developed picture of RIXS in the absence of
collective behavior. In particular it is of great interest to see
how the present approach may affect results pertaining to the
quasiparticle interpretation of RIXS in the cuprates. Indeed,
although our treatment is within a mean-field BCS picture,
we remark that the method may also be of relevance to the
study of cuprates. Most recent studies of RIXS in the context
of cuprates have largely considered cases of insulating phases
[17–20]. However, RIXS experiments have been performed
over a wide range of doping, including systems where itinerant
electrons are present, and a description using tools developed
for insulators may be insufficient. For example, in [21], it is
shown that, contrary to a common interpretation, for Bi-2212,
the magnon picture fails at a nodal direction and that a quasi-
particle scenario may be an essential ingredient to understand
the RIXS data there. A different theoretical approach starts
from the itinerant electrons, considering both direct [4] and
indirect RIXS processes [22]. It is possible to show that within
this method, the RIXS signal is sensitive to particularities of
the band structure [23] quite far from the Fermi level and gives
results consistent with experimental studies. Another example
of consideration of itinerant electrons is Refs. [21,24], in which
RIXS intensity has been calculated using the random-phase
approximation for Sr2IrO4.

In summary, we developed a general formalism to treat the
RIXS intensity for a quadratic Fermi theory with arbitrary
pairing. With the introduction of Majorana fermions, all
quadratic Hamiltonians can be handled within the determinant
method. The main formulas are summarized in Eqs. (3),
(4), and (11), which are ready for immediate numerical use.
Focusing on p-wave superconducting states, we have shown
within this approach several intriguing effects on the RIXS
signal. The most important findings are a nonlinear shift of the
RIXS absorption peak below the superconducting transition
as a function of � and, for nodal p-wave pairing, a breaking
of symmetry between the nodal and antinodal directions, in
which, surprisingly, the effect is more pronounced in the
nodal direction than the antinodal direction. We have seen

pronounced effects of the gap scale down to a few percent of the
band parameters; unfortunately, in actual Sr2RuO4, the pairing
is believed to be of the order of 10−3ε, and the effects discussed
here will most likely be outside experimental resolution in
this material with present techniques. However, the method
introduced here allows us to readily study other paired systems.
Effects similar to those described for our toy model should be
observable when carrying out RIXS measurements below and
above a superconducting transition.
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APPENDIX: CALCULATING Smn WITH PAIRING

Here we give further details regarding the derivation of (11).
Explicitly,

Sxy = 〈eiHτ dye
−iHyτ d†

ye
iHsdxe

iHx td†
xe

−iH (t+s)〉
= tr[eiHτ dye

−iHyτ d†
y

· · · eiHsdxe
iHx td†

xe
−iH (t+s)−βH ]/tr[e−βH ]. (A1)

Here, the core holes act at sites x and y.
We first focus on the numerator. When replacing all the

fermions with Majorana operators, we get a combination of
terms such as

Num = �qmnptr[eiHτ cqe
−iHyτ cmeiHscne

iHx t cpe−iH (t+s)−βH ]

= �qmnptr[cqe
X4cmeX3cne

X2cpeX1 ]. (A2)

Defining ξx = x + N , then the nonzero elements of � are

�yyxx = �ξy,ξy,ξx,ξx = �ξy,ξy,x,x = �y,y,ξx,ξx = 1
16 ,

�y,ξy,x,ξx = �ξy,y,ξx,ξx = −�y,ξy,ξx,x = −�ξy,y,x,ξx = − 1
16 ,

�y,y,x,ξx = �y,ξy,x,x = �ξy,ξy,ξx,x = �ξy,y,ξx,ξx = i
16 ,

�y,y,ξx,x = �ξy,y,x,x = �ξy,ξy,x,ξx = �y,ξy,ξx,ξx = − i
16 .

Using the relation cmeAi,j ci cj = eAi,j ci cj cm′ (e4A)m,m′ (the
same indices are summed over), we can move all the Majorana
fermions to the right, yielding

Num = �qmnp(eX1 )p,p′ (eX2eX1 )n,n′(eX3eX2eX1 )m,m′

×tr[eZij ci cj cm′cn′cp′cq], (A3)

where eZij ci cj = eX4eX3eX2eX1 . Now the task is to calculate
traces of the form

Tmnpq = tr[eZij ci cj cmcncpcq]

= tr[eZij ci cj (δmn + cmcn − cncm

2
)(δpq + cpcq − cqcp

2
)]

= tr
[
eZij ci cj

(
1
4MN + 1

2Mδpq + 1
2N δnm + δmnδpq

)]
,

(A4)
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where M = Mijcicj . M = |m〉〈n| − |n〉〈m|, and N =
|p〉〈q| − |q〉〈p|. Now that M and N are antisymmetric
matrices, we can write M = ∂

∂α
eαM|α=0 and use the trace

formula (9) to calculate T. First, we find

tr

(
eZij ci cj

d

dα
eαMij cicj |α=0

)
= ∂

∂α
tr(eZij ci cj eαMij cicj )|α=0

= 1

2

√
det(1 + e4Ze4αM )tr

(
4e4ZM

1 + e4Ze4αM

)
|α=0

= 2
√

det(1 + e4Z)
{
(1 + e−4Z)−1

nm − (1 + e−4Z)−1
mn

}
.

