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Probing hydrodynamic sound modes in magnon fluids using spin magnetometers
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The noninteracting magnon gas description in ferromagnets breaks down at finite magnon density where
momentum-conserving collisions between magnons become important. Here we present a hydrodynamic de-
scription of spin systems with global SU(2) symmetry in the ferromagnetic phase. We identify a key signature
of the collision-dominated hydrodynamic regime—a magnon sound mode—which governs dynamics at low
frequencies. The magnon sound mode is an excitation of the longitudinal spin component with frequencies
below the spin-wave continuum in gapped ferromagnets and can be detected with recently introduced spin
qubit magnetometers. We also show that, in the presence of exchange interactions with SU(2) symmetry, the
ferromagnet hosts an usual hydrodynamic regime that lacks Galilean symmetry. We show that our results are
relevant to ferromagnetic insulators in a finite energy/temperature window such that dipolar and magnon–
phonon interactions are negligible, as well as in recent experiments in cold atomic gases.
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I. INTRODUCTION

The presence of symmetries and conservation laws can
affect the universal dynamics of interacting quantum systems
in dramatic ways. One example is the recently observed hy-
drodynamic regime in graphene where, in a wide range of
temperatures, fast momentum-conserving collisions lead to
viscous electron transport [1–6]. This unusual electron trans-
port behavior, also proposed in a variety of other quantum
systems [7–16], differs from the more conventional ballistic
and diffusive regimes. The giant leap in our understanding of
quantum transport that resulted from the study of hydrody-
namics in graphene, combined with the advances in material
synthesis and quantum metrology, motivates us to raise two
new questions: (i) Are there other available experimental
platforms to probe new hydrodynamic regimes in quantum
materials? (ii) Can additional symmetries give rise to quali-
tatively distinct transport features?

We address these two questions by showing that (i) Heisen-
berg ferromagnets host an unusual hydrodynamic regime in
a wide range of temperatures and frequencies when SU(2)
symmetry is present, and (ii) we propose an experimental
protocol to detect hydrodynamic modes using spin qubit mag-
netometers [17,18]. As we will see, the hydrodynamic regime
is unusual because of the lack of Galilean symmetry, signaling
the presence of a special reference frame in the system.

At low temperatures, the long-wavelength excitations in
ferromagnets (magnons) propagate ballistically given the
weak magnon–magnon interaction which renders relaxation
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processes inefficient. However, as temperature increases and
the thermal magnon population occupies larger momentum
states, momentum-conserving collisions give rise to a relax-
ation length � which steeply decreases with temperature T and
magnon density n [19]:

� = 1

nad−1

( J

T

) d+1
2

. (1)

Here a is the lattice spacing, J is the exchange coupling,
and d � 2 is the dimension (see Appendix A). For an in-
termediate temperature range such that Umklapp scattering
can be neglected (T � J) but large enough such that � � L
for the characteristic length L of the system, hydrodynamic
behavior emerges. For instance, for moderately small occu-
pation numbers (nad ∼ 0.1) and temperature below the Curie
temperature (T/J ∼ 0.2), � ∼ 50 nm is much smaller than a
typical sample length L ∼ 10 μm (here we used a = 0.5 nm
and d = 2).

A key signature of momentum-conserving collisions is the
existence of a gapless sound mode, even when the spin-wave
continuum is gapped by a Zeeman field. As shown in Fig. 1,
the sound mode is manifested as an excitation of the lon-
gitudinal spin correlator, 〈ŜzŜz〉, where Ŝz is related to the
magnon density n via 〈Ŝz〉 = S(1 − na2) and is analogous
to a second sound in a superfluid [20–22]. As a result, spin
fluctuation measurements can provide clear-cut signatures of
the sound mode, as shown below. We distinguish magnon
hydrodynamics from hydrodynamics in electron fluids where,
rather than sound modes, the system hosts plasmon modes;
this qualitatively distinct behavior arises because longitudinal
charge fluctuations are mediated by long-ranged Coulomb
interactions [23]. We also distinguish the sound mode from
the previously studied “magnon BEC” [24–27] in which the
physics is primarily governed by the dynamics of the ferro-
magnetic order parameter.
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FIG. 1. Spectral function χ (q, ω) = χ+−(q, ω) + χ−+(q, ω) +
4χzz(q, ω) exhibiting single magnon excitations at the Zeeman en-
ergy ω = �, induced by a finite 〈S−S+〉, and a linearly dispersing
sound mode at low frequencies induced by magnon density fluctu-
ations, 〈ŜzŜz〉. The sound mode is damped above frequencies ω∗ by
viscous forces.

