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We propose to investigate the full counting statistics of nonequilibrium spin transport with an ultracold atomic
quantum gas. The setup makes use of the spin control available in atomic systems to generate spin transport
induced by an impurity atom immersed in a spin-imbalanced two-component Fermi gas. In contrast to solid-state
realizations, in ultracold atoms spin relaxation and the decoherence from external sources is largely suppressed.
As a consequence, once the spin current is turned off by manipulating the internal spin degrees of freedom of the
Fermi system, the nonequilibrium spin population remains constant. Thus one can directly count the number of
spins in each reservoir to investigate the full counting statistics of spin flips, which is notoriously challenging in
solid-state devices. Moreover, using Ramsey interferometry, the dynamical impurity response can be measured.
Since the impurity interacts with a many-body environment that is out of equilibrium, our setup provides a
way to realize the nonequilibrium orthogonality catastrophe. Here, even for spin reservoirs initially prepared
in a zero-temperature state, the Ramsey response exhibits an exponential decay, which is in contrast to the
conventional power-law decay of Anderson’s orthogonality catastrophe. By mapping our system to a multistep
Fermi sea, we are able to derive analytical expressions for the impurity response at late times. This allows us to
reveal an intimate connection of the decay rate of the Ramsey contrast and the full counting statistics of spin flips.

DOLI: 10.1103/PhysRevB.99.214505

I. INTRODUCTION

Some of the most interesting applications of condensed
matter theory are concerned with transport [ 1-3]. Most studies
of transport focus on averaged quantities such as currents
of charge, concentrations, or heat. However, transport ex-
periments contain more information than just those average
quantities. Indeed, one of the important ideas that emerged
in the studies of transport in condensed matter physics is
that fluctuations contain more information than accessible
from sole measurements of averaged quantities. In particular,
the study of quantum noise that arises from fluctuations that
persist even at zero temperature became of great practical
relevance since it presents the ultimate limit to noise in
electronic and spintronic devices. From a more fundamental
perspective, the analysis of noise in transport [4,5] made the
demonstration of charge fractionalization in quantum Hall
systems possible [6,7], and provided a new means to sep-
arate ballistic and diffusive quasiparticle transport in low-
dimensional materials [8].

Likewise, achieving a high level of control over transport
requires a study beyond average quantities [9]. In particular,
gaining control on the level of single electrons and spins
necessitates the understanding of the intrinsic quantum noise
in such systems [10-12]. A theoretical tool for this pur-
pose is the full counting statistics (FCS) that contains the
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information about all moments of the desired observable [13].
In solid-state experiments, the control of the quantum noise
is, however, challenging since it is difficult to change system
parameters [5,14-22].

In recent years, ultracold atoms have emerged as a toolbox
to study the transport of in- and out-of-equilibrium systems in
a controlled setting [23-27], where a high degree of isolation
from the environment is realized and single-atom resolution
is achievable. This allowed one to study analogs of elec-
tronic transport, where neutral atoms correspond to charge
carriers in solid-state systems, giving name to the field of
atomtronics [28-31]. First examples range from the expansion
of fermions in optical lattices [32] to the conductivity of a
Fermi gas [33], localization induced by disorder in Hubbard
models [34-36], the realization of the analogs of diodes [37],
transistors [38], and squids [39], as well as the study of atom
transport through point contacts [40—42], anomalous transport
in quantum Hall systems [43-45], and topological charge
pumping in bosonic quantum gases [46,47].

Inspired by the recent ultracold atom experiments on
quantum impurities [48-56], in this work we propose a new
type of transport experiment that allows one to realize spin-
atomtronic systems, analogs of spintronics in ultracold atomic
systems. Our setup provides a new platform for studying the
full counting statistics of transport, and allows one to reveal
its remarkable relation to the nonequilibrium orthogonality
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FIG. 1. Schematic representation of our setup. An impurity atom
is coupled to a spin-imbalanced two-component Fermi gas with mis-
matched chemical potentials w4 # . Top row: the impurity atom
in the internal state |u) resonantly interacts with the first component
| 1), but not with the second one || ). Bottom row: applying a spin
rotation mixes the two spin states and introduces impurity-induced
spin-flips between the two fermionic components.

catastrophe. In contrast to solid-state systems, our proposed
ultracold atom setup does not suffer from limited coherence
times resulting from phonon relaxation and electron interac-
tions and has the advantage that dynamics takes place on a
much longer time scale due to the diluteness of the atomic
quantum gas.

Specifically, our proposed setup consists of a single quan-
tum impurity that is coupled to two reservoirs of fermions,
see Fig. 1. These two imbalanced Fermi reservoirs can be
experimentally realized by preparing fermionic atoms in two
different hyperfine states. We show that, despite atom colli-
sions being originally spin conserving, by creating a superpo-
sition of the two hyperfine states, spin changing collisions can
be engineered [57]. Combined with controllably switching
the interactions between the impurity and the Fermi seas, a
nonequilibrium spin-flip dynamics between the reservoirs is
induced that can be directly measured using, e.g., absorption
imaging. Moreover, the full counting statistics of the scattered
fermionic particles is accessible, which is characterized by the
probability distribution Py () of finding N scattered particles
at time t. With cold quantum gases this can be achieved
using time-of-flight measurements [58] or quantum gas mi-
croscopy [59-66], both techniques that are not available in
solid-state systems.

In addition, decoherence dynamics of the system can
be studied by applying a Ramsey sequence on the impu-
rity [53,67-70]. We find that the Ramsey response of the
impurity, S(¢), is governed by a nonequilibrium orthogonality
catastrophe (NOC). Quite counterintuitively the NOC features
an exponential decay in S(¢) even at zero temperature. This
is in contrast to the conventional orthogonality catastrophe
where an exponential decay is a signature of thermal deco-
herence [67] (for a review see Ref. [69]). Remarkably, in
the long-time limit we find, up to logarithmic corrections, a
simple relation between the decay of the Ramsey signal S(¢)

and the FCS of spin flips at zero temperature

IS ~ v/ Py=o(?). (D

This equation highlights the intimate relation between
Ramsey interferometry and the counting statistics of spin flips.

This work is organized as follows. In Sec. II we introduce
the model. In Sec. III we discuss spin transport and full
counting statistics for various parameter regimes. In Sec. IV
we present the results for the impurity decoherence dynamics,
which can be measured by Ramsey interferometry and discuss
the NOC. The full-time Ramsey response is evaluated numer-
ically, but also long-time analytical expressions are provided.
We present an analysis for both zero and finite temperature
and establish the relation between S(¢) and Py—o(¢). In Sec. V
we summarize our results and discuss future prospects.

II. MODEL

We consider a single immobile impurity immersed in a
noninteracting two-component Fermi gas. Experimentally the
fermionic atoms of mass m are initially prepared in two
(hyperfine) spin states denoted by (1, |). Furthermore, we
assume that the impurity has two internal states |u) and |d).
For simplicity we assume that interactions occur only between
the impurity in the state |u) and fermions in the |1) state; our
analysis can, however, be easily generalized. The Hamiltonian
is given by

- R 1 O
A= (& — 1to)ep,luo + 1) (u] ® v D Vallqrlxts
ko kq
2

where V is the system volume and élo and ¢y, denote the
fermion creation and annihilation operators, respectively. The
dispersion relation of the fermions is €, = k?/2m and their
occupation number N, in the two spin states o = (1, |)
can be tuned individually by the chemical potentials .
Unless indicated otherwise we work in units where & = 1.
In the following we consider contact interactions between the
impurity and the Fermi gas so that the momentum dependence
of the potential V4 = Vj can be neglected. Consequently, the
resulting s-wave scattering phase shift §; at scattering momen-
tum k = |k| is fully parametrized by the scattering length a.
While our analytical results hold for general §y, in the specific
example of contact interactions considered in this work, the
phase shift §; is then given by

8 = — tan~ ' (ak). 3)

The Hamiltonian (2) conserves spin and hence does not
suffice to study spin transport. In order to introduce the
required spin-changing interactions we make use of coherent
spin-control available in atomic systems. To this end we start
from the state |[FS;) ® |FS,), where |FS,) represent filled
Fermi seas (at zero temperature). Then a spin rotation is
applied that rotates the spin state of fermions on the Bloch
sphere at an arbitrary polarization angle 6 leading to atoms in
a superposition state described by

di1 = c08(0/2)éxy — sin(0/2)éx,
dia = sin(0/2)éxy + cos(0/2)ék, 4)
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FIG. 2. Nonequilibrium momentum population. Occupations (a) n; (¢, k) and (b) na (¢, k) in the two different fermionic spin states at zero
temperature. Initially, only the state |1) is occupied up to the Fermi energy and no atom are in the second state |2). We have chosen the

dimensionless interaction parameter krpja = —6.

