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Quantum correlations at infinite temperature: The dynamical Nagaoka effect
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Do quantum correlations play a role in high-temperature dynamics of many-body systems? A common
expectation is that thermal fluctuations lead to fast decoherence and make dynamics classical. In this paper
we provide a striking example that a single particle created in a featureless, infinite temperature spin bath not
only exhibits nonclassical dynamics but it also induces strong long-lived correlations between the surrounding
spins. We study the nonequilibrium dynamics of a hole created in a Mott insulator in the atomic limit, which
corresponds to a degenerate spin system. In the absence of interactions, the spin correlations arise purely from
quantum interference. Furthermore, these correlations are both antiferromagnetic and ferromagnetic, in striking
contrast to the equilibrium Nagaoka effect. These results are relevant for a number of condensed matter spin
systems and should be observable using state of the art bosonic or fermionic quantum gas microscopes.
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I. INTRODUCTION

Understanding the role of quantum coherence in dynam-
ics of many-body systems at high temperatures remains a
challenging open problem. Usually coherence is fragile and
quickly destroyed by interaction with the environment and
by local fluctuations inherent to thermal ensembles. Hence
it is commonly assumed that observing quantum coherent
dynamics requires preparing isolated quantum systems close
to their ground states. Famous experimental demonstrations of
quantum coherence, including interference of Cooper pairs in
nanostructures [1,2] or interference of atomic Bose-Einstein
condensates and superfluids [3–5], have all been achieved
under these conditions. On the other hand, it has been argued
that quantum interference can lead to strong deviations from
simple classical dynamics. For example, the breakdown of
spin diffusion was predicted for the Heisenberg model even at
infinite temperature [6–8]. Several important examples can
be found in biophysics: in photosynthesis the interplay of
quantum interference and decoherence leads to a much faster
energy transport than would be possible classically [9–11];
quantum coherence has also been suggested to play a crucial
role in bird navigation [12] and the chemistry of smelling [13].
Understanding how quantum interference can operate at high
temperatures is therefore a crucial question, with tremendous
potential for quantum information science [14–16], condensed
matter [17], and biology [18].

Whereas it is well understood that the entanglement of a
subsystem with its environment leads to dephasing that drives
the subsystem towards classical behavior, the fate of quantum
coherence created in the environment is much less discussed.
It is conventionally assumed that the environment’s coherence
quickly vanishes due to dephasing among its large number of
degrees of freedom [19]. Here we show however that this is not
necessarily the case. We present a surprising example, where
adding a single quantum particle to an infinite temperature spin
environment can lead to appreciable dynamical correlations
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among the spins (Fig. 1). We consider a system of noninter-
acting spins on a two-dimensional lattice, which is routinely
realizable with bosonic or fermionic ultracold quantum gas mi-
croscopes. In a deep optical lattice, on-site repulsion brings the
atoms into a Mott state, where each site is occupied by exactly
one atom. The spins are represented by internal degrees of free-
dom of the atoms, such as their hyperfine states [20] or nuclear
spins [21], with N = 2S + 1 degrees of freedom, modeling a
spin S system. In the limit of strong on-site repulsion, the spins
completely decouple, as virtual tunneling to the neighboring
sites is suppressed. This realizes the noninteracting spin system
discussed here. Removing a spin on one site creates a hole that
can move on the lattice at no energy cost and permute the spins
during its motion [22–25], see Figs. 1(a) and 1(b). In contrast
to a classical particle performing Brownian motion that would
only scramble the random spins along its path and keep the
environment completely disordered, the quantum mechanical
hole is capable of exploring alternative paths in parallel. As
each path can lead to different permutations of the spins,
the superposition of these outcomes creates entanglement in
the spin bath. This leads to dynamical spin correlations in
the environment, whereas individual sites remain paramag-
netic. In contrast to the usual polaron effect, where a particle
locally modifies its environment due to their interaction [26–
34], these correlations arise purely from quantum interference.

Our system is also closely related to the ideas of dissipation-
less decoherence [35,36], studied in the context of quantum
information [15,16], condensed matter [37], and cosmology
[38]. Even though there is no energy transfer between the hole
and the environment, the hole’s propagation is slowed down
as quantum coherence is suppressed due to its entanglement
with the surrounding spins as was studied by Carlström et al.
[25]. The new insight of our work is that this process also
induces spin correlations in the environment (Figs. 1 and 2),
and therefore these correlations and decoherence are intimately
related. The noninteracting system discussed here is special in
the sense that the degrees of freedom in the environment are all
degenerate, which suppresses the effects of dephasing. In fact,
during the time scale of our simulations, these correlations
remain finite.
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FIG. 1. Experimental realization of the proposed procedure. (a)
The system of noninteracting spins is realized by creating a Mott
insulator of spinful atoms in a deep optical lattice. The atoms are
shown as gray (dark) and blue (light) dots. In the limit of infinitely
strong on-site repulsion, the spin interaction vanishes. The hole
(black) is created at the beginning of the experiment by removing
one of the atoms; its position and the spin correlations in the
environment can be measured after a propagation time t using a
quantum gas microscope. (b) As the hole moves along the trajectory
indicated by arrows (top) the spins on this path are reordered (bottom).
(c) Spin correlations are calculated by thermal averaging over all
possible spin configurations. During its dynamics, the hole explores
all alternative paths simultaneously. Due to its interplay with the spins,
the hole permutes each of these environments differently, leading to
nonvanishing spin correlations even after thermal averaging. Right
panel: Spin correlations Col in the laboratory frame between the
origin o (green site at the center) and site l, whose coordinates are
denoted by x and y. The calculations were performed at time t = 1.1
in a spin S = 1/2 environment.