One unique feature of magnon hydrodynamics is that the
SU(2) symmetry constrains the collisions between quasiparti-
cles, giving rise to a momentum-dependent magnon–magnon
interaction which vanishes at k = 0 [see Eq. (5)]. This feature
bears important consequences. First, Galilean symmetry is
intrinsically broken at all length scales and differs from usual
hydrodynamics in lattice systems where Galilean symmetry is
broken only at energy scales comparable to the single-particle
bandwidth (i.e., when deviations from quadratic dispersion
are sizable). While Galilean symmetry can also be broken in
planar ferromagnets in the presence of spin textures [28–31],
Galilean symmetry is broken with or without spin textures
in isotropic ferromagnets. Second, vanishingly small scat-
tering matrix elements suppress collisions between magnons
and the magnon condensate that arises due to symmetry
breaking. Such suppression justifies why the dispersion of
magnons—the Goldstone modes of the ferromagnet—remain
quadratic in the symmetry-broken phase, contrary to U(1)-
symmetry breaking where interactions between quasiparticles
and the condensate renormalize the quasiparticle dispersion
and where a “two-fluid” description is necessary.

Previous works on hydrodynamics in ferromagnets assume
momentum relaxation due to Umklapp scattering (T ≈ J) or
disorder, as first described by Halperin and Hohenberg [32].
Such momentum-relaxing effects give rise to diffusive particle
and energy transport. Although a few authors [20–22] made
the case for momentum-conserving hydrodynamic behavior
in a magnon gas, there is little experimental evidence of this
regime to date [33]. Arguably, the energy scales (∼meV) and
wave vectors (�1/a) accessible by neutron scattering, the
main probe of ferromagnets at the time, were too large to
access the low-frequency, long-wavelength regime in which
hydrodynamic sound modes live. In addition, the Hamiltonian
of realistic materials has terms that break magnon number
and momentum conservation, such as dipolar interactions and
magnon–phonon interactions and, as a result, it is unclear
whether such regime can exist in realistic materials.

We argue that recent experiments [34–39] have opened
new pathways to observe and study hydrodynamic behavior in

spin systems. First, ultraclean ferromagnetic materials, such
as yttrium iron garnet (YIG), allow ballistic propagation of
magnons in macroscopic scales without scattering by impu-
rities and phonons. Independent control of temperature and
chemical potential is possible via a combination of heating
and driving and, therefore, enables us to explore all possi-
ble regimes from noninteracting magnon gases to interacting
magnon fluids. In addition, magnetic spectroscopy with spin
qubits allows us to access spin fluctuations at the energy
and length scales relevant for hydrodynamics. Besides spin
waves [34,35], such probes have been used to image sin-
gle spins [40] and domain walls [41] and to study electron
transport in metals [42]. Such probes could also be used to
access the hydrodynamic regime in graphene [43] and 1D sys-
tems [44], to study magnon BECs in ferromagnets [45], and to
diagnose ground states in frustrated magnets [46]. In addition,
recent experiments in isolated cold atomic gases [36–39] now
have access to long-time relaxation dynamics of spin systems.
Such platforms have exquisite tunability of the global sym-
metries and dimensionality and are sufficiently well isolated
from the environment such that magnon number and energy
relaxing processes can be neglected.