(for an illustration see Fig. 1). In the absence of impurities in
the |u) state this process is fully coherent. It initializes the state
Yr) = [FS1) ® [FSy) with [FS) = [Ty, di 10) and o =
(1,2), where the Fermi momenta kr; = kp4 and kpy = kp

Hy
5 At A 1 dy i cos? (%)
H=Y ad d+—Y Vgl Xt ( 2
2ot +3; 3 ( ) cos (4) sn (4)

are invariant under the spin rotation [similarly, N;( = 0) =
NT and N,(r =0) = Ni]

Expressing the fermionic operators in Eq. (2) in terms of
dAkl and dAkz yields

>

d .
(9®Mw—2m%%- (5)

k

Here, the second term generates spin-flip processes between
the states 1 to 2 of the atoms in the Fermi seas when scattering
with the impurity and thus Eq. (5) allows one to realize the
analog of a quantum spin pump. In Appendix A we provide
a solution to the single-particle problem corresponding to
the Hamiltonian (5) where the spin-dependent interaction is
controlled by the polarization angle 6 and interaction strength
Vo. Both are fully tunable in real time in ultracold atomic sys-
tems. In the following we study the dynamical and statistical
properties of this Hamiltonian.

III. SPIN TRANSPORT

In our setup the Fermi seas |FS;) and |FS;) represent
two spin reservoirs 1 and 2. We choose Er; = 0 so that the
system is initially far from the state of equal spin population.
Switching the impurity state from |d) to |u) leads to spin flips
that result in a spin current from reservoir 1 to 2.

A. Spin current

First we study the discharging dynamics of the two-
component Fermi gas. In our setup the spin transport rate (we
denote it as ‘spin current’) between the reservoirs |FS;) and
|[FS,) is controlled by the rotation angle 6. There are two
processes contributing to the dynamics: First, a fermion in
reservoir 1 can scatter with the impurity leading to a change
in its momentum state, while it remains in the same spin state.
This is a spin-conserving process. By contrast, in the second
type of process the impurity can additionally flip its spin in the

scattering event, leading to a transfer of spins from reservoir
1to2.

In the time evolution, the spin current generated by the
spin flips is accompanied by a buildup of a nontrivial mo-
mentum distribution in both spin components n; (K, ) =
(Yrlef Ay o (K)e ! [y). We consider an ultracold, dilute
Fermi gas and short-range interactions. Hence only s-wave
states contribute to the dynamics and we will only consider
these modes in the following. The two main processes con-
tributing to the dynamics are reflected in the s-wave con-
tributions n; »(¢, k) shown in Fig. 2 (k refers to the s-wave
radial momentum). First, in |FS;) the sudden switch on of the
impurity leads to the generation of particle-hole fluctuations
within the Fermi sea that are the origin of the Anderson
orthogonality catastrophe [71]. This dynamics that originates
from the momentum-changing collisions of the fermions with
the impurity is well studied [67,69]. There is, however, also
the second process corresponding to the spin flips between the
states 1 to 2, and, since we have chosen the second Fermi sea
|FS,) to be initially empty, one can attribute all atoms found
in the state 2 to such spin-flip processes.

The spin-flip probability I'(E) inherits its energy depen-
dence from the phase shift §(E) = §,_ 5,7 that increases
monotonically with energy E = k?/2m. It is determined by
recognizing that scattering occurs according to |[1) ® |u) —
20E) MY @ |u), and |}) @ |u) = |}) ® |u). From this rela-
tion it follows (see Appendix B)

['(E) = sin® 0 sin® §(E). (6)
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Since the phase shift §(E) increases monotonously in mag-
nitude with energy, the spin-flip probability is largest for
fermions close to the Fermi surface. Hence we find the largest
buildup of occupations in the reservoir 2 close to the Fermi
energy Er of the first Fermi sea.

Experimentally the momentum occupation n;(¢, k) can be
measured by transferring the impurity back to its noninter-
acting state |d) at time ¢ and simultaneously rotating the
Fermi seas back to their 1, | states. Following the separation
of the spin states 1 and | by a Stern-Gerlach procedure,
the momentum distribution is obtained from a time-of-flight
measurement. Since the dynamics has been initialized with
an empty reservoir 2, all observed atoms in the atomic
J-state can be attributed to the spin-flip dynamics. This allows
one to achieve measurements with a high signal-to-noise
ratio.

We find that the current flow is not only unidirectional
from reservoir 1 to 2 at early times, but remains so also
at long times. This effect can be understood in a picture
where the Fermi sea is decomposed into wave packets that
are localized both in energy and space [69]. When these
wave packets are scattered off the impurity they move bal-
listically outwards and can not rescatter. If their spin has
been flipped in the scattering process they are thus forced
to remain in the final spin state. Note that in the scattering
process the wave packet becomes a superposition of spin-
flipped and spin-conserved components. In real space this
effect will be visible as an ever growing cloud of atoms with
spin-flipped components moving outwards from the impurity
center.

Summing over the occupation numbers N,(¢)=
> no (k, t) we numerically find that after a short initial time a
steady current N,(¢) = Jt is established [72]. Here the current
is defined as J = 4479 with AN(t) = N>(t) — N>(0). The
current can also be determined analytically by integrating the
spin-flip probability I'(E) in Eq. (6) over the occupation of the
reservoir 1. With the phase shift §(E) = — tan~!(a+v/2mE),
we arrive at

Er dE 2ma’Ep, — In(1 + 2ma’E
J=/ 9 b gy = sin? g 2 Er1 — 00+ Zma )
0o 2w 4 ma>

N

Figure 3 demonstrates that the data, obtained by the functional
determinant approach (FDA), see Appendix A for details, is
fully described by the analytical expression. This figure also
illustrates how the spin current J can be controlled in various
ways. For instance, changing the dimensionless scattering
length kra, the largest current is achieved at resonance where
a diverges and the scattering rate is thus maximal. The sym-
metry between positive and negative values of kra, directly
apparent from the analytical result Eq. (7) [cf. also Fig. 3(a)],
indicates that the bound state, existing for a > 0 is not relevant
for the spin transport dynamics at long times. Moreover, as
shown in Fig. 3(b), the spin current J can be adjusted by
the polarization angle 6, which determines the ratio of the
off-diagonal to diagonal matrix elements in Eq. (5). As can
be seen from Fig. 3(b) J increases monotonically with 6 and
reaches its maximum at 0 = 7 /2.

T
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FIG. 3. Nonequilibrium spin current J. (a) The current J is
shown for Er,/Er; = 0 as function of the inverse scattering length
1/kpiafor® = /4, w/2, 3w /4. (b) J as function of the spin rotation
6 for fixed interaction kpja = —1.5 and 12. The current J is sym-
metric with respect to 6 and 7 — 6. Both cases are evaluated at zero
temperature 7 = 0. The numerically evaluated current J, symbols,
agrees well with the analytical expression (7), solid lines.