We identify the interference terms that make the hole’s
dynamics dependent on the environment’s spin S [25]. These
terms are identical to those that generate spin correlations in the
environment, and they vanish exponentially in environments
of large spin. Finally, we find that the simple analytical model
of a hole on the Bethe lattice [39] closely approximates
the hole’s dynamics in a S → ∞ environment within the
time scales of the simulation. It has been suggested that the
dynamics of the hole should crossover from the initial ballistic
to diffusive behavior at long times [25]. However, this question
remained inconclusive due to the limited time available for
numerical simulations. The correspondence with the Bethe
lattice provides further evidence that the hole’s dynamics
indeed crosses over to diffusive behavior.

Dynamics of charge carriers in fluctuating and disordered
spin background lies at the heart of many physical systems,
including high-temperature superconductors [24,40,41], the

paramagnetic phase of supersolid 3He [42–45], organic ma-
terials [46], manganites exhibiting colossal magneto resis-
tance effect [47,48], and multicomponent ultracold atoms in
optical lattices [20,49,50]. The Hubbard model provides a
paradigmatic model of these systems, characterized by the
nearest neighbor tunneling energy th and an on-site repulsion
between the atoms. As the spinful atoms or electrons in
each of these systems repel each other strongly, they occupy
individual lattice sites, realizing a Mott insulator of spins
[20,24,49,50]. Assuming spin-independent on-site repulsion
U , a spin interaction J of the order of t2

h /U is provided by
virtual tunneling to neighboring sites, leading to the so-called
t-J model [24]. The spin coupling J then vanishes in the
limit of large on-site interactions U → ∞, realizing the
noninteracting spin system studied here.

Despite its simplicity, the degenerate spin environment has
surprisingly rich physics. As has been shown by Nagaoka
[22,23], the ground state of the system becomes ferromagnet-
ically ordered in the presence of a single hole, as this state
provides free propagation to the hole so that it can minimize
its kinetic energy. Here we discuss the opposite limit of an
infinite temperature spin environment, where the hole creates
dynamical correlations among the spins. These correlations
are of similar origin as the equilibrium Nagaoka effect, as
they arise from the dependence of the hole’s dynamics on
the surrounding spin configurations: locally ferromagnetic
spin domains lead to enhanced quantum coherence and to
faster propagation. As the hole acts on the spins in each
spin background differently, the resulting correlations are not
averaged out to zero due to thermal fluctuations. However, in
contrast to the Nagaoka ground state, the correlations studied
in this paper are both ferromagnetic and antiferromagnetic.

II. EXPERIMENTAL REALIZATION

Figure 1(a) shows a possible experimental realization of
our proposal. The noninteracting spin system is realized by
creating a Mott insulator of fermionic or bosonic atoms in
a deep optical lattice, with a single atom per site. Tuning
the lattice depth allows one to reach the limit of strong on-
site repulsion U � th such that the spin interactions become
negligible. The hole can be created by removing a single atom
at the origin o, with coordinates (0,0), using a quantum gas
microscope that can optically address sites independently [51].
The microscope can also measure the hole’s position as well
as the spin state at each site after a propagation time t . In order
to account for thermal fluctuations at infinite temperature, this
procedure has to be repeated many times, in each case with a
different, random initial spin configuration (see Appendix A),
resulting in an averaging over all possible spin states, as we
show in Fig. 1(c).

The dynamics of the hole is governed by the Hamiltonian

Ĥ = −th
∑
〈j l〉

ĉ
†
j P̂j l ĉl ,

where the operator ĉl annihilates the hole at site l. As the hole
moves from site l to j , the operator P̂j l moves the spin at
site j to site l. Since there is no energy cost of moving the
spins around, the tunneling th is the single energy scale of the
model, and it is chosen to be th ≡ 1, which also determines
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FIG. 2. Induced spin correlations of the hole in a degenerate spin S = 1/2 environment in the laboratory frame (left). The reference site
j is denoted by green, whereas x and y specify the coordinates of the second site l. The reference site is chosen to be (0,0) for (a), (e), and
(i); (0,1) for (b), (f), and (j); and (1,1) for (c), (g), and (k). The probability density of the hole, also discussed by Ref. [25], is exhibited on the
right. Results are shown at times t = 0.6 (a)–(d), t = 1.2 (e)–(h), and t = 1.8 (i)–(l) in a spin S = 1/2 system.