(A5)

Next, we define B = 1
1+e−4Z and D = det(1 + e4Z). Then,

∂

∂β

∂

∂α
tr(eZeαMeβN ) =

√
D{4tr(BM)tr(BN )

− 8tr(BNBM) + 8tr(BMN )}. (A6)

In the last step we take α = 0 and β = 0. Plugging the result
from the above two equations into Eq. (A4), we find

Tmnpq =
√
D{(Bnm − Bmn + δmn)(Bqp − Bpq + δpq)

+ 2Bqm(δnp − Bnp) + 2Bpn(δmq − Bmq)

− 2Bpm(δnq − Bnq) − 2Bqn(δmp − Bmp)}. (A7)

Noticing that since Z is antisymmetric, Bnm + Bmn = δmn, we
get

Tmnpq = 4
√
D(BnmBqp + BqmBpn − BpmBqn). (A8)

We plug (A8) back into Eq. (A3):

Sxy = �qmnp(eX1 )p,p′ (eX2eX1 )n,n′ (eX3eX2eX1 )m,m′Tm′n′p′q .

(A9)

We see that Sxy is composed of three terms corresponding to
the terms on the right-hand side of Eq. (A8). We first focus on
the first term:

S1 = 4�qmnp

√
DBnmBqp(eX1 )p,p′ (eX2eX1 )n,n′ (eX3eX2eX1 )m,m′ .

(A10)

It will be convenient to denote K ≡ e−4ihnτ e4ihse4ihmt

e4i(τ−t−s)h and Nβ ≡ 1
1+e4βh . With this notation we have eZ =

K
Nβ

1−Nβ
, B = (1 + 1−Nβ

Nβ
K−1)−1. We find

S1 = �qmnp[eX3eX2eX1BT (eX2eX1 )T ]mn(eX1BT )pq, (A11)

where T is the matrix transpose. In order to get convenient
expressions in the low-temperature limit (β → ∞), we have to
calculate eX1B(eX1 )T . Using that for the antisymmetric matrix

h, e−h = (eh)T , we write

e−4βhBT (e−4βh)T = Nβ

1 − Nβ

1−Nβ

Nβ
K−1

1 + 1−Nβ

Nβ
K−1

1 − Nβ

Nβ

= K−1 1

Nβ + (1 − Nβ)K−1
(1 − Nβ)

= 1

1 − Nβ + NβK
(1 − Nβ)

and

e−4βhBT = Nβ

1 − Nβ

1

1 + K
Nβ

1−Nβ

= Nβ

1

1 − Nβ + KNβ

.

Using the above results and summing over m,n,p,q, we have

S1 =
√

det(F )(�y,x + �ξy,ξx − i�ξy,x + i�y,ξx)

× (�y,x + �ξy,ξx + i�ξy,x − i�y,ξx), (A12)

where

� = eihseihx t ei(τ−t−s)hG−1(1 − Nβ)e−i(τ−t−s)he−ihx t ,

� = ei(τ−t−s)hNβF−1, (A13)

and F = 1 − Nβ + KNβ , G = 1 − Nβ + NβK . Similarly, the
second term is written as

S2 = �qmnp(eX2eX1BT e−X1 )pn(eX3eX2eX1BT )mq

= (
�(2)

y,y + �
(2)
ξy,ξy + i�

(2)
ξy,y − i�

(2)
y,ξy

)
× (

�(2)
x,x + �

(2)
ξx,ξx + i�

(2)
ξx,x − i�

(2)
x,ξx

)
, (A14)

where �(2) = e−ihs�eihx t and �(2) = eihseihx t�. For the third
term S3,

S3 = �qmnp(eX2eX1BT )nq(eX3eX2eX1BT e−X1 )mp

= (
�(3)

x,y − �
(3)
ξx,ξy − i�

(3)
ξx,y − i�

(3)
x,ξy

)
× (

�(3)
x,y − �

(3)
ξy,ξx + i�

(3)
ξx,y + i�

(3)
x,ξy

)
, (A15)

where �(3) = �eihx t and �(3) = eihx t�.
The terms S2 and S3 have a special behavior when either the

core-hole potential or the superconducting pairing vanishes:
(i) S2 does not contribute to the inelastic signal when the

core-hole potential Uc is zero: In that case, K = I, and S2

only depends on t and τ , so S2 only contributes to the elastic
scattering.

(ii) S3 vanishes when there is no pairing; in that case
the matrices �(3) and �(3) have the special property that
�(3)(x,y) = �(3)(ξx,ξy), �(3)(x,ξy) = −�(3)(ξx,y), so that
S3 vanishes.
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