B. Full counting statistics of spin current

In solid-state systems it is notoriously difficult to micro-
scopically observe spin transport dynamics on the level of
a few spins. By contrast, with cold atoms one can directly
count the number of transferred spins by absorption imaging.
Moreover, spin counting can be achieved in real time by
destructively measuring the particle number at arbitrary times
because of the characteristically slow dynamics of cold atomic
system [54]. This brings about the possibility to study time-
resolved shot-to-shot fluctuations.

While the current J gives the averaged particle number
N,(t) transferred per time between the Fermi seas, in each
individual experimental measurement the observed number
N, will fluctuate. The corresponding probability Py, to mea-
sure a certain transferred particle number N, in an individual
experimental realization, also called the full counting statistics
(FCS) of N,, is given as the Fourier transformation of the
characteristic function

X = (@) (0) =Y Py)e™ ®)
N

with respect to the counting parameter A.

The characteristic function x (X, ¢) contains all information
about the distribution of counted particles. In particular arbi-
trary moments of the distribution Py (¢) can be computed by
differentiation (N"), = % % (A, 1)]5—0. Since N is a bilinear,
one can compute x (A, ¢) exactly using the functional determi-
nant approach (FDA), from which Py(¢) then follows from a
Fourier transform.
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FIG. 4. Full counting statistics. Probability Py, to measure N,
atoms for rotation angle 8 = 7 /2 and Ep,/Er; = 0 at zero tem-
perature for krja = —0.5 [(a, b)], and krja = —6 [(c, d)]. The left
panels show Py, (¢) as a function of the time # Er, and transferred spin
number N, as obtained from the numerically exact FDA calculation.
The right panels show Py, (¢) at fixed times tEp; = 10 and tEp; =
100. The numerical results are shown as blue bars and the analytical
prediction from Eq. (9) is shown as red circles. In the top panel of
(d) we do not show analytical data as at such short times and strong
interactions Eq. (9) becomes invalid.

In Figs. 4(a), 4(c) we show the time evolution of Py,
for intermediate and strong interactions at zero temperature
and polarization angle 6 = /2 as function of time ¢ and
N,. After sufficiently long times, the distribution is peaked
around its mean value, and tracking the linear evolution of
the mean with time makes the development of the steady
spin current J evident. However, what is the distribution of
measured N, away from its mean? This question is studied in
Figs. 4(b), 4(d) where the distribution Py, (¢) obtained from
the FDA is shown at fixed times tEr; = 10 and 100 as blue
bars.

The observed distributions can again be studied in a wave
packet picture. Over time wave packets reach the impurity
and either remain in the original spin reservoir (only picking
up a scattering phase shift) or they undergo a spin-changing
collision. For N incoming particles within a time span ¢ there
are N trials to flip the spin. This line of argument leads us to
Levitov’s formula that describes fermions transmitted through
a multichannel barrier at zero temperature [3,13],

Er dE 0
1nx(,\,z)=rf ZZ [l + TE)E* — D] (9)
0 2wh

The data obtained from this expression, which is valid in the
long-time limit, is shown as red circles in Figs. 4(b), 4(d).
The excellent agreement with the exact numerical result un-
derlines the accuracy of the intuitive picture of wave packets
of fermions scattering of the impurity and thereby flipping

their spin with a finite probability. One can understand the
FCS derived from Eq. (9) in various regimes analytically.
For very weak coupling |kra| < 1, where é; = —ka, Eq. (9)
reduces to the characteristic function of a Poisson distribution.
At unitarity (where a tends to infinity), §; = 7 /2, ['(E) is
independent of energy, and Eq. (9) becomes the characteristic
function of a binomial distribution. Finally, in the regime
in between, Eq. (9) represents a superposition of binomial
distributions; see Appendix C. We note that a finite number
of impurities leads to deviations from the FCS studied in this
section, as discussed in Appendix G.

IV. NONEQUILIBRIUM ORTHOGONALITY
CATASTROPHE

So far we have discussed how to employ the fermionic
medium as a probe to study transport. However, our system
also allows us to use the impurity as a probe of the many-body
dynamics to study the nonequilibrium orthogonality catastro-
phe (NOC). In the conventional orthogonality catastrophe, as
introduced by Anderson [71] and then extended to dynamics
by Nozieres et al. [73], one considers a single-component
Fermi gas in its ground state into which a scattering potential
is suddenly introduced. This results in a quantum quench
dynamics exhibiting a characteristic power-law decay of the
impurity Green’s function [73-76]. Extending this scenario,
where the Fermi sea is initially in an equilibrium state, the
nonequilibrium orthogonality catastrophe refers to the situa-
tion where the system is initially in a nonequilibrium state.
This scenario is realized in our setup since the system, despite
being in a pure state, is initially not in its energetic ground
state of the noninteracting Hamiltonian Hj due to the large
spin imbalance between the two reservoirs.

Previously it has been shown that quite generally the
sudden introduction of a scattering potential into a system
exhibiting Fermi baths with multiple Fermi edges (in our
case two), leads to a dynamical response of the system that
features modified power laws accompanied by exponential
dampening [77-82]. Here we bring together the results of
these previous works as well as the study of subleading excita-
tion branches and bottom-of-the-band dynamics introduced in
Refs. [67,69], and show how the dynamics can be observed in
ultracold atom experiments. Combining both analysis allows
us to analytically uncover a nontrivial connection between the
decay of the Ramsey contrast and the tail of the FCS of spin
transport. However, before we turn to the analytical analysis
of the NOC, we consider the exact numerical solution of the
problem and outline how it can be probed in experiments.

A. Ramsey spectroscopy

One of the key signatures of the NOC is contained in the
impurity Green’s function that can be probed directly in
Ramsey spectroscopy. In contrast to the previous
works [54,67,69], here the Ramsey sequence is performed
on both the spin degree of freedom of the impurity as well
as the bath atoms: the experimental sequence starts with the
impurity atom prepared in a hyperfine state |d), for which
the interaction between the impurity and the Fermi gas,
[FS;) ® |FS,), is absent. As a next step, the Hamiltonian (5),
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describing spin-flip interactions between the two components
of the Fermi gas, is realized by performing a spin rotation
on the internal spin degree of freedom of the fermionic
atoms with polarization angle 6. This leads to the state of
the Fermi bath [yr) = |FS;) ® |FS,) (cf. Fig. 1). Note,
in this section we allow for a finite Fermi energy Ep,. In
order to probe the many-body dynamics of the Fermi gas
subject to the Hamiltonian (5), next, a Ramsey sequence is
performed on the impurity spin degree of freedom [67]. To
this end, using a 7 /2 radio-frequency pulse, the impurity
is prepared in a superposition of its hyperfine states |u)
and |d), so that the initial state of the system is given by
W (0)) = Lz(|u) + |d)) ® |¥r). Following this preparation,
the system is evolved for a time 7. During this time, the
system evolves in a many-body superposition state, since
the Hamiltonian dynamics of the Fermi gas is different for
the impurity states |d) and |u). Accordingly, the state of the
system at time ¢ is given by

1 - 1 .
—u) @ e |yp) + —2|d> ® e M yp).

() =
W () 7 7

(10)

Finally, at time ¢, the Ramsey sequence is completed by
a measurement of 6, of the impurity spin. This yields the
Ramsey signal [54,67,69,83]

(6:) = Re(yrp | el [y} = ReS(1). (11)

By choosing the phase of the closing /2 pulse acting on
the impurity spin, it is, moreover, possible to measure the
complex signal S(z) [67], thus providing access to the full
time-dependent response of the impurity spin [67,83].