the time scale of the dynamics. After a propagation time t , the
probability of finding the hole at site j is given by pj (t) =
〈ĉ†j ĉj 〉(t). Here the nonequilibrium average denotes

〈· · · 〉(t) = 1

NM−1
Tr(ĉoe

iĤ t · · · e−iĤ t ĉ†o),

where the trace sums over all possible spin configurations
Tr(· · · ) = ∑

� 〈�| · · · |�〉 and the denominator accounts for
the of number spin configurations in the environment of M

sites.
Whereas the spin environment modifies the propagation of

the hole [25], the effect of the hole on the environment can also
be observed in the form of dynamical spin correlations, which
are the primary focus of this work. The correlations between
sites j and l are defined as

Cjl(t) = 1

S2
〈Ŝz

j Ŝ
z
l 〉(t),

where Ŝz
j denotes the z component of the spin at that site, and

it evaluates to 0 when the hole is at site j . In the initial state,
off-diagonal spin correlations Cj �=l are averaged out to zero
by thermal fluctuations. Figure 2 shows how the introduction
of the hole leads to dynamical correlations at longer times,
reaching values as large as 4% near the origin in a system of
S = 1/2 spins. These correlations appear as the hole extends

over the lattice, so that it can build up coherence between
the spins surrounding it. In the noninteracting environment,
the correlations remain finite at the times available to our
simulations. Since the hole cannot create spin flips, the z

component of the total spin of the lattice is conserved.
This leads to the conservation of the sum of off-diagonal
correlations (see Appendix B)

∑
j �=l

Cjl(t) = 0. (1)

Therefore, the appearance of ferromagnetic correlations al-
ways need to be accompanied with antiferromagnetic ones
and vice versa.

The onset of spin correlations can be understood as follows.
In each possible spin background, the hole permutes the
spins slightly differently during its dynamics. For instance,
locally ferromagnetic environments lead to slightly faster
propagation due to interference terms: as the hole has no
effect on ferromagnetically aligned spins, any pair of paths
interfere. Spin correlations therefore evolve differently in time
in each spin environment, and they are not averaged out by
thermal fluctuations. Although an experimental realization
of the infinite temperature spin background would involve
averaging over all initial spin configurations, we estimate that
the spin correlations can be observable in existing experimental
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setups [50–54] already after a few hundred measurements with
a good signal to noise ratio (Appendix A).

III. QUANTUM INTERFERENCE BETWEEN PATHS

Similarly to the famous double-slit experiment [55], the
probability of finding the hole at any site is determined from
interference between different paths. This leads to interference
fringes in the probability density of the hole [25]. The hole’s
dynamics can be represented in terms of these paths by ex-
panding its time evolution [22,23] as e−iĤ t = ∑∞

n=0
(−i t)n

n! Ĥ n.
Each power of Ĥ generates a step of the hole to one of
its z = 4 neighboring sites. Therefore Ĥ n corresponds to a
collection of zn possible hole paths of total length n. During
its time evolution, the hole is in the superposition state of all
paths. Since the expectation value 〈· · · 〉(t) of experimental
observables contains both the time evolution operator and its
conjugate, we need to expand both of these operators in terms
of paths of the hole. These are referred to as forward and
backward time evolution paths, respectively. We determine
the transition probability pj (t) by summing over interference
terms between all pairs of forward (α) and backward (β)
evolution paths ending at site j . In order that two paths can
interfere in a given spin environment, the hole needs to end up
at the same site along both paths, and they need to produce the
same final spin state. As the hole moves along these paths, it
generates the permutations π̂α and π̂β on the spins. Thus, the
transition probability to site j is given by

pj (t) =
∑
α,β

(−i t)nβ (i t)nα

nβ! nα!
〈π̂ †

βπ̂α〉0,

where the average denotes 〈· · · 〉0 ≡ 〈· · · 〉(t = 0), and nα

and nβ refer to the lengths of the paths α and β. The
interference term between paths α and β is thus determined
by the combined permutation π̂

†
βπ̂α = π̂−1

β π̂α , which can be
generated by the hole moving forward on path α to site j , and
then returning to the origin on β. Due to the degeneracy of
the spin environment, time-dependent observables cannot be
evaluated using ordinary perturbation theory up to finite order
in the hopping [56] (see Appendix C). We therefore model
the hole’s dynamics by sampling its paths using a real-time
quantum Monte Carlo algorithm [25,57]. In order to account
for the tn

n! expansion parameter and the large phase space
consisting of zn paths we choose random walk paths of length
n from the Poisson distribution Pn ∝ (zt)n

n! (see Appendix D)
[25]. The permutations generated by these paths are stored
together with the acquired phase factors in and we take all pairs
of these paths to evaluate their contributions to the transition
probabilities and the spin correlations, as we show in Appendix
D. We evaluate interference terms between paths by calculating
the thermal average 〈· · · 〉0 over all spin states exactly. This
allows us to determine the spin correlations to high numerical
accuracy, in contrast to earlier approaches [25].