II. MICROSCOPIC MODEL

We consider a Heisenberg ferromagnet in the presence of a
Zeeman field and a small exchange anisotropy ε:

Ĥ = −J
∑
〈 j j′〉

(
Ŝ j · Ŝ j′ + εŜz

j · Ŝz
j′
)+ �

∑
j

Ŝz
j . (2)

Here j labels the lattice site,
∑

〈 j j′〉 denotes summation over
nearest neighbors, and we take periodic boundary conditions
in each spatial direction. We assume that the spin system
has N lattice sites on a d dimensional cubical lattice, each
containing a spin S degree of freedom which satisfies the
commutation relations [Ŝz

j, Ŝ±
j′ ] = ±δ j j′ Ŝ

±
j and [Ŝ+

j , Ŝ−
j′ ] =

2δ j j′ Ŝ
z
j , with Ŝ±

j = Ŝx
j ± iŜy

j as the raising and lowering spin
operators. The Zeeman term plays an essential role experi-
mentally because it gaps the spin-wave continuum and, for
large �, it separates the magnon continuum from the gapless
sound mode.

With the objective of deriving an effective model describ-
ing the low-energy manifold of Ĥ , we recall that one magnon
states |k〉 = Ŝ+

k |F〉, with |F〉 = | ↓↓ . . . ↓〉 denoting the fer-
romagnetic ground state and Ŝ+

k = 1√
N

∑
j e−ik·r j Ŝ+

j are exact

eigenstates of Ĥ with energies

εk = � + JS[φ0(1 + ε) − φk], φk =
∑
τ∈NN

eik·τ . (3)

Two magnon states |k, p〉 = 1
2S Ŝ+

k Ŝ+
p |F〉, however, are not

eigenstates of Ĥ [19,47,48]. Indeed, it is straightforward to
show that

Ĥ |k, p〉 = (εk + εp)|k, p〉 + 1

N

∑
q

gk,p,q|k + q, p − q〉,

gk,p,q = −J (ε − φq + φq−p + φq+k − φk+q−p), (4)

such that one magnon states are coupled via momentum-
conserving collision gk,p,q. More generally, an N-magnon
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state Ĥ |N〉 = Ĥ [ 1
(2S)N/2

∏N
i Ŝ+

ki
]|F 〉 can also be decomposed

into a diagonal component comprised of individual spin-wave
energies and an off-diagonal component containing all possi-
ble combinations of two-body collisions. When the incoming
magnons are close to the bottom of the band, the collision
term is approximately gk,p,q ≈ −Ja2(ε + k · p). Importantly,
whereas collisions between quasiparticles are hardcore in the
easy axis/plane ferromagnet, collisions are soft under SU(2)
symmetry (ε = 0). We focus on the latter regime (for a dis-
cussion on the easy plane ferromagnet with broken U(1)
symmetry, see Ref. [49]). We also note that ε = 0 case is
suitable for hydrodynamics in YIG if T is larger than dipolar
energies [50], which is typically the case.

An effective description of the interacting magnon fluid
which captures all the features of the parent SU(2) symmetric
Hamiltonian in Eq. (2) is given by

Ĥ =
∫

x

∂αψ̂†
x ∂αψ̂x

2m0
+ Ja2

4
(ψ̂†

x ψ̂†
x ∂αψ̂x∂αψ̂x + H.c.), (5)

where m0 = 1/2SJa2 is the magnon mass and ψ̂ is a bosonic
operator defined after a Holstein-Primakoff transformation
(Ŝ−

x ≈ √
2Sψ̂x and Ŝ+

x ≈ √
2Sψ̂†

x ), and summation over re-
peated indices is assumed. Equation (5) is valid in the dilute
limit nad � S and small temperature T � J such that only
small momentum states are occupied.

III. MAGNON HYDRODYNAMICS WITHOUT
GALILEAN SYMMETRY

The conserved quantities in Eq. (5) are N̂ = ∫x n̂x =∫
x ψ̂†

x ψ̂x, P̂α = ∫x p̂α,x = −i
2

∫
x ψ̂†

x ∂αψ̂x − H.c., and Ĥ . Al-
though P̂α is not strictly conserved in the lattice model (2),
it becomes conserved in the long-wavelength effective theory
after neglecting Umklapp scattering. We use the local equi-
librium approximation to describe the density matrix as ρ̂ =∏

x ρ̂x, where space is coarse-grained into regions of size �.
The local-density matrix is ρ̂x = exp(−Ĥ/T − uαP̂α − μN̂ )x,
with (T, uα, μ)x the position and time-dependent thermody-
namic potentials. One important aspect of Eq. (5) is that
the particle current operator, defined as ∂α Ĵα = −i[Ĥ , n̂x], is
not equal to P̂α; instead, Ĵα takes the form Ĵα = P̂α/m0 +
iJa2

2 (ψ̂†
x ψ̂†

x ψ̂x∂αψ̂x − H.c.) and gives rise to Galilean sym-
metry breaking. As such, a variety of interesting effects
emerge, including velocity-dependent transport coefficients,
anomalous viscous terms, and anisotropic dispersion of hy-
drodynamic fluctuations, to name a few.