As described in Appendix A, the overlap S(¢) can be ob-
tained numerically exactly using the FDA. The FDA allows us
to map the calculation of many-body wave function overlaps
onto the evaluation of determinants in single-particle Hilbert
space. For S(¢) one obtains

S(t) = (Yp| e ™ 1yp) = det[1 4+ AR — 1)) (12)

Additional to 1 = diag(1, 1), Eq. (12) contains two noncom-
muting block matrices: the two-component distribution matrix
n= diflg(fll, fp) that is diagonal in the (1,2) basig A, =
1/(ePPi=1) 4 1)] and the matrix R = diag(e’ot!e=1t 1),
which acts diagonally in the (1,]) basis. Here fzo,T,
fzm, and fzo,i are the single-particle representations of
the many-body Hamiltonian Hy, = >, 'EkéleékM H =
Hoy + % > kg éltTéQT’ and Hoi=1/p = 3y exdydyi, respec-
tively.

The time evolution of S(¢) at zero temperature is shown in
Fig. 5 for Er; # Er,. We find that S(¢) develops oscillations
and an exponential damping at long times that persists even at
zero temperature. In the conventional orthogonality catastro-
phe, an exponential decay of S(z) is observed only for finite
temperature 7 > 0. There it indicates thermal decoherence
due to the thermal occupation of single-particle states given
by the Fermi distribution ngx. Thus one might be tempted to
assume that the exponential decay observed in the NOC might
be related to the development of a quasithermal state of the
Fermi bath, which in turn induces quasithermal decoherence.

= FDA E
06 —— analytical

=04+
SN—

@

(‘N
0.2 E_,/E.=04 x.\\\;
Er,/E(,=0.75
0 20 40 60 80 100
t EF1

O ReS(t),FDA
O ImS(t),FDA |
analytical

0 50 100 150 200

FIG. 5. Ramsey signal of the impurity. (a) Ramsey contrast |S(?)|
for 0 = 3m /4, scattering length krja = 1.5 and temperature 7 = 0.
Red, blue, green symbols correspond to the numerical FDA result
for Epy/Ery = 0.75, Epy/Epy = 0.4, and Ep,/Epy = 0, respectively,
while the solid lines show the analytical prediction obtained from
Eq. (15), with coefficients C obtained from fits to the data. (b) Real
and imaginary part of the Ramsey signal computed numerically using
the FDA (symbols) for 6 = 3w /4, kpia = 1.5 and Epy/Ep; = 0.75.
The solid lines are obtained from the asymptotic form, Eq. (24),
using the coefficients C as fit parameters.

However, as we have seen in the previous discussion that
ny(t, k) does not reach a thermal state; see, e.g., Fig. 2.
Therefore, the exponential decay of S(¢) must have a different
origin and we will discuss below by analytical means.

B. Analytical approach to the asymptotic behavior
of S(¢) at zero temperature

Building on the insight from the numerically exact solution
using the FDA, one may use the theory of Toeplitz determi-
nants to derive analytical expressions that describe the exact
dynamics with high accuracy also at intermediate times. To
find such a description we first map the problem of an impurity
interacting with two Fermi seas to the case of an impurity
interacting with a single-component Fermi sea. To this end
we express both 7 and R in the (%, |) basis using a unitary
transformation (|1) , [2))7 = U(|1), |4))7. A straightforward
calculation (see Appendix D) shows that Eq. (12) can be
expressed as

S(t) = det[1 + (et eihrt — (e, (13)

where the associated single-particle occupation operator 7(E)
corresponds to the momentum distribution

n(E) = —pnp(E — Ep2) + pnp(E — Epy). (14)

This distribution is shown in Fig. 6. It exhibits two Fermi
surfaces at energies Er; and Ep, and the polarization p =
cos?(6/2) determines the occupation of the middle plateau
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E
Epo Erq

FIG. 6. Effective two-step distribution function. The expecta-
tion value of the effective single-particle occupation operator 7i(E)
is given by a two-step function n(E) = (1 — p)np(E — Epy) +
pnp(E — Epy) with polarization p = cos?(6/2).

in n(E). Using this transformation we have thus mapped the
dynamics of the two-component Fermi gas onto the dynamics
of a one-component Fermi gas featuring two Fermi edges
for which long-time solutions have been discussed in the
literature [81,82].

In fact, Eq. (13) already allows one to qualitatively un-
derstand the source of the observed exponential decoherence
persistent in the NOC at T = 0. Indeed comparing Eq. (13) to
the functional determinant formula Eq. (A1) in Appendix A
reveals that the dynamics is effectively governed by a many-
body density matrix that describes a single-component Fermi
gas not in a pure but in a mixed state. It is the classical nature
of this state that provides the resource of exponential decoher-
ence of the observed dynamics. We now turn to support this
argument by a quantitative derivation.

Following Refs. [67,69], we decompose S(¢) in terms of
branches of different excitations of the Fermi system. These
so-called excitation branches are

(1) particle-hole excitations near the two Fermi surfaces

[denoted as (FS1) and (FS2)];

(ii) excitations from the bottom-of-the-band (FB);

(iii) for a > 0, excitations involving the bound state (BS).

We focus first on the attractive interaction regime, where
the scattering length a, as determined by the low-energy
expansion of the phase shift §; = —ka, is negative, a < 0.
Using the formulation in terms of a single Fermi sea, the
asymptotic behavior of S(¢) can be organized as

So=" 2
ny+ny+n3=0

SIS (SR (). (15)

Cnl,n2,n367”{0t

Here the subscript n;—; » refers to the number of particles
added to or removed from the first and second Fermi edge,
respectively, while n3 < 0 refers to the number of particles
removed from the bottom of the Fermi sea. Particle number
conservation imposes the constraint n; + n; + n3 = 0.

While the coefficients C, ,2.,3 depend on the microscopic
details, the other contributions in Eq. (15) can be cast in ana-
lytical form. The complex-valued constant k is, for instance,
given by [81,82] (see also Appendix E)

* dE )
ko = AEy — ly = 1/ — In[1 +n(E)(e216(E) —1)]
0 2

Er: dE Er gE
= _[ —8(E)—/ —8ett(E). (16)
0 Ep T

T F2

Here the first term of the last expression is obtained from the
integration from 0. .. Ep, where n(E) = 1. The second term
originates from the remaining integration region Ep; ... Ep|
where n(E) = p < 1. It involves the effective phase shift
defined by

Sur(E) = —% In[1 + p(® — 1)), (17)

and represents a generalization of Fumi’s theorem (which
expresses the ground-state energy as a sum over scattering
phase shifts [84,85]) of the conventional OC to the case of
spin-flip interactions.

The analytical calculation of the time-dependent factors
Si(t) in Eq. (15) is challenging in a naive bosonization ap-
proach. Instead, the use of Szegd formula [86—-89] to second
order allows one to approach the problem. Indeed, Gutman
and coworkers showed that the contributions involving exclu-
sively particle-hole fluctuations close to the two Fermi edges
are given by [81,82]

SV (1) oc 1= (FF (18)
SED (1) oc 1= (19)

These expressions represent the Fermi edge singularities and
exhibit a nontrivial power-law behavior with exponents deter-
mined by (see Appendix E)

81 = 8ett(EF1 — 01) (20)
8 = 8(Epa + 01) — Sesr(Epy — O™). 2D

Generalizing this analysis to the case where n particles
are added or removed from the Fermi edges at Er; and Ep,
allows one to describe analytically not only the long- but also
the intermediate-time dynamics with high accuracy [81,82].
In Appendix E we provide a detailed derivation that leads to
the expressions

51

,,,02

T

S(FSl)(t) x e—inEplt <l>
n t ’

) 1 (?z_n)z
S’(.LFSZ)(I) 1’4 e—mEpzl (;> (22)

that are valid in the zero-temperature limit. Note that here
we include the phase factors that depend on the Fermi en-
ergies into the definitions of SYS1-2(¢), which is a different
convention compared to Ref. [69]. To reflect this choice we
introduced the subindex n = 0 in k given by Eq. (16).