The interference contributions between two paths strongly
depend on how the spins are permuted as the hole moves along
them. Paths that generate the same permutation of the spin en-
vironment π̂β = π̂α are referred to as being equivalent. These
paths restore the original spin configuration at the end of the
combined path π̂

†
βπ̂α = 1 irrespective of the spin background,

(b)

(c)

(a)

x

y

x

y

x

y

(d)

x

y

FIG. 3. Interference of different pairs of paths in the same initial
spin background. The spin states are denoted by gray (light) and blue
(dark) dots. (a) By definition, the two equivalent paths (black full
and red dashed lines) permute any spin state identically, making
the final spin state the same. Therefore, these paths interfere in
any spin background. The inequivalent paths shown in (b) however
bring the spin configuration into orthogonal final states, therefore
their interference vanishes. In contrast, the paths in (c) and (d)
lead to the same final state as these paths permute the spins over
locally ferromagnetic regions. The dashed region in (d) shows the
permutation cycles generated by the hole moving along the paths.
Spin correlations arise from interference between inequivalent paths
(b)–(d). However, these contributions vanish in environments of large
spin S → ∞. In these systems, the hole’s dynamics is determined
only by interference between equivalent paths (a).

leading to maximal interference 〈π̂ †
βπ̂α〉0 = 1. For example,

two paths that only differ in self-retracing components are
equivalent [58], as we show in Fig. 3(a). However, more
complicated scenarios are also possible. For instance, the path
traversing a two-by-two plaquette three times is equivalent to
the trivial path, where the hole stays at the origin [59].

Importantly, equivalent paths do not contribute to spin
correlations. As they perform the same transformation on the
lattice spins, thermal averaging makes the spin correlators
vanish. Instead, spin correlations between lattice spins arise
from pairs of inequivalent paths that have a different effect
on the spins, π̂β �= π̂α . In these pairs, the combined forward
and backward paths always contain loops, such as those
shown in Figs. 3(b)–3(d). Depending on the initial spin state,
the paths in these pairs often create orthogonal final spin
configurations [Fig. 3(b)]. Inequivalent paths can interfere only
in specific initial spin states where π̂

†
βπ̂α acts over locally

ferromagnetic domains that are restored by the combined
permutation [Figs. 3(c) and 3(d)]. These terms thus make
the hole’s propagation depend on the spin state of the lattice.
Similar to the equilibrium Nagaoka effect, the correlations
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FIG. 4. Time-dependent spin correlations. (a) Correlations be-
tween sites neighboring the origin appear gradually and they stay
finite during the time scale of our calculation. Results are shown for
a spin S = 1/2 system. Letters A, B, C, and D in (b) denote sites
(0,0),(0,1),(1,0), and (1,1), respectively. Different curves in (a) show
correlations between A–B (full line), A–D (dashed line), and B–C

(dotted line). (c) Lowest order contributions to A–D correlations
[gray dashed circle in (b)] arise from interference between paths
encircling the two-by-two plaquette, with the hole ending up at B or
at C. Interference between two such paths α1 (top) and α2 (bottom)
requires nonorthogonality of final spin states. Therefore, all three
spins on the plaquette need to be identical.

thus arise from the enhancement of interference terms in
ferromagnetic spin domains.

IV. SPIN CORRELATIONS

Figure 4(a) shows that the correlations build up gradually
at short times and show slightly oscillating behavior at
intermediate times. Whereas correlation between the origin
and site (0,1) as well as that between sites (1,0) and (0,1)
are ferromagnetic, we find antiferromagnetic correlations
between the origin and site (1,1). Figure 2 demonstrates that
correlations exist between other sites that are further away
from the origin. These correlations appear gradually as the
hole approaches the surrounding spins. Within the time scale
of our calculations, the correlations stay finite. Their long time
behavior remains an open question, which could be addressed
experimentally.

To illustrate how spin correlations with different signs
emerge, let us consider the lowest order contribution to the
correlation between the origin o and site (1,1). As shown
in Fig. 4(b), the sites of the plaquette containing these two
sites are labeled by letters A = o to D = (1,1), and we thus
investigate the spin correlations CAD(t). The hole thus needs to
end up at sites j = B or C at time t , otherwise the interference
term does not contribute to CAD(t). Due to symmetry, we
only need to consider the case when the hole ends up at
site C. As we mentioned earlier, spin correlations can only
arise from inequivalent pairs of paths. The lowest order such
pair ending at site C is shown in the upper and lower panels of
Fig. 4(c), and we denote them as α1 and α2, respectively. The
diagonal matrix elements of the spin correlator vanish after
taking the thermal average over all initial spin configurations
〈π̂ †

α1
Ŝz

A Ŝz
Dπ̂α1〉0 = 〈Ŝz

B〉0 〈Ŝz
C〉0 = 0, and similarly for path α2.