To make analytical progress, we compute expectation
values using a Gaussian approximation of the distribution
function ρx which can be formally implemented by us-
ing Ĥ/T ≈∑k

k2

2mT ψ̂
†
k ψ̂k, with m the renormalized magnon

mass. As such, any N-point correlation functions can be
expressed as products of two point correlation functions. Be-
cause corrections to the bare mass are small, δm = m − m0 ∼
O(na2T/J ) � 1, below we will use m and m0 interchange-
ably. The expectation values of conserved quantities (〈N̂〉x =
n, 〈P̂α〉x = npα , 〈Ĥ〉x = nε) are given by

n = mT

2π
g1(z), pα = muα, θ = T g2(z)

g1(z)
, (6)

where the thermal energy θ is related to energy density
through ε = θ + (1−na2/4S)p2

2m , and where we assumed a 2D
system. In Eq. (6), z = e−μ/T is the fugacity, and gq(z) is

the Bose integral, gq(z) = 1
�(q)

∫∞
0

dyyq−1

ey/z−1 [�(q): Gamma func-
tion].

The particle current Jα , the momentum current �αβ =
〈�̂αβ〉, and the energy current Qα = 〈Q̂α〉 are given by

Jα = nvα,

�αβ = npαvβ + Pαβ, (7)

Qα = nεvα + Pαβvβ + qα;

see details in Appendix B. Here Pαβ = (nθ − γ np2

2m )δαβ + P̃αβ

is the pressure tensor, P̃αβ is the dissipative (viscous) com-
ponent, and qα is the heat current (both P̃αβ and qα will be
defined explicitly below). The main consequence of Galilean
symmetry breaking in our work is that conserved quantities
flow with a drift velocity vα = 〈Ĵα〉/n which is different from
the thermodynamic potential uα:

vα = (1 − γ )uα, γ = na2

S
. (8)

The continuity equations for each of the conserved charges
lead to the hydrodynamic equations:

ṅ + ∂α (nvα ) = 0,

ṗα + vβ∂β pα = −1

n
∂βPαβ, (9)

θ̇ + vα∂αθ = −1

n
∂αqα − 1

n
Pαβ∂αvβ − γ

p2

2m
∂αvα,

which resemble usual hydrodynamic equations for a classical
fluid with the caveat that convective terms contain vα rather
than uα . We recall that the “single fluid” equations (9) do not
include dynamics of the condensate due to the zero coupling
with k = 0 modes in the SU(2) symmetric Hamiltonian.

IV. DISSIPATIVE EFFECTS

We incorporate dissipation effects phenomenolog-
ically using the relaxation time approximation; see
Appendix C. This approximation allows us to relate the
nonequilibrium magnon distribution to gradients in η j =
(n, uα, θ ), i.e., nk = n̄k + τk

∑
j (∂ n̄k/∂η j )(∂t + vk · ∇r)η j ,

where τk is a momentum-dependent relaxation time.
As a result, P̃αβ and qα can be written P̃αβ = ν(∂αuβ +
∂βuα − δαβ∂γ uγ ), and qα = κn∂αn + κθ∂αθ . For a 2D
magnon gas with quadratic dispersion and collision rate
of the form 1/τk ∝ k2, we find that, within the relaxation time
approximation, dissipation is dominated by viscous effects
with scaling ν ∼ J2

T . While we will keep track of κn and κθ in
our equations of motion, we set κn = κθ = 0 in the numerics.