A further contribution, which has so far not been studied
in the context of NOC dynamics, originates from processes
where particles are excited from the bottom of the band
to the two edges of the Fermi sea, leaving holes behind.
The corresponding contribution can be found from few-body
theory and reads [67,69]

SUB) [ / T dE sin’ 8(E)e"E’i|n (23)
" o VE

with n < 0.
We now turn to the interaction regime for a > 0, where a
weakly bound state of energy E;, < 0 exists. Here, the overlap
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S(t) can be expressed as
NOE DY
ny+ny+n3+ny=0

. S(FSI)(t )S(FSZ) (t )S(FB)(t )S(BS)(t ). (24)

ny ny n3 ny

C —iKot
nimp,n3.ng €

The index n4 takes on values O or 1, dependin% on whether

the bound state is occupied or empty; i.e., S\ = ¢~ or

S(()B =1, respectively. In Fig. 5(b) we compare the analytical
expression to the numerical results. Here the coefficients C
serve as fit parameters and we keep only leading contributions
with ), |n;| < 2. We find that the asymptotic form reproduces
the exact numerical results with remarkable precision down
to small evolution times. Here the superposition of oscillat-
ing factors from bottom-of-the-band contributions [given by
Eq. (23)], bound-state (proportional to ¢/%) and Fermi surface
contributions [proportional to ~e~"Eri | ¢ f. Eq. (22)] results
in the oscillations visible in Fig. 5.

C. Role of finite temperature

In the previous discussion we have found that a key sig-
nature of the nonequilibrium orthogonality catastrophe is the
exponential decay of |S(¢)| ~ e~ "' that is present even at zero
temperature. We now focus on the temperature dependence of
the decay rate y. Using the Szegd theorem for the asymptotic
properties of Toeplitz determinants, we find

y = —Re/ d—Eln[l + n(E)(**E) — 1)]. (25)
0 27T

In this expression, which follows from Eq. (16) (for details
see Appendix E), we take into account the energy-dependent
phase shift 6(E) and the temperature-dependent distribution
function n(E) given by Eq. (14).

In Fig. 7 this analytical result is compared to the decay
rate obtained from fitting |S(z)| ~ e~7" to the exact FDA
results at long times. We find excellent agreement between
the numerical FDA data and the analytical expression both
when studying the 6 and 1/kria dependence of y for the two
temperatures 7 /T = 0and T /TF = 0.1.

Using the relation Reln[l + p(e??® — 1)] = Reln[1 +
(1 — p)(€**® — 1)] one finds from the analytical prediction
Eq. (25) that the decay rate is symmetric with respect to
p=1/2 at zero temperature, as shown by the compari-
son of p = cos’(m/4) and p = cos*>(3m/4) in Fig. 7(a). At
finite temperatures this symmetry is absent and, as shown in
Fig. 7(b), we find that p > 1/2 exhibits a larger decay rate
than p < 1/2. The reason for the different decay rates lies in
the fact that it is spin-conserving collisions within a reservoir,
as determined by the diagonal element of the scattering matrix
in Eq. (5), which give rise to additional thermal decoherence;
and since we have chosen the reservoir 1 to have a larger
occupation, polarizations p = cos*(9/2) < 1/2 will give a
larger decoherence rate compared to p > 1/2.

D. Relation between Ramsey interferometry
and the FCS of spin flips

It turns out that the decay rate of the Ramsey signal has
a remarkable relation to the FCS of spin flips. Specifically,
we find that the decay rate y in Eq. (25) and the FCS at

(@) ‘
T/Tr=0 O FDA, /4
10°F o FDA /2 1
x  FDA, 3n/4
o —— Toeplitz
w =
N
10_2 /b/w_\
-1 -0.5 0 0.5 1
1/(kF ;@)
(b) T T T
0 T/Tr =01 O FDA, n/4
107 ¢ O FDA, /2 1
x  FDA, 3n/4
& —— Toeplitz
i« =
X
1026, ‘ ‘ ‘ L
-1 -0.5 0 0.5 1
Uk, a)

FIG. 7. Asymptotic decay rate y of the Ramsey signal. The
decay rate y is shown as a function of scattering length kr;a for three
different values of the polarization angle 6 = {n /4,7 /2,3m /4},
an initially empty second reservoir Ep,/Er; = 0, and temperatures
(@) T/Try =0 and (b) T/Tr; = 0.1. The solid lines are obtained
from Eq. (29).

zero temperature and Ep, = 0, as described by the time-
dependent generating function yx in Eq. (9), are related by (see
Appendix F):

1S(t)| — e2nx(€ =0, (26)

From this equation directly follows the relation Eq. (1),
[S(#)| ~ ~/Pn=0o(t), which holds up to logarithmic corrections.

This relation implies that the Ramsey decoherence is given
by the square root of the probability of having no spin flips
in the time interval 0. . . ¢, which fits the notion of Py_((t) as
an idle-time probability, similar to the emptiness probability
discussed in other contexts [90,91]. Thus the Ramsey signal
is related directly to the FCS and thus the intrinsic quantum
noise in the number of observed spin flips. Therefore, the
decay of the Ramsey signal can serve as an indirect probe of
the tail of the FCS at low particle number.

The relation Eq. (1) can be understood as follows: the
Ramsey contrast |S(z)| is determined by the overlap of many-
body states. When the spin of one of the fermions is flipped,
a state of the Fermi system results that is orthogonal to the
initial state, leading to a vanishing Ramsey contrast. There-
fore, finding a finite Ramsey contrast requires configurations
that have no fermion spin flipped. The probability of such a
configuration is Py—o. The Ramsey contrast |S(z)| measures,
however, an amplitude [cf. Eq. (12)] so that |S(¢)| is propor-

tional to 4/Py—g.

V. CONCLUSION AND DISCUSSION

In this work we proposed an ultracold atom experiment
where impurities are coupled to a spin-imbalanced two-
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component Fermi gas. The setup allows one to study fun-
damental relations between quantum fluctuations in transport
and dephasing dynamics. Specifically, we showed that apply-
ing 1f pulses to the Fermi system provides a means to realize
initial nonequilibrium spin populations that are required to
study spin transport. Based on a functional determinant ap-
proach we explored the full counting statistics of the spin flips
that accompany the spin current generated in our setup.

Furthermore, we showed that the dynamics of the many-
body wave function can be explored using Ramsey interfer-
ometry. This opens the path toward the study of the nonequi-
librium orthogonality catastrophe (NOC) with ultracold quan-
tum gases. The NOC is characterized by a decay of the
Ramsey signal, which is exponential although the system
is initially in a pure quantum state, and one thus might
have naively expected a power-law decay as obtained for
the Fermi edge singularity. By mapping the problem onto
a multi-Fermi-edge scenario in energy space, we obtained
analytic predictions for the long-time impurity response and,
in particular, for its exponential decay rate. This allowed us
to uncover a relation between the FCS of spin flips and the
rate at which the Ramsey contrast of the impurity decays.
In this work we considered local quench-type dynamics, in
which the impurity strength is changed only once. In order
to explore a broader class of nonequilibrium phenomena,
one may include multiple quenches of the scattering phase
shift. Mathematically handling such multiple discontinuities
will require a further generalization of the theory of Toeplitz
determinants with Fisher-Hartwig singularities [82]. In this
respect ultracold atom experiments might provide a quantum
tool to explore mathematical problems for which solutions
have yet to be found.