The interference terms between paths α1 and α2, however,
yield a nonvanishing contribution for special initial spin states,
where α1 and α2 result in the same final spin configuration.
As the combined effect of the two paths π̂ †

α2
π̂α1 moves all

spins to a neighboring site, the interference term is zero unless
all three spins are ferromagnetically aligned. In the infinite
temperature system, all spins take random values with equal
probability 1/N . The probability of all three spins taking
on the same configuration is given by 〈π̂ †

α2
π̂α1〉0 = 1/N 2. As

interference terms between identical paths average out to zero
due to thermal fluctuation, this term determines the sign of
correlations

CAD(t) = 2 (it)
(−it)3

3!
〈π̂ †

α2
π̂α1〉0 ∝ − t4

3N 2

at lowest order, which is negative due to the phase factors
acquired by the hole along the two paths. Figure 4(a) shows that
the corresponding correlator CAD(t) stays antiferromagnetic
at intermediate times as well, whereas CAB(t) and CBC(t) are
ferromagnetic.

In order to evaluate spin correlations and transition proba-
bilities up to any order, we consider two arbitrary paths α and β

and evaluate their interference 〈π̂ †
β π̂α〉0. Permutations created

by longer paths can be more complicated than the one shown
in Fig. 4(c) on the two-by-two plaquette. Since longer paths
may intersect each other and themselves, the hole may permute
different regions of the lattice independently, as we illustrate
in Fig. 3(d). In each of these regions, the spins need to be
ferromagnetically aligned to ensure that the initial and the final
spin state are not orthogonal. However, the individual regions
may take on different ferromagnetic states. These regions can
be identified by the separate permutation cycles Ca of the
combined permutation π̂

†
β π̂α = �aCa [60]. The interference

term 〈π̂ †
βπ̂α〉0 is thus determined by the probability of the spins

being ferromagnetically aligned in each cycle,

〈π̂ †
βπ̂α〉0 =

∏
a

1

N |Ca |−1
. (2)

Here |Ca| denotes the number of spins in cycle Ca and
N = 2S + 1 is the number of spin degrees of freedom. This
interference term also contributes to the spin correlations
between sites within the same ferromagnetic region, as we
show in Appendix E. When the spins on sites π †

α(j ) and
π †

α(l) are within the same ferromagnetic domain, the matrix
element 〈π̂ †

βSz
jS

z
l π̂α〉 is simply given by Eq. (2). In contrast,

it vanishes for all other combination of sites, as the spin
correlations between independent domains average out to
zero. We determine both the transition probabilities and spin
correlations by Monte Carlo sampling the paths and use
Eq. (2) to calculate the interference between each pair of paths
(Appendix E).

When the number of spin degrees of freedom is large, it
is very unlikely to find locally ferromagnetic regions in an
infinite temperature bath. Since interference of inequivalent
paths relies on these domains, these contributions vanish in the
limit of large spins S = ∞, as Eq. (2) shows. The strongest spin
correlations can thus be observed in a spin S = 1/2 system.
Furthermore, the interference term is also exponentially
suppressed if the paths permute a large number of spins
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degenerate environment, respectively, which have been determined earlier in Ref. [25] for slightly shorter times. Inset: rms distance of the hole
on the Bethe lattice (blue dashed line) and for a classical random walk (orange dotted line) at long times.

differently. The largest contribution to spin correlations thus
arises from the paths that have almost identical effect on the
spins. This explains why the induced spin correlations are
localized within a few sites in Fig. 2.

V. HOLE DYNAMICS

The dependence of the hole’s propagation on the spin S

of the environment has been demonstrated numerically [25].
Here we show that this effect can be attributed to interference
between inequivalent paths that are also responsible for the
spin correlations in the environment. Furthermore, we give
a simple analytic approximation of the hole’s dynamics in a
large spin S = ∞ environment.

In the simplest case of a ferromagnet (S = 0), all pairs
of paths interfere with a maximal amplitude 〈π̂ †π̂〉0 = 1. As
shown in Fig. 5, the resulting propagation is ballistic, and the
root mean squared (rms) distance of the hole

drms =
⎛
⎝∑

j

pj r2
j

⎞
⎠

1/2

grows linearly in time, with rj denoting the distance of site
j from the origin. However, the propagation of the hole is
slowed down in environments of finite spin, as a result of the
suppression of interference terms between inequivalent paths,
shown in Eq. (2). Thus, in the S → ∞ limit, only equivalent
paths contribute to the dynamics.

In order to gain insight into this limit, we investigate the
propagation of the hole on the Bethe lattice [39], shown in
Fig. 5(a). The Bethe lattice is a tree graph, with the origin
at the root level l = 0. Each site has z = 4 neighbors that
can be identified with left, right, up, and down steps on the
two-dimensional lattice. Each random walk on the Bethe lattice
can thus be identified with one on the square lattice. The
position of the hole on the Bethe lattice keeps full information
of its two-dimensional path up to self-retracing components,
and two paths interfere if and only if their endpoints are
the same. Due to the geometrical constraint imposed by the
graph, interfering paths cannot include loops. In particular,
the Bethe lattice only allows interference between equivalent

paths that are identical except for self-retracing components,
see Fig. 5(b). This construction covers most of the phase space
of equivalent pairs, which determine the hole’s propagation
in the S = ∞ environment. Therefore, the hole’s dynamics in
this system is expected to be well approximated by the Bethe
lattice construction.

