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Dicke phase transition without total spin conservation
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We develop a fermionic path-integral formalism to analyze the phase diagram of open nonequilibrium systems.
The formalism is applied to analyze an ensemble of two-level atoms interacting with a single-mode optical cavity,
described by the Dicke model. While this model is often used as the paradigmatic example of a phase transition
in driven-dissipative systems, earlier theoretical studies were limited to the special case when the total spin
of the atomic ensemble is conserved. This assumption is not justified in most experimental realizations. Our
approach allows us to analyze the problem in a more general case, including the experimentally relevant case of
dissipative processes that act on each atom individually and do not conserve the total spin. We obtain a general
expression for the position of the transition, which contains as special cases the two previously known regimes:
(i) nonequilibrium systems with losses and conserved spin and (ii) closed systems in thermal equilibrium and
with the Gibbs-ensemble averaging over the values of the total spin. We perform a detailed study of different
types of baths and point out the possibility of a surprising nonmonotonic dependence of the transition on the
baths’ parameters.
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I. INTRODUCTION

Understanding phase transitions in open quantum systems
is a challenging problem at the interface of quantum optics,
condensed matter, and atomic physics. In contrast to equi-
librium phase transitions, which have been well understood
using powerful theoretical tools such as renormalization-group
approaches and conformal field theories, we still lack reliable
theoretical tools for analyzing nonequilibrium open systems.
This makes it particularly important to analyze systems with
known experimental realizations that allow direct comparison
between theoretical predictions and experimental measure-
ments. Two important examples of such systems are the
directed percolation and the driven dissipative Dicke model,
which have been respectively realized in liquid crystals [1,2]
and quantum optics [3–9]. In the case of the Dicke model,
theoretical approaches that have been developed so far rely
on the existence of an integral of motion, the total spin, which
significantly reduces the complexity of the problem [10–16]. In
contrast, actual experiments involve dissipative processes that
do not respect this conservation law, such as dissipative baths
coupled to each individual atom. Their description requires
more advanced theoretical tools.

The effects of single-atom baths on the Dicke model were
considered in Refs. [17,18], using approximate methods based
on effective bosonic field theories. These approaches map the
two-level systems to continuous variables and are valid only if
all the atoms are strongly polarized in a given direction [18]. In
this paper we instead employ an exact mapping to a fermionic
path-integral representation, which allows us to obtain an
exact expression for the location of the Dicke transition. In
the limit of a large number of atoms we recast our result
in terms of single-atom correlation functions, which can
be computed using standard master equations. The present
approach reproduces the known position of the equilibrium
phase transition and additionally allows us to systematically
describe single-atom dephasing and decay (see Fig. 1). As

we will show, these processes renormalize the position of the
Dicke transition and in some cases completely destroy it.

II. MODEL

The Dicke model describes the interaction of N two-level
atoms (or spins) σ z

j = ±1/2 with a single bosonic degree of
freedom a,

H = ω0a
†a + ωz

∑
j=1,N

σ z
j + 2g√

N

N∑
j=1

σx
j (a + a†). (1)

Here ω0 and ωz are, respectively, the detuning of the cavity and
of the atoms, g is the photon-atom coupling, [a,a†] = 1, and
[σx

j ,σ
y

j ] = iσ z
j . For simplicity we assume that all the atoms are

identical, although the present approach can be immediately
generalized to the inhomogeneous case.

The Hamiltonian (1) commutes with the total spin operator
S = (Sx)2 + (Sy)2 + (Sz)2, where Sα = ∑N

j=1 σα
j . Due to this

symmetry it is possible to decouple the 2N spin states into
block-diagonal Dicke manifolds with a well-defined total spin
S � N/2. This analysis reveals that the equilibrium Dicke
model presents a continuous phase transition between a normal
and a superradiant phase, both at zero and finite tempera-
tures [10–16]. The Dicke transition signals the spontaneous
symmetry breaking of a discrete Z2 symmetry (σx → −σx

and a → −a) and belongs to the mean-field Ising universality
class [17,19,20].