Moreover, in the present work we did not attempt to
explore ways to explicitly control the FCS of spin flips.
In this regard it will be interesting to study whether it is
possible to suppress fluctuations imprinted in the FCS by
controlling and manipulating the impurity potential similarly
to the realization of a source of pure single-particle spin
transmission [10,13,92]. Finally, it has recently been shown
that von Neumann and the Renyi entanglement entropies can
be expressed in terms of even order cumulants [93,94]. The
fact that the full counting statistics contains the information
about moments of arbitrary order thus suggests that our pro-
posed scheme might enable one to further explore the relation
between entanglement dynamics and full counting statistics in
cold atom experiments.
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APPENDIX A: FUNCTIONAL DETERMINANT APPROACH
AND SOLUTION OF THE SINGLE-PARTICLE PROBLEM

For any bilinear many-body operator X, =
Zij (i) Xo 1) 6?61 we can make use of the identity
(€ &Y = Te[pe - ] = det(1 — 7t + Ae™ - - - ™),
(AD)

with p the density matrix and 7 denotes the corresponding
single-particle occupation operator. Hence, S(¢) can be ex-
pressed as

S@t) = (eiHOtefiH") — det[i — A+ ﬁeiilofe*iil]t]’ (A2)

where /iy and h; are the single-particle Hamiltonians in the
absence and presence of impurity, respectively. To evaluate
the functional determinant numerically, we work in the basis
of single-particle eigenstates of /i and ;.

To this end, we solve the single-particle problem in the
presence of localized impurity. The Schrédinger equation for
the two-component host fermions is given by

(_% +V(r)cos® (3)  V(r)cos(5)sin(3) ) <¢1(r)>

Vrycos (§)sin(d)  —¥ +v(r)sin® (§)) \Ya(r)

_E (1/f1 (l’))’
Yo (r)
where V(r) is the short-range potential. For our numerics
we consider a finite system confined in a sphere of radius
R chosen large enough so that finite-size corrections are
negligible. For short-range interactions only the s-wave com-
ponents of the scattering wave functions experience a phase
shift. Defining the radial wave function ¢,(r) via ¥, (r) =
&n(r)/(\/4mr) with nodal quantum number n, Eq. (A3) is
expressed as a radial one-dimensional Schrodinger equation.
The interaction between the impurity and itinerant fermions is
fully characterized by the scattering length a with the s-wave
scattering phase shift given by 8, = — tan™" ka.
When the host fermions do not interact with the impurity,
the eigenfunctions are given by

2 2
G1a(r) = \/;Sin(knr) ®I1), ¢on(r) = /;sin(knr) ®12),
(A4)

(A3)

with the boundary condition k,R = nr.

In presence of the scattering potential, Eq. (A3) has so-
lutions with energies E, = k,’l2 /2m that are determined by
k,R + &, = nm and eigenstates

dn(r) = A,,\/% sin (k;r + &, )

® |:Cos (g) 1) + sin (g) |2>},

(AS5)
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FIG. 8. Nonequilibrium momentum population and FCS obtained in a scenario where in the initial state fermions occupy only a small
energy interval. In the top panel fermions occupy a low-energy interval while in the bottom panel higher energies are occupied. The second
component |2) is initially empty while the first component |1) has a finite occupation. The interaction strength is characterized by krja = —0.5.
(a), (d) Energy-resolved occupation by the first and second spin component. The FCS of the number of spin flips Py, (¢) is shown in (b) and (e)
fortEr; = 10, and at tEr; = 100 in (c) and (f). The numerical FDA results (blue bars) are compared to a binomial distribution (red crosses).

sin 28,/ .
where A, = 1/,/1+ —5 Rk". There exists also a second set

of solutions that is given by the noninteracting solutions
determined by Ey(n) = (k, )2 /(2m) and

_\/3, L Ww o\ 1
Go,n(r) = I—esm( W) ® [sm <§)| ) — cos <§)| )}-

(A6)

Finally, for a > 0 a bound state exists with energy E, =
—1/(2ma*) and eigenfunction

dp(r) = Ape " ® |:cos (g)u) + sin (g) |2)i|. (A7)

Here A, = \/g up to corrections that vanish as R — oo.

APPENDIX B: SPIN-FLIP PROBABILITY I'(E)

Here we derive an analytical expression for the spin-flip
probability I'(E) given by Eq. (6) in the main text. Scattering
occurs only between fermions in their | 1) spin state and the
impurity in the |u) state:

1) ® [u) > e*F[1) @ |u)
1) ® |d) ~ 1) ®1d)
1) ® [u) = [1) ® |u)
1) ® d) ~ [ ) ® |d),

where 6(E) is the energy-dependent phase shift.
Initially we apply a spin rotation such that each fermion is
prepared in a superposition state

1) = cos(0/2)|1) —sin(0/2)|{),
2) = sin(0/2)[ 1) + cos(8/2)|{).

(BI)

(B2)
(B3)

When the impurity is switched into the interacting state |u),
the bath fermions, now prepared in states |1) to |2), undergo
spin-flip interactions. Using Eq. (B1) this scattering process is
described by

1) = cos(8/2)e™ | 1) —sin(6/2)[ 1), (B4
12) > sin(0/2)eE) | 1) + cos(8/2)] ). (B3)
When rewriting this process in the basis of |1), |2)
1) > [2E) cos?(6/2) + sin(6/2)]]1)
+(€®®) — 1)sin(0/2)cos(8/2)2),  (B6)
12) > (¢PE) — 1)sin(0/2) cos(8/2)[1)
+[PE) sin%(0/2) + cos>(0/2)112),  (BT)

one can directly read of the spin flip probability
[(E) = (¢ — 1)sin(0/2) cos(8/2)|* = sin® 0 sin® §(E).
(B8)

APPENDIX C: NONEQUILIBRIUM MOMENTUM
POPULATION AND FCS IN A GIVEN ENERGY INTERVAL

Equation (9) shows that the FCS of the total number of
spin flips is determined as a sum involving the scattering
probability for each momentum mode of the fermions. Hence,
according to this expression, the FCS of spin flips in each
individual momentum mode gives rise to a binomial dis-
tribution. In this Appendix, we show that this argument is
indeed confirmed by exact numerical simulation using the
FDA.

To this end, we prepare an initial state where the second
Fermi sea of component |2) is empty and where the momen-
tum distribution of the fermions in the state |1) has only a
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small interval of energy levels that are occupied. The spin-flip
rate, as given by Eq. (6), depends on the scattering phase shift
3(E) that increases monotonously with E (considering a < 0).
Consequently, at a fixed interaction strength kria, fermions
in lower-energy modes should experience a smaller spin-flip
rate.

This is confirmed by the numerical simulation shown in
Fig. 8 for moderate interaction strength krja = —0.5. In the
top panel we show the time evolution of the FCS for an initial
state occupation confined to a low-energy interval, while for
the bottom panel higher-energy modes are occupied initially.
Confirming our expectation from the analytical result Eq. (9),
in both cases the FCS of total spin flips [Figs. 8(b), 8(c)
and 8(e), 8(f), respectively] obeys a binomial distribution.
Furthermore, for higher energies the spin-flip probability is
indeed enhanced. In Fig. 9 we repeat the simulation for a
interaction strength kpja = —12 further corroborating our
findings.

Note that in the momentum resolved distributions shown
in the left panels of the figures a broadening of the ini-
tially sharp distribution function can be seen. This broad-
ening is due to the sudden quench of interactions, which
projects the initially occupied states into the eigenstates of
the interacting Hamiltonian. The overlaps to these states

J

so=de| (0 ) vor( D)o(eM -
© i 0 A 0

i 0 + N COSZA(%A) + #, sin® (%)
i o) sin(9)

2i80(z)

= det |:
et[1+ — D)

where A(E) = i, cos2(0 /2) + iy sin(6 /2) represents a one-
component distribution exhibiting two Fermi surfaces. It is
determined by

n(E) = (1 — p)np(E — Ep2) + pnp(E — EF1),

where we assumed Ep, < Ep; and defined the polarization
p = cos2(0/2).