As two interfering paths on the Bethe lattice always permute
the spins the same way, the hole’s dynamics on the Bethe
lattice decouples completely from that of the spins. The hole’s
propagation therefore becomes a single particle problem that
can be solved analytically (Appendix F). This behavior is
reminiscent of the physics of spin-charge separation in a
one-dimensional lattice [54,61,62], which is equivalent to the
Bethe lattice of coordination number z = 2. In that case a hole
moves coherently in the lattice, while keeping the order of the
spins unchanged. Although the spin configuration depends on
the hole position, this does not introduce correlations between
the spins. In two dimensions, the dynamics on the z = 4 Bethe
lattice is more subtle. Due to interference between equivalent
paths, the average level of the graph grows linearly in time
similar to one-dimensional systems (see the Supplemental
Material [63]). However, this does not manifest as ballistic
propagation on the square lattice. The rms distance of sites on
level l of the Bethe lattice becomes

dl =
√

2l − 3
2 (1 − 3−l), (3)

which grows as dl ∼ √
2l at large distances (Appendix F).

Therefore, instead of ballistic propagation, we find that the
hole shows diffusive behavior at long times drms ∼ √

2DBethet ,
with a diffusion constant

DBethe ≈ 2.73.

Thus, the quantum propagation through the random spin
environment leads to a diffusion that is faster than that of
a classical random walk, with a diffusion constant Dcl = 2
(Appendix G).

The rms distance is shown for different models in Fig. 5. We
find the usual ballistic propagation in the S = 0 ferromagnet,
whereas the hole appears to cross over from ballistic to
diffusive behavior in the S > 0 case at intermediate times
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[25]. Figure 5 shows that although the interference between
inequivalent paths are small, they lead to faster propagation in
the S = 1/2 spin environment than in the infinite spin case.
This difference is therefore due to the same interference terms
that give rise to the spin correlations in the environment. The
insight of our work is that the rms distance of the S = ∞ model
and the Bethe lattice agree within error bars of our simulation,
indicating that the behavior of the two models are in very
good agreement at short and intermediate times. Therefore we
expect that, similar to the Bethe lattice propagation, the hole’s
dynamics will cross over from ballistic to diffusive behavior
in an infinite spin environment.

VI. CONCLUSION

The spin correlations presented in this paper demonstrate a
general paradigm of how an originally completely disordered
environment can acquire correlations due to quantum interfer-
ence in the course of nonequilibrium dynamics of a particle.
We emphasize that this mechanism is fundamentally different
from the interaction-induced correlations in the bath [26–34]
and can be observed at infinite temperature of the spin bath.
Experimental realization of this phenomenon using ultracold
atoms would provide an ideal opportunity for the study of
entanglement between a particle and its environment that is
usually challenging in other setups due to the fast decoherence
in the environment. These experiments could also provide
information on the long time dynamics of spin correlation
that remains an open question.

Further interesting questions arise about the effect of
spin interactions, which appear naturally in experiments with
smaller on-site interactions, whether in ultracold atomic or
electronic Mott insulators. This would affect spin correlations
even in an infinite temperature spin system, as the spin
correlations can be decohered by magnetic excitations of
the environment. At lower temperatures, the energy cost
of permuting spins leads to a strongly renormalized dynamics
of the hole [29–31,58,59,64–69]. Understanding this limit, and
especially the interplay of multiple holes with the environment,
could also lead to a better understanding of the role of doping
in the cuprate phase diagram [24,40,41,64,68–70].
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APPENDIX A: MODELING EXPERIMENTAL NOISE

Quantum gas microscope experiments take individual
measurements of the spin configuration on the lattice, and
the thermal average is evaluated by averaging over many
experimental runs. In the infinite temperature spin environ-
ment, each spin takes on one of the N spin states with
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FIG. 6. Simulation of spin correlations after a finite number
of experimental runs. Spin correlations Cjl(t) measured after time
evolution of t = 1.2 in a spin S = 1/2 system. The reference
site j is chosen to be the origin, whereas the coordinates of the
lattice correspond to site l. The spin correlations are averaged over
the fourfold rotational symmetry and over all reflection symmetries
of the lattice to obtain better signal to noise ratio. (a)–(d) Averaging
over 500, 1000, 2000, and all initial spin states, respectively.

equal probability. Therefore, after K measurements, the
experimental noise of the spin correlations is proportional to
K−1/2. In order to reduce experimental noise, one can also
make use of the reflection and fourfold rotation symmetries of
the two-dimensional lattice, and average the spin correlations
according to these symmetries. We illustrate the role of
experimental noise, by starting simulations from K random
initial spin configurations |�i〉 in a spin S = 1/2 system.
Instead of evaluating the spin average exactly as we did in
the main text, we average over only these configurations
Cjl(t) ≈ 1

K

∑K
i=1〈�i |co eiHt Sz

jS
z
l e−iH t c

†
o|�i〉. Figure 6 shows

the spin correlations of the hole after symmetry averaging. We
obtain good signal-to-noise ratio already after K = 500 runs.
The details of the quantum Monte Carlo procedure performing
finite number of spin averaging is described in Appendix D.