V. HYDRODYNAMIC MODES

The sound mode originates from the longitudinal spin fluc-
tuations and is manifested in the retarded correlator

χzz(q, ω) = −i
∫ ∞

0
dteiωt

∑
τ

e−iq·τ 〈[Ŝz
i (t ), Ŝz

i+τ (0)
]〉
. (10)
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This is equivalent to computing density fluctuation because
Ŝz

i = −S(1 − n̂i ). With this objective in mind, we first lin-
earize Eq. (9) around the equilibrium values, n(r, t ) = n̄ +
δn(r, t ), θ (r, t ) = θ̄ + δθ (r, t ), and vα (r, t ) = δvα (r, t ) and go
to momentum space:

A

⎛
⎝ δn

δv‖
δθ

⎞
⎠ =

⎛
⎝ 0

iF‖/m
0

⎞
⎠,

A =
⎛
⎝ ω −n̄q 0

−θ̄q/mn̄ ω/(1 − γ ) + iνq2/n̄ −q/m
−iκnq2/n̄ −θ̄q ω−iκθq2/n̄

⎞
⎠.

(11)

The coupling between δn, δv‖ and δθ gives rise to two
propagating modes and one diffusive mode. The transverse
momentum component, δu⊥, which does not couple to δn,
gives rise to an extra diffusive mode, (ω + iνq2/n̄)δv⊥ =
iF⊥/m. Here we included in our equations a fluctuating par-
allel (transverse) force F‖ (F⊥). Close to thermal equilibrium,
the density–density correlation function can be obtained from
Eq. (11) using the fluctuation-dissipation theorem:

χzz(q, ω) = JS2(n̄qa2)2

ω2/(1 − γ ) − ζ (q, ω)θ̄q2/m + iνωq2/n̄
, (12)

where ζ (q, ω) = 1 + ω−iκnq2/θ̄

ω+iκθ q2/n̄ ≈ 2 at the intermediate/large
frequency range of interest. In this regime, the response func-
tion exhibits a linearly dispersing sound mode ω = vsq, with
vs = a

√
2(1 − γ )Jθ ; see Fig. 1.

VI. DETECTION OF THE SOUND MODE

We consider a spin-1/2 qubit with an intrinsic level split-
ting ω placed a distance d above the thin magnetic insulator.
The combined dynamics of the qubit and ferromagnet are gov-
erned by the Hamiltonian Ĥtotal = Ĥ + Ĥc + Ĥq, where Ĥq is
the spin qubit Hamiltonian Ĥq = 1

2ωσz with the polarizing
field assumed to be aligned in the z direction. The term Ĥc

is the qubit-ferromagnet coupling induced by dipole–dipole
interactions:

Ĥc = μ2
B

2
σ̂ · B̂, B̂ = 1

4π

∑
j

[
Ŝ j

r3
j

− 3(Ŝ j · r j )r j

r5
j

]
, (13)

where r j = (x j, y j,−d ) is the relative position between the
i-th spin in the 2D lattice and probe. The relaxation time of the
spin qubit can be obtained from Fermi Golden’s rule 1/T1 =
μ2

B
2

∫∞
−∞ dteiωt 〈{B̂−(t ), B̂+(0)}〉, where {, } denotes anticom-

mutation (see Appendix D). Replacing Eq. (13) into 1/T1 and
using the fluctuation-dissipation theorem, the relaxation time
can be expressed in terms of spin-correlation functions:

1

T1
= coth

( ω

2T

) μ2
B

2a2

∫
d2q

(2π )2
e−2|q|d |q|2[χ ′′

−+(q, ω)

+χ ′′
+−(q, ω) + 4χ ′′

zz(q, ω)], (14)

where we denote χ ′′
αβ = −Im[χαβ], and χR

αβ (q, ω) =
−i
∫∞

0 dt〈[Ŝα
−q(t ), Ŝβ

q (0)]〉. Figure 1 shows the integrand
of Eq. (14), and Fig. 2 shows the spin-relaxation time as a

FIG. 2. Relaxation time [normalized by sinh(ω/2T )] of a spin
qubit located a distance d from the 2D ferromagnet. Besides the
characteristically large relaxation rate induced by spin relaxation due
to emission of spin waves at energy �, the relaxation rate exhibits
a peak below the ferromagentic gap induced by emission of sound
modes with velocity vs. Parameters used: na2 = 0.03, T/J = 0.2,
�/J = 0.1, a = 0.3 nm, and d = 20 nm.