(D5)

APPENDIX E: FERMI SURFACE DYNAMICS FROM
TOEPLITZ MATRICES

In this Appendix we study the Fermi surface contributions
to the time-dependent overlap function

S(t) — <wF|eiﬂ0t/he—iﬁ1t/h|wF) — det[l _ fl + }’,‘leﬂ;[)t/he_ﬂ;lt/h]

(EL)

using the theory of Toeplitz matrices. Here h; and hy are
the single-particle representations of the many-body Hamil-
tonian describing the interaction of an impurity with a single-
component Fermi gas. In Eq. (E1) we have used the mapping
onto a single-component Fermi gas so that 7 is the occupa-
tion operator given by Eq. (D5). By inspection of Eq. (Al)
it is evident that in this representation the system can be

are nonzero also for states outside of the initial energy
window, which represents the scattering of the fermions
to different momentum state upon collisions with the im-
purity and that leads to the broadening of the momentum
distribution.

APPENDIX D: MAPPING ONTO A
SINGLE-COMPONENT FERMI GAS

The time-dependent response S(¢) is obtained from the
determinant det(1 4+ (R — 1)), where the two-component
occupation matrix 7 = diag(f, 71;) is diagonal in the ro-
tated atomic (1,2) basis. The matrix representing the dynam-
ics, R = diag(eor!/he=hat/h 1y = diag(ez"se(’), 1), is on the
other hand diagonal in the nonrotated basis (1, ). In these
expressions 7 /A, are the number operators, and & is the
phase shift operator that applies the scattering phase shift to
scattering wave packets.

To compute S(¢), we first write both 7 and R in the basis
[1) and ||) using the unitary transformation (|1),[2))7 =
U(1), [INT, with

cos (2) —sin (2
g (6 ) o
sin(4)  cos(9)
to express 71 as U'diag(f;, i2)U. We obtain
10
O)} (D2)
@ sin(9) <62;39(t) _1i 0) D3)
iy cos? (§) + iy sin® (§) 0 0
(D4)

(

understood to be described by a mixed density matrix. In
contrast, without the mapping the ket |{/r) on the left-hand
side of Eq. (E1) represents the pure initial state of the system
given by |Yr) = |FS;) ® |FSy).

In the following we work in a basis of wave packets
localized in time and energy [88]. In this basis the time evo-
lution operator eo'/fe=mt/h acts approximately diagonally
in energy. Following Refs. [69,81], time may be discretized
according to t = NA, where we introduce the time interval
A; = hm /A and a high-energy cutoff A. The overlap S(¢) can
then be rewritten in terms of an N x N Toeplitz matrix &:

00 0-1 0 O—_N+1
(o3 o 0_1
S(t) = det o o . oo (E2)
(o)) o_1
ON-1 02 0] 0o

The matrix elements o, (k is here a time index) follow from
Fourier transformation

2A dEeiEkA,/ﬁ
O =/ — 5 0(E),
0

2AR E3)
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FIG. 9. Nonequilibrium momentum population and FCS starting from initial occupations in a small energy interval as in Fig. 8, here for

interactions characterized by kpja = —12.

of the kernel
o (E) = &E2(1 — n(E) + n(E)e™®), (E4)

which is diagonal in energy. The high-energy regularization
of the integral in Eq. (E3) follows from the definition of
the time-interval A; = him /A so that energies are restricted
to the interval E € (0, 2A]. Furthermore, following Gutman
et al. [81], we have imposed a phase factor ¢£%/% in the
kernel 6 in Eq. (E4). Introducing the angular variable 6 =
EA;/h defined on a unit circle 8 € (0, 27 ] to express oy =
fozn dg—ffko(G) the phase factor ensures periodicity of the ker-
nel o(0) on (0, 27] in Eq. (E4). In the end of the calculation
we will take the limit A — oo so that the phase factor will
disappear.

The kernel now obeys periodic boundary conditions
limg_g0(E) = limg_5 o(E) [81]. This allows us to apply
the Szeg6 theorem [95] to find the asymptotic properties of
the Toeplitz matrix Sy defined by Eq. (E2) in the limit of large
N. Since N =t/A,, considering large N corresponds to the
limit of long times ¢. For large N the Szegd theorem states
that

Indeté ~ Nllno(®)lo + Y _klIno@)lllno @) . (ES)
k=1

The Szegd theorem demands In o (9) to be be a smooth func-

tion with Fourier harmonics [In o ()] = f02” L Ino@)e .
In our case the smoothness of o(E) is, however, not guar-
anteed and we rely on the Fisher-Hartwig (FH) conjec-
ture that extends the applicability of Eq. (ES5) [81,82,89].
In fact in Ref. [81,82] it was shown that also for Fermi
distributions with multiple steps the naive formula follow-
ing from the strong Szegd theorem still leads to correct
results.

Expressing the real-time overlap function as
det & o eI Fe®, (E6)

the first term of Eq. (E5) yields a term with a linear depen-
dence on time,

, T de N AdE
—itk = {N —1Ino(@); =N Ino(E)
0o 2m o 2mh

—>{t/ d—E1n<1—n(E)+n<E)ef2“)}, (E7)
o 2mh

where in the last line we have taken the limit A — 00 so that
6(E) = 1 —n(E)+ n(E)e®. Accordingly the exponential
decay rate y, defined by |S(¢)| ~ ™7, is given by

__R{/DodEl _ i28}
y = e n(l —n(E)+n(E)e ).
0 2 h

(E8)

Remarkably, Gutman and coworkers [81] showed that also
for subleading contribution c¢(¢) defined in Eq. (E6) an analyt-
ical expression can be found. It is determined by the second
term Z,fil k[In o (0)]k[In o (0)]— in Eq. (ES) and as shown in
Ref. [81] it leads to a nontrivial power-law behavior in time.
Following Ref. [81] we consider zero temperature 7 = 0 and
the double step distribution function (Epy < EFy),

n(E)= (1 —p)0(Epy —E)+ pd(Ep1 —E).  (E9)
The regularized kernel in Eq. (E4) takes the form [81]

) 6258 s 0<E< Epz
o(E)=eT2 x L1+ pe® —1), Ep <E < Ep;
1 s EFI < E.
(E10)
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Thus % In o (E) can be expressed as:

1 Es |2 | | » 0<E<Ep
—=Ino(E) = 4 {8er(E) = =5 In[1 + (¢*° — 1)p], Eps < E < Ep (E11)
2i 2A 0 s EFl < E.

The Fourier harmonics [In o (E)]kz0 = 3 3 )

fOZA 84E 1n o (E)e *ME/M required for the evaluation of 82 = 8k(Er2 +07) = deir(Epz — 07), (E17)

Eq. (ES) are given by

I - ~ .
[lno_(e)]k?éo — __k[sle—lkEFlAf + Sze—lkElQAz] (Elz)
/4

where 8, = Set(Epy — 07) and 8, = 8 — Ser(Era — 01) take
into account the phase jumps at Fermi energies Er; and Ep,.
From Eq. (E12) the second term of Eq. (ES) follows:

Z k[lno (0)lx[Ino(0)]«

k=1

o
1
Z o + 83 + 2515, cos(kA,(Epy — Er2))]
T
1
R
~ —/ dt—=[87 4 83 + 2818, cos(z(Er1 — Er2))].
A Tt
(E13)

When Er; = Ep», Eq. (E13) gives —7‘3—22 In % which recovers
correctly the power-law decay of S(z) characteristic for the
Anderson OC that considers a single-component Fermi sea
with a single Fermi edge. For Er| # Ep; in the long-time limit
defined by ¢|Er| — Ep2| > 1, Eq. (E13) leads to

> klno(@)lllno (©)]-«

k=1
52 Lo 82 | tA

n_

72 2 T

7 (Er1 — Erp2) n 2(Er

b4 — Ep)?
42

’

— 23132 |:ln
(E14)

where we applied the limit A, — 0 (i.e., A — o0) and per-
formed the cosine integral C;(x) = fx * du%(“) ~Inx+y —
X2

7 with y the Euler-Mascheroni constant. Note that the last

term in Eq. (E14), which is proportional to §;8,, is time
independent.