We mention furthermore that quantum gas experiments are
often initialized with approximately the same total magneti-
zation in each experimental run, which constrains the total
magnetization of the system. In this work we assume that
the infinite temperature spin bath realizes all possible spin
configurations with equal probability, and we neglect any
constraint on the total magnetization. This assumption is a
good approximation if the hole’s dynamics is studied in a
region that is small compared to the overall size of the system,
as the constraint on the total magnetization of the entire
system will not significantly affect the magnetization of the
measurement region.

APPENDIX B: EFFECT OF SPIN CONSERVATION.

Since the hole cannot create spin flips, the total spin Sz
tot =∑

j Sz
j is conserved. The time dependence of the square of this
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operator can be expressed in terms of spin correlations,

1

S2
〈c†o eiHt (Sz

tot)
2 e−iH t c†o〉 =

∑
j

Cjj (t) +
∑
j �=l

Cjl(t).

The diagonal spin correlations are simply given by Cjj (t) =
1 − pj (t), the sum of these correlations is thus constant∑

j Cjj (t) = M − 1, where M is the number of sites of
the system. We thus find that the sum of off-diagonal spin
correlations is conserved. Since it is zero in the initial state,
we arrive at the sum rule in Eq. (1).

APPENDIX C: BREAKDOWN OF PERTURBATION
THEORY AT FINITE ORDERS

Due to the degeneracy of the spin environment, perturbation
theory of the time evolution up to any finite order in time
breaks down, as we discussed in the main text [56]. Therefore,
the expansion of the time evolution e−iH t = ∑∞

n=0
(−it)n

n! Hn

needs to be summed up to infinite order. We perform the
summation numerically by sampling the paths of the hole
using a quantum Monte Carlo procedure [25]. This method
falls into the family of stochastic series expansion quantum
Monte Carlo techniques [71]. As we discussed in the main
text, the paths are chosen according to a Poisson distribution
of mean zt , where z = 4 is the coordination number of the
lattice. Figure 7(a) shows the distribution of paths at different
times. Whereas the average length of paths is zt , one needs to
take into account significantly shorter and longer paths as well
to ensure convergence. Truncating the series at any finite order,
and thereby neglecting the contribution of long paths leads to
the divergence of the time evolution of the spin correlations
Cjl(t) at long enough times, as we show in Fig. 7(b).

APPENDIX D: REAL-TIME QUANTUM
MONTE CARLO ALGORITHM

We sample the time evolution operator using stochastic se-
ries expansion quantum Monte Carlo [25,71]. At the beginning
of the simulation, we generate of the order of 2 × 108 random
walk paths. The permutations generated by these paths are
binned, and their phase factors in are added. The tn

n! amplitudes
are taken into account by sampling the path lengths n according
to a Poisson distribution

Pn = (zt)n

n!
e−zt .

The resulting amplitudes λ are stored together with the
corresponding permutations π̂ as pairs (λ,π̂ ). We take all
possible combinations of forward (λα,π̂α) and backward
(λβ,π̂β) time evolution bins. We evaluate the many-body trace
associated with each pair exactly, using Eq. (2). We add the
interference contribution λ∗

β λα〈π̂ †
βπ̂α〉 to the histogram of

the transition probabilities p̃j (t) and that of spin correlations
C̃jl(t) for appropriate sites j and l. At the end of the simulation,
we normalize the histograms p̃j (t) and C̃jl(t) by dividing them
by

∑
j p̃j (t).

Evaluating the infinite temperature spin averages exactly
allows us to sample the spin correlation with very small noise
as compared to performing numerical averaging over different
spin configurations [25]. However, around time t ∼ 1.8, the
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FIG. 7. Quantum Monte Carlo versus finite order perturbation
theory. (a) Distribution of the path lengths in the quantum Monte
Carlo algorithm at different times. The panels show five different
examples of random paths at these times. (b) Comparison of spin
correlations results using perturbation theory to 12th order in time
(dashed lines) versus the quantum Monte Carlo procedure presented
in the main text (full lines). Blue (dark) and green (light) lines denote
correlations between sites (0,0)–(0,1) and (0,0)–(1,1), respectively.

phase space of probable paths becomes significantly larger
than the number of our path samples. Since the number of path
bins L also becomes very large, calculating the interference
contributions of all the L × L pairs of path bins becomes
impractical. Therefore, at longer times 2 < t < 3, we calculate
the rms distance using a slightly modified version of the
algorithm of Ref. [25], but with different set of forward and
backward paths. Although this method provides noisy spin
correlation data, it determines rms distance at longer times
very accurately, and requires only of the order of L steps.