function of ω induced by longitudinal and transverse spin
fluctuations (we assumed a constant magnon population
n̄ and T ). The correlators χ±∓(q, ω) are related to
single-magnon production/absorption, which we assume
to be given by χ−1

+−(q, ω) = ω − ωq + i�′′(q, ω), where
�′′(q, ω) ∼ T ω

J (qa)2 (valid for z ∼ 1 and ω � T ) is
the imaginary part of the self-energy computed from the
bubble diagram; see inset of Fig. 2 and details in Appendix E.
We also note that, in Fig. 2, we normalize 1/T1 with
coth(ω/2T ) to capture the spectral contribution of spin
fluctuations rather than its amplitude. Figure 2 is the main
result of this work and shows a clear fingerprint of the sound
mode within the gap of the ferromagnet.

VII. DIPOLAR INTERACTIONS

Contrary to classical and electron fluids where particles
cannot be created or annihilated, conservations laws are not
as robust in a magnon fluid and therefore should be subject
to scrutiny. Dipolar interactions lead to magnon decay via
three-magnon processes, particularly in thin layers with a
canted ferromagnetic order parameter. Assuming a magnon
distribution with z < 1, we estimate the typical magnon de-

cay time induced by a dipolar term Ĥd = gd

2

∑
j j′ [

Ŝ j ·Ŝ j′
r3

j j′
−

3(Ŝ j ·r j j′ )(Ŝ j′ ·r j j′ )

r5
j j′

], with gd = μ2
B/4π . As shown in Appendix F,

this gives values in the ballpark 1
n̄

dn̄
dt ∼ g2

d
J (z2 − z3) ∼ MHz,

several orders of magnitude smaller than the typical GHz
frequencies that typical spin qubit magnetometers can access.
As a result, sound modes are expected to be well-defined ex-
citations in a wide range of frequencies from MHz to several
GHz.

VIII. CONCLUSION

Our model and theoretical predictions, which are rele-
vant to ongoing experiments using spin qubit magnetometers
on ferromagnetic insulators and in cold atomic gases, pro-
vide distinct signatures of hydrodynamic behavior in spin
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FIG. 3. (a) γk(z) plotted for different values |k|/mvth = 0, 1, 5
(increasing darkness). Indicated with a dashed line is the lin-
ear γk(z) = z/8π obtained from the classical Boltzmann equation.
(b) γk(z) exhibits a weak dependence on k, as shown for z = 1.
At most, γk(z) varies by a factor of ∼2.5 as k is varied. In our
calculations, we take the average of γk over k space.

systems. Although the sound mode is its most distinctive
feature, the strong momentum dependence of the magnon–
magnon interaction induced by the SU(2) symmetry suggests
that ferromagnets can also host anomalous transport not
achievable in classical and electron fluids.
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APPENDIX A: RELAXATION TIME DUE TO
EXCHANGE COUPLING

To estimate the relaxation time induced by the exchange
interaction, we consider a magnon fluid at thermodynamic
equilibrium and zero drift velocity, n̄k = 1/(z−1eεk/T − 1).
Let us assume that, at t = 0, a nonequilibrium distribution is

formed with a bump at wave-vector k, i.e., np = n̄p + δnkδk,p.
The relaxation time for such a distribution is given by

1

τk
= (Ja2)2

N2

∑
pq

(k · p)22πδ(εk + εp − εk+q − εp−q)

× [n̄p(1 + n̄k+q)(1 + n̄p−q) − (1 + n̄p)n̄k+qn̄p−q].

(A1)

The relaxation time can be expressed as 1
τk

= γk (z)
16π

T 2(ka)2

J after
factoring out the k vector dependence out of the integral,
normalizing energies with T , and momenta with

√
2mT . The

dimensionless prefactor γk(z) is plotted in Fig. 3, exhibits
a weak dependence on k, and scales approximately as ∝ z.
Rather than keeping this unimportant k dependence of γk, we
define an average γ of all k vectors and z values, γ (z)/z =∫ 1

0 dz/z
∫

d2k̃/(2π )2γk(z), which yields γ (z) ≈ cz, with c ∼
O(1).