Combining all results for the case of two Fermi steps
assuming Er; < Ep; we obtain the long-time behavior of the
contribution from particle-hole excitations at the two Fermi
edges as

o
SFO() t—(i—‘ﬁ%)e_,-,(ol.
FS1 512
Thus we 1dent1fy S( )(t) ~ 1t~ at Fermi edge Er; and
FS2
Sy () =

(E15)

t ,,z at the Fermi edge Er, where

81 = Serr(Epy — 0T) (E16)

Inspired by previous studies of Fermi surface contributions
with n # 0 for the case of an impurity interacting with a
single-component Fermi gas in its ground state [69] we may
now straightforwardly conjecture the generalization to our
case of a spin-flip Hamiltonian (5) and arrive at

\ 1\ (3
S’(lFSl)(t) 1’4 e—lnEp1t<;> ,

(2 -np
A 1\ =
S’(.LFSZ)(I) 1’4 e—mEth (;> .

Finally we note, that in Eqs. (E7) and (E8) one may
reintroduce the energy-dependent phase shift §(E) on a phe-
nomenological basis and also apply those results to the case of
finite temperature. Indeed we find that these expressions yield
excellent agreement with exact numerical results for a large
range of temperatures (see Fig. 7). In fact Eqs. (E7) and (E8)
represent a direct generalization of previous findings [69],
which were restricted to the case of an impurity interacting
with a Fermi gas with a single Fermi-step distribution n(E),
to the case of nonequilibrium fermions with a multistep
distribution that fulfills n(E) = 1 for E = 0 and n(E) = 0 for
E — oo.

(E18)

APPENDIX F: RELATION OF RAMSEY
DECOHERENCE AND FCS

The exponential decay rate of the Ramsey signal at long
times at T = 0 and Ep, = 0 is determined by

Er dE .
- t/ —Reln[l 4 p(¢®®E —1)] (F1)
0o 2w

with polarization p = cos?*#/2. Using Relnz =1In|z| one
finds

EFy dE )
A:tf 2—ln|1+p(62’8(E)— D)
0 T

Er dE 1
=t ——1In[1 —2p(1 — p)(1 —cos28(E))]. (F2)
0 2w 2
Now consider the quantity
1 o
=5 In x (" — 0), (F3)

where x is given by Eq. (9), so that

o Eri JE
In x (¢ = 0) =r/ 2 [l =T(E)].  (F4)
0 2 h

214505-13



YOU, SCHMIDT, IVANOV, KNAP, AND DEMLER

PHYSICAL REVIEW B 99, 214505 (2019)

Using TI'(E) =sin?#sin’8(E), sin’6 =4p(l1 —p) and
sin? 8(E) = (1 — cos 28)/2 one finds that indeed

EridE 1
B = t/ ——In[l —2p(1 — p)(1 —cos28(E))], (F5)
0 2w 2

which equals Eq. (F2) and hence we have shown

IS@) = v/ x(e* — 0). (F6)

This prescription projects out the contribution N, =0 in
Eq. (8), so that we can indeed conclude that up to logarithmic
corrections,

172
IS = v/ Pv=0(t) = [/ dkx(/\,t)} . (F7)

APPENDIX G: FCS FOR A FINITE NUMBER
OF IMPURITIES

Experiments that use impurities as probes, are natu-
rally subject to relatively small signal-to-noise ratios due to
the small numbers of impurities. By using the many-body
medium itself as a probe, our experimental scheme circum-
vents this challenge. In particular, the measured signal can
become large at late times, because the impurity can flip an
arbitrary number of spins in the background gas. The fact that
many spin flips occur has also a consequence for theoretical
approaches to the impurity-induced spin-transport problem:
Since the number of spin-flipped atoms easily exceeds one,
simple variational wave functions based on few-fermion exci-
tations [96—-103] are bound to fail.

In typical experimental setups the impurity number will be
finite, which raises the question of what the influence of a
finite density of impurities is on the observed dynamics. In this
regard the typical interparticle distance d ~ nfl/ 3 between
impurities of a density n; becomes a relevant length scale. As a
very conservative estimate, the dynamics will be governed by
the physics of independent scattering centers as long as times
tvrp < d (with vp the Fermi velocity) are considered. Only
when fvp > d fermions will be able to scatter from multiple
impurities leading to correlated scattering events that are,
for instance, the basis for bath-mediated, Ruderman-Kittel-
Kasuya-Yosida (RKKY)-type, impurity-impurity interactions.

Here, we focus on the regime of a low-impurity density
where induced interactions can be neglected. In this case
scattering events are independent and each impurity (repre-
senting an independent stochastic variable) is characterized by
a FCS with generating function y (1). The probability [_’sz to

measure a total number N, of spin-flipped atoms in a sample
of N; impurities (localized in a central region of a Fermi gas
of constant density) is then derived from the characteristic
function

x O t) =[x, OV

The evaluation of the Fourier transform of this expression
yields the desired probability

N;
Py (1) = / d)\[ZPNZ(z)eWZ] e, (G2)
N

(GI)

This equation renders the constraint Ny = Y. N>(i), where
N, (i) is the number of spin flips produced by the ith impurity,
particularly transparent. As we have seen, the distribution Py,
is well described by a sum over binomials, c.f. Eq. (9), so
that Py, has well-defined moments. Thus, by virtue of the
central limit theorem, the distribution of total observed spin
flips, PNZTM, approaches a normal distribution for a sufficiently
large number of impurities ;.

This can be seen explicitly as follows: let us assume that the
impurities represent independent and identically distributed
random variables N(1), ..., N(N;), each with mean value (N)
and variance o3. Consequently Ziv’zl N(x) has mean vale
N; - (N) and variance N; - a]%,. As dictated by the central limit
theorem, the probability Pyr: will tend towards a normal
distribution as the number of independent random variables
increases. To make this statement more precise we follow
standard textbooks [104], and define the sum of rescaled
variables

N;
A 1 .
Zy =Y T, (G3)
x=1 'NI

where the variables ¥, = N-N) have zero mean and unit

. . N . .
variance. The characteristic function of Zy, is

Xz, (A) = X5 i, *)
AW AW ) AW

)

where we made use of the fact that x y, () = xp (JLIV). By
W X ’l

(G4)

expanding the characteristic function yy, (JLIV),
1

A i%Nl_H
N _ J— N N
5 %) =2 e

222 A\
:1+2_N,+0<<ﬁ>> (G5)

the characteristic function X2y, (1) can be written as

i2)\2 Ni 22
X2y, (A) = (1 + W) —>e 7, (G6)

i
where we have used e* = lim,_o(1 + x/n)". This last ex-
pression shows that, even when the probability distribution
of a single impurity, obtained from (e”"), is not Gaussian,
the distribution of the Ziv’: ! N(x) indeed becomes a normal
distribution as N; — 00, in accordance with the central limit
theorem.

In Fig. 10 we show the spin-flip dynamics at strong inter-
actions kpja = —6, for up to N; = 16 impurities immersed in
a Fermi gas. At long times and for such strong interactions
a normal distribution is quickly approached. In this figure we
assume that the spatial interimpurity separation is chosen such
that up to the maximal times shown, tEr; = 60, scattering
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(a) O7¢ N, =194 = FpA No—a] 02 N 16
0.6¢ 1 — Normal = >
0.5¢ 1 0.3f
£, 04} ] u n /] L]
= 0.2} 0.1}
A, 0.3f ] y \
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FIG. 10. Influence of multiple impurities. FCS Py of total number of spin flips N for strong interactions krja = —6 at times (a) tEp; =

10 and (b) tEr; = 60 for N; = 1, 4, 16 impurities immersed in the Fermi gas (left to right). The blue squares represent the exact result from
FDA. For the first figure in (a) the normalized Gaussians is not shown. It does not fit the data since NJ* is bound by zero from below.

events can be treated as independent. As discussed above,
beyond this time scale, multi-impurity collisions will affect

the normal distribution at late times in a nontrivial way, which
would be intriguing to measure experimentally.
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