Following the theoretical proposal of Refs. [21–23], the
Dicke transition was recently realized in driven dissipa-
tive quantum optical systems [3–9]. The theoretical de-
scription of this transition [24–28] considered the effect
of the cavity decay κ , modeled as a Markovian bath
coupled to the cavity field a. This dissipative channel
conserves the total spin and can be described through
a semiclassical Holstein-Primakoff [15,29] approximation
in which the total-spin operators are substituted by the
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FIG. 1. Dissipative processes considered in the present study.
Previous studies mostly focused on the cavity decay, which conserves
the total spin.

bosonic operators b and b†, according to Sz → −N/2 + b†b
and Sx → √

N (b + b†). This analysis leads to the critical
coupling

gc = 1

2

√
ωz

ω2
0 + κ2

ω0
. (2)

For κ → 0, Eq. (2) recovers the known equilibrium result.
This semiclassical approach relies on the conservation of the
total spin and cannot be generalized to the case of single-atom
dissipative processes.

III. MAJORANA FERMIONS

To describe the atomic dephasing and decay we employ a
fermionic path-integral approach that allows us to expand the
Dicke model in a 1/N series and resum all the leading terms.1

We specifically consider the Majorana fermion representation
of spin-1/2 systems2 [31–33] σ z

j = f
†
j fj − 1/2 and σ−

j =
ηjfj . Here fj are Dirac fermions whose occupied (unoccu-
pied) states correspond to spin-up (spin-down) states of the
j th atom and ηj are Majorana fermions satisfying η

†
j = ηj and

η2
j = 1. The role of the latter operators is essentially to map

the commutation relations of the spins to the anticommutation
relations of the fermions. In terms of Majorana fermions, the
Dicke model (1) becomes

H = ω0a
†a − ωz

N∑
j=1

f
†
j fj + g√

N

N∑
j=1

ηj (fj − f
†
j )(a† + a).

(3)
Following the usual path-integral prescription, we first intro-
duce the bare Green’s functions describing the cavity and the
fermions and then derive Feynman rules for their coupling.3

In this study we focus on the long-time steady state in
which all decay processes have time to stabilize and the
Green’s functions depend on the time difference only. The
bare (retarded) Green’s function of the cavity is then given in
Ref. [17] and is equal to a 2 × 2 diagonal matrix G−1,R

a (ω) =
(ω + iκ)τz − ω01z. Here τz is a Pauli matrix whose entries
correspond to particles a† and holes a and 1z is the unit

1Path integrals offer a simple method to organize time-dependent
perturbation theory. The same results can be alternatively obtained
using, for example, the Nakajima-Zwanzig approach (see Ref. [30]
for an introduction).

2Not to be confused with the Majorana representation of spins.
3See Ref. [34] for an introduction to Keldysh path integrals in the

context of quantum optics.

matrix. The bare Green’s functions of the atoms describe
their dynamics in the absence of the photon-atom coupling.
We assume that each atom is coupled to an independent
dissipative channel, leading to Green’s functions that do not
couple different atoms and will be denoted by Gfj

(ω) and
Gηj

(ω). Note that our analysis is only valid as long as the
atoms can be effectively described as (spin-1/2) two-level
systems. Thus, for example, we cannot account for processes
that bring the atoms to hyperfine states not included in the
double-lambda scheme of Ref. [22] or to farther momentum
states in the realization of Ref. [23].

We next introduce the Rabi coupling as a vertex connecting
the cavity field a, a fermionic field fj , and a Majorana field ηj ,
with coefficient g/

√
N . This coupling generates a self-energy

for the cavity field of the form �R
a (ω)(1z + τz). The Dicke

transition corresponds to a diverging response function at
ω = 0 or, equivalently, to a zero-frequency pole and is set
by

det
[
G−1,R

a (0) + �R
a (0)

] = 0. (4)

Substituting the expression for G−1,R
a , we obtain

det

[(
iκ − ω0 + �R

a (0) �R
a (0)

�R
a (0) −iκ − ω0 + �R

a (0)

)]
= 0,

leading to the critical condition

ω2
0 + κ2 + 2ω0�

R
a (0) = 0. (5)

In general, the self-energy �R
a depends on the photon-atom

coupling g and Eq. (5) sets its critical value gc.