Throughout this paper, we sample the forward e−iH t and
backward eiHt time evolution paths independently, in contrast
to earlier approaches [25]. The independent sampling becomes
important at times longer than t ∼ 1.8, when the phase
space of paths becomes so large that the quantum Monte
Carlo procedure can sample it only sparsely. At these times,
two typical paths α and β will in general enclose large
loops. According to Eq. (2), their interference 〈π̂ †

β π̂α〉0 is
exponentially small.

Choosing the forward and backward time evolution paths
from the same sample would lead to large systematic errors.
In contrast to independent sampling, this procedure would
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oversample those cases when the forward and backward paths
are identical. These pairs have an interference of 〈π̂ †

α π̂α〉0 = 1,
in contrast to the typically exponentially small interference of
nonidentical pairs. Therefore, the pairs consisting of identical
paths would overwhelm contributions from nonidentical paths,
leading to incorrect results. By sampling the forward and
backward evolution paths independently, these errors can be
avoided.

APPENDIX E: INTERFERENCE CONTRIBUTION
TO SPIN CORRELATIONS

The contribution of paths α and β to the spin correlations
Cjl(t) is given by (−it)nβ (it)nα

nβ ! nα ! 〈π̂ †
βSz

jS
z
l π̂α〉. Here nβ and nα

denote the lengths of these paths. The nonorthogonality of the
initial and the final spin states requires each permutation cycle
of the combined path π̂

†
β π̂α to be ferromagnetic. Therefore, if

the spins on sites j ′ = π †
α(j ) and l′ = π †

α(l) are in the same
permutation cycle, the above expectation value becomes

〈 π̂
†
β Sz

jS
z
l π̂α〉 = 〈 π̂

†
βπ̂α Sz

j ′ S
z
l′ 〉 = S(S + 1)

3
〈 π̂

†
βπ̂α〉.

The S dependent prefactor in the previous equation arises from
averaging the spin operators over all (2S + 1) possible ferro-
magnetic spin configurations. For all other pairs of sites, the
spins are independent, and the expectation value 〈 π̂

†
βSz

jS
z
l π̂α〉

thus averages out to zero in the infinite temperature spin
environment.

APPENDIX F: PROPAGATION ON THE BETHE LATTICE

The hole’s propagation on the Bethe lattice can be solved
analytically, as we show in the Supplemental Material [63].
Here we present a shorter, recursive solution. Expanding the
time evolution in terms of random walks, we find that the wave
function of the hole at level l is given by

ψl(t) = 1

Ml

∞∑
n=0

(−izt)n

n!
ρn,l,

where Ml denotes the number of sites on level l of the Bethe
lattice, with Ml = 1/[z (z − 1)l−1] for l � 1, and M0 = 1. The
matrix ρn,l denotes the probability that a random walk path
of length n ends up at level l. These probabilities can be
determined using simple recurrence relations. At all levels
l � 1, the probability of taking a step one level down on the
graph is 3/4 and taking a step up has a probability 1/4. At the
origin, the walker goes to level l = 1 with probability 1. This

leads to the following recurrence relations:

ρn+1, l = 3
4 ρn, l−1 + 1

4 ρn, l+1

for l � 2, and for levels l = 0,1 we get

ρn+1, 1 = ρn, 0 + 1
4ρn, 2,

ρn, 0 = 1
4ρn, 1.

We solve these equations iteratively, starting from the initial
condition ρ0,l = δ0,l .

We determine the rms distance dl of sites on level l, using
an iterative procedure. When mapping the sites at level l of the
Bethe lattice to the square lattice, we get the end points of all
possible random walks of length l, involving no self-retracing
components. In order to calculate the rms distance for the end
points of such random walks, we write down a recurrence
relation between d2

l and d2
l−1. Let (xl,yl) denote the hole’s

displacement in its lth step. We can assume without the loss
of generality that the first step was taken to the right. The rms
distance of the endpoint can be written as

d2
l = d2

l−1 + 2xl−1 + 1,

where xl−1 denotes the average number of right steps in the
remaining path. This quantity is nonzero since the left-right
symmetry of the walk is broken due to the initial step.
However, after the first time the hole moves in the up or down
direction, the left-right symmetry of the model is restored,
and the remaining part of the path does not contribute to
xl−1. The probability of taking n steps to the right, and then
an up or down step is given by (1/3)n (2/3). Summing up
the series for all n < l − 1, and adding the probability of
taking all remaining l − 1 steps to the right, (1/3)l−1, leads to
xl−1 = (1 − 3−(l−1))/2. We thus obtain the recurrence relation

d2
l = d2

l−1 + 2 − 3−(l−1),

which can be solved exactly, yielding Eq. (3).

APPENDIX G: COMPARISON WITH CLASSICAL
RANDOM WALKS

We compare the quantum dynamics of the hole to that of
a classical particle performing Brownian motion. With the
particle starting from the origin, its time evolution is governed
by a transition rate matrix, assigning the transition rate 1
to each of its neighboring sites i and j . The probability
distribution of the particle thus follows a classical diffusion
equation, with a diffusion constant Dcl = 2.
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