IV. THE 1/N EXPANSION

To compute the self-energy �R
a (ω) we need to consider all

possible diagrams that start and end with a cavity field (see
Fig. 2 for details). A one-loop diagram is plotted in Fig. 2(c)

(a)
∗∗

(b)

(c)

(d)

FIG. 2. (a) Bare Green’s functions. (b) Bare vertices, proportional
to g/

√
N . (c) One-loop and (d) two-loop self-energies for the cavity

field �R
a . The former contribution does not scale with N , while the

latter scales as 1/N and can be neglected in the limit of N → ∞.
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and is equal to4

�R
a (ω) = g2

N

N∑
j=1

∫ ∞

−∞

d	

2π

[
GK

fj
(	)GR

ηj
(ω − 	)

+GK
fj

(−	)GR
ηj

(ω − 	)
]
. (6)

Here the second term is generated by a diagram analogous to
Fig. 2(c), but with an inverse direction of the fermionic arrow.
Note that the resulting integral does not depend on N : Each
vertex introduces a 1/

√
N factor, balanced by the sum over all

atoms. Figure 2(d) shows an irreducible two-loop integral that
contributes to the self-energy of the cavity field. This diagram
contains four vertices and a single sum over j and is therefore
suppressed as 1/N . (See also Refs. [35,36] for a similar result
in the case of atoms with motional degrees of freedom.) In
the limit of N → ∞ only a series of one-loop irreducible
diagrams does not vanish. This series is exactly resummed by
the above-mentioned self-energy approach.

The self-energy (6) has a simple interpretation in terms
of spin-spin correlation functions. To see this mapping it is
convenient to transform the integral expression appearing in
Eq. (6) to the time domain

�R
a (ω) = ig2

N

N∑
j=1

∫ ∞

0
dt〈[fj (t)ηj (t),f †

j (0)ηj (0)]〉eiωt

+〈[f †
j (t)ηj (t),fj (0)ηj (0)]〉eiωt (7)

= 4ig2

N

N∑
j=1

∫ ∞

0
dt

〈[
σx

j (t),σ x
j (0)

]〉
eiωt (8)

= −8g2

N

N∑
j=1

∫ ∞

0
dtIm

[〈
σx

j (t)σx
j (0)

〉]
eiωt . (9)

Here the average 〈· · · 〉 refers to the bare theory in which the
atoms are decoupled from the cavity, in analogy to the Lamb
theory of the lasing transition [37–40]: Eq. (9) involves a sum
over j , indicating that in the limit of N → ∞, the cavity
experiences each atom independently.

Equations (5) and (9) express the position of the Dicke
transition in terms of the correlation functions of individual
dissipative spins. These correlations can be computed using
either the Majorana fermion representation [31–33] or more
conventional methods of quantum optics such as master
equations in the Lindblad form. For the sake of brevity, we
employ here the latter method and leave the corresponding
calculations using Majorana fermions for a future longer study.
The introduction of Majorana fermions in the present work is
nevertheless necessary to develop the 1/N expansion leading
to Eq. (9).

We specifically consider three distinct types of single-atom
baths, listed in Fig. 1 along with their corresponding Lindblad
operators.

4For simplicity here we assume that GK
f (ω) is diagonal in Nambu

space and that GK
η (ω) = 0. The final expression (9) does not rely on

these assumptions.

(i) Dephasing. Dephasing processes preserve the spin
polarization of the atoms and can be mathematically described
by the Lindblad operators σ z

j . In the presence of this type
of dissipation, the spin-spin correlation functions can be
computed using the appropriate Lindblad master equation: For
any t > 0 one finds (see the Appendix)〈

σx
j (t)σx

j (0)
〉 = e−γφt [cos(ωzt) + i〈σ z

j 〉 sin(ωzt)]. (10)

Combining this expression with Eqs. (5) and (9) we find

�R
a (0) = 4g2

〈
σ z

j

〉
ωz

ω2
z + γ 2

φ

, gc = 1

2

√√√√ ω2
z + γ 2

φ

−2
〈
σ z

j

〉
ωz

ω2
0 + κ2

ω0
.

(11)

In the limit of N → ∞, this specific type of bath preserves
σ z

j , and the expectation value 〈σ z
j 〉 is determined by the initial

condition of the atoms. In contrast, for finite values of N it is
necessary to consider 1/N corrections, which can modify the
steady-state value of 〈σ z

j 〉. As shown in Ref. [41], these terms
generically lead to a steady state with 〈σ z

j 〉 = 0, where the
Dicke transition does not occur (gc → ∞). On the other hand,
repumping schemes leading to a steady state with 〈σ z

j 〉 �= 0 can
guarantee the observation of the Dicke transition [41]. Note
that the spins do not need to form a coherent or entangled state
to support this transition [42,43].

(ii) Thermal bath. Let us now consider a decay channel
induced by a thermal bath at temperature T , with decay
rate γT . This situation is equivalent to having two Lindblad
baths respectively coupled to σ−

j and σ+
j with rates (1 +

nT )γT and nT γT , where nT is the Bose-Einstein distribution
(see the Appendix). Equation (11) is modified according
to 〈σ z〉 → 0.5 tanh(ωz/2T ) and γφ → γT /tanh(ωz/2T ). The
critical coupling is then given by

gc = 1

2

√
ω2

z tanh2(ωz/2T ) + γ 2
T

ωztanh3(ωz/2T )

ω2
0 + κ2

ω0
. (12)

In the limit of γT → 0 and κ → 0, Eq. (12) reproduces
the critical temperature of the equilibrium closed sys-
tem [10,11,13,14], given by tanh(ωz/2T ) = ωzω0/4g2

c .
In general, Eq. (12) is a monotonic increasing function of

the temperature indicating that, as expected, the superradiant
transition is suppressed by the temperature of the spins.
Interestingly, Eq. (12) shows that the critical temperature is
affected by the decay rates κ and γT . This result is in striking
contrast to the common classical equilibrium case, where the
strength of the coupling to a dissipative bath is not expected
to affect the critical temperature [44].

(iii) Generalized Markovian bath. We finally consider a
Markovian bath that couples coherently to both σ−

j and σ+
j

and is described by the Lindblad operator Lj = σ−
j + λσ+

j ,
where λ is a fixed unitless parameter. This situation might
be relevant to some implementations of Dicke-type models
using the four-level scheme of Ref. [22] (see Ref. [45] for
details). A straightforward calculation (see the Appendix)
shows that the critical coupling is given by Eq. (11) with
〈σ z

j 〉 = 0.5(1 − λ2)/(1 + λ2) and γφ → γeff = γλ(1 − λ)2,
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FIG. 3. Critical coupling of the Dicke model in the presence of
a Markovian single-atom decay channel described by the Lindblad
operator L = σ− + λσ+. Here g0 is the critical coupling for a fully
polarized system (2). The critical coupling diverges in the limit of
λ → 1, where 〈σ z

j 〉 = 0.

leading to

gc = 1

2

√
(1 + λ2)

[
ω2

z + γ 2
λ (1 − λ)2

]
(1 − λ2)ωz

ω2
0 + κ2

ω0
. (13)

In the limit λ → 0 we recover the semiclassical result of
Ref. [18]: In this case the steady states coincides with the
fully polarized state

∏
j |↓z〉j and the Holstein-Primakoff

approximation becomes exact. In the opposite limit λ → 1,
the Dicke transition does not occur because the steady state
is characterized by 〈σ z

j 〉 = 0, in contrast to the result of the
nonlinear sigma model of Ref. [17].

For intermediate 0 < λ < 1, the interplay between γeff and
〈σ z

j 〉 leads to the nontrivial behavior depicted in Fig. 3. Note
in particular that γeff is a decreasing function of λ and tends to
0 at λ = 1, in analogy to the spontaneous-emission-induced
coherence of Ref. [46]. Indeed, in this limit the Lindblad
operator is σx

j and does not directly affect the correlator
〈σx

j (t)σx
j (0)〉. As a consequence, for small λ 	 1, gc(λ) has a

negative slope due to the linear decrease of γeff as a function
of λ. In contrast, for λ � 1, gc(λ) has a positive slope due to
the decrease of 〈σ z

j 〉 ∼ (1 − λ2). The resulting nonmonotonic
behavior differs from the previously studied collective decay
channels, where the critical coupling depends on one effective
decay rate only.

V. CONCLUSION

In summary, we studied the effects of atomic decay channels
on the Dicke transition. Employing a fermionic path-integral
analysis, we derived a closed expression for the critical
coupling in terms of single-atom correlations (5) and (9). We
considered several types of dissipative channels and computed
the correspondent value of the critical photon-atom coupling
gc. We found that in general the critical coupling does not
depend on the total spin of the system S, but rather on the

average spin polarization 〈σ z
j 〉 [see Eqs. (5) and (11)]. If the

dissipative channel leads to a depolarized steady state with
〈σ z

j 〉 = 0 the Dicke transition disappears.
In the present discussion we considered nonequilibrium

steady states, in which all correlation functions depend on
the time difference only. The present analysis can never-
theless be directly extended to the study of the real-time
dynamics, by considering the retarded Green’s function θ (t −
t ′)〈[σx

j (t),σ x
j (t ′)]〉. In analogy to the steady-state situation,

it is sufficient to first solve for the dynamics of each atom
independently and then use this result to compute the response
of the cavity. This approach might be useful to describe
the transient Dicke transition observed in the experiments
[7–9,47].

It is also possible to extend the present analysis to
realistic experimental situations including, for example, the
coexistence of thermal and Markovian baths, nonsymmetric
Dicke models where the rotating and counterrotating terms of
the Dicke Hamiltonian are different, and multimode cavities
where glassy transitions are expected [48–51]. Furthermore,
it would be interesting to study the critical exponents of
the nonequilibrium transition and compare them with the
equilibrium case, following the lines of Ref. [17]. Finally, it is
desirable to extend the present analysis to include the decay
of individual atoms to additional states that were neglected in
their present two-level description.
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APPENDIX: METHODS

Master equations for a single spin coupled to a dissipative bath

In this appendix we use the Lindblad master equation [30]
to compute the correlations of a single spin in the presence
of dissipation. We then apply Eq. (9) and compute the cavity
self-energy.

We consider an isolated spin described by the Hamiltonian
H = ωzσ

z and the Lindblad operator L. To compute Sx(t) =
〈σx(t)σx(x)〉 we first derive the time evolution of the operator
σx(t) from the master equation

dσx

dt
= i[H,σx] − γα(L†

αLασ x + σxL†
αLα − 2L†

ασ xL).

(A1)
(i) Dephasing. For L = σ z, Eq. (A1) becomes

dσx(t)

dt
= ωzσ

y − γφσ x, (A2)

dσy(t)

dt
= −ωzσ

x − γφσ y. (A3)
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These equations are solved by

σx(t) = e−γφt [cos(ωzt)σ
x(0) + sin(ωzt)σ

y(0)], (A4)

σy(t) = e−γφt [cos(ωzt)σ
y(0) − sin(ωzt)σ

x(0)]. (A5)

Using (σx
j )2 = 1/4, we find that for any t > 0,

Sx(t) = 〈σx(t)σx(0)〉 (A6)

= 1
4e−γφt [cos(ωzt) − 2i〈σ z〉 sin(ωzt)]. (A7)

A straightforward integration gives

�R
a = 4g2

∫ ∞

0
dtSx(t) − Sx(−t) = 4g2ωz〈σ z〉

ω2
z + γ 2

. (A8)

(ii) Thermal bath. We now consider the decay process due to
the coupling to a finite-temperature bath. The correspondent
master equation is

dσx

dt
= − i[H,σx]

−
∑
α=±

γα(σασ−ασ x + σxσασ−α − 2σασ xσ−α),

(A9)

where γ− = γT (nT + 1), γ+ = γT nT , and nT = (eωz/T − 1)−1

is the Bose-Einstein distribution [52]. A direct evaluation
demonstrates that Eqs. (A2) and (A3) are modified by

γφ → (1 + 2nT )γT = γT /tanh(ωz/2T ). Using the
corresponding master equation for σ z, one finds

dσ z

dt
= −γT [(1 + nT )(2σ z − 1) + nT (2σ z + 1)] (A10)

= −γT [−1 + (2 + 4nT )σ z]. (A11)

Thus, in the steady state 〈σ z〉 = 1/(2 + 4nT ) =
0.5 tanh(ωz/T ), in agreement with the equilibrium result.

(iii) Generalized Markovian bath. We now consider the
Lindblad operator L = σ− + λσ+. A direct evaluation leads
to

L†Lσx + σxL†L − 2L†σxL = (1 − λ)2σx. (A12)

As a consequence, the equations of motion of σx are the same
as (A2) and (A3), with γφ → γλ(1 − λ)2. Note in particular
that for λ = 1, L = σx and the correlator of σx does not decay
over time. We deduce that

�R
a (0) = 4g2ωz〈σ z〉

ω2
z + γ 2

λ (1 − λ2)
. (A13)

We next need to find the steady-state expectation value of
σ z. For this purpose we use the master equation (A1) with
σx → σ z and obtain

dσ z

dt
= −γλ[(1 − λ2) − 2(1 + λ2)σ z]. (A14)

In the steady state the expectation value of the left-hand
side is zero and 〈σ z〉 = 0.5(1 − λ2)/(1 + λ2). Combining this
expression with Eq. (A13), we obtain Eq. (13).
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