In thermal equilibrium, the typical relaxation rate for
thermal magnons is given by 1/τ̄ ∼ T 2(na2 )

J . The relaxation
length of thermal magnons is given by � = v̄τ̄ , where v̄2 =

1
2πmn

∫∞
0 dkk3n̄k = 2mT g2(z)/g1(z) is the thermal velocity

and results in Eq. (1) of the main text.

APPENDIX B: DERIVATION OF
HYDRODYNAMIC EQUATIONS

In this section we derive the current operators associated
with the conserved quantities of the effective Hamiltonian

Ĥ =
∫

x

∂αψ̂†
x ∂αψ̂x

2m
+ g(ψ̂†

x ψ̂†
x ∂αψ̂x∂αψ̂x + H.c.), (B1)

which was derived in the main text. Here we defined g =
Ja2/4 for compactness of notation. We recall that the Hamilto-
nian (B1) has three conserved quantities: Particle number N̂ =∫

x n̂x = ∫x ψ̂†
x ψ̂x, momentum P̂α = ∫x p̂α,x = −i

2

∫
x ψ̂†

x ∂αψ̂x −
H.c., and energy Ĥ = ∫x ε̂x. We proceed to derive the currents
associated with each of the conserved quantities.

1. Current operators

The current operators can be derived from the continuity
relation that ensures charge conservation: ∂t n̂x = −∂α Ĵα =
i[Ĥ, n̂x] for particle number, ∂t p̂α,x = −∂α�̂α,β = i[Ĥ, pβ,x]
for momentum, and ∂t ε̂x = −∂αQ̂α = i[Ĥ, ε̂x] for energy.
Computing the commutator of Ĥ with each of the local op-
erators gives rise to the currents:

Ĵα = −i

2m
[ψ̂†

x ∂αψ̂x − H.c.] + 2ig[ψ̂†
x ψ̂†

x ∂αψ̂xψ̂x − H.c.],

�̂αβ = 1

2m
[∂αψ̂†

x ∂βψ̂x + H.c.] + g[(ψ̂x∂γ ψ̂x)2δαβ + 2ψ̂†
x ψ̂†

x ∂αψ̂x∂βψ̂x + H.c.],

Q̂α = −i

4m
[∂βψ̂†

x ∂α∂βψ̂x − H.c.] − ig

m
[ψ̂†

x ψ̂†
x ∂βψ̂x∂α∂βψ̂x + ψ̂†

x ψ̂†
x ∂αψ̂x∂

2
βψ̂x − ∂αψ̂†

x ψ̂†
x ∂βψ̂x∂βψ̂x − H.c.]. (B2)

2. Currents within the Gaussian approximation

We compute the expectation value of the currents using the
local equilibrium approximation which allows us to coarse-

grain real space in regions of size � in which the system
is effectively thermalized. We also employ the Gaussian ap-
proximation to represent the density matrix in the subregion
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region x as ρ̂x = exp(−∑k
k2

2mT ψ
†
k ψk − uαP̂α − μN̂ ), where

we use the bare mass m rather than the renormalized mass for
simplicity. The Gaussian approximation enables us to com-
pute four-point correlation functions in terms of two-point
correlations function. In particular, the expectation value of
the currents is given by

n = 〈1〉 Jα = 〈kα〉
m

− 8g〈1〉〈kα〉,

Pα = 〈kα〉, �αβ = 〈kαkβ〉
m

− 4g〈kγ 〉〈kγ 〉δαβ − 8g〈kα〉〈kβ〉,

ε = 〈kβkβ〉
2m

− 4g〈kβ〉〈kβ〉,

Qα = 〈kαkβkβ〉
2m2

− 8g〈kβ〉 〈kαkβ〉
m

− 4g〈kα〉 〈kβkβ〉
m

, (B3)

where we used the short-hand notations 〈A〉 = ∫ dk
(2π )2 Aknk,

and nk is the Bose distribution function with chemical
potential μ, drift velocity uα , and temperature T . It is
straightforward to compute the expectation values, which
are given by 〈1〉 = mT g1(z)/2π , 〈kα〉 = nmuα , 〈kαkβ〉 =
mnuαuβ + 〈k̃α k̃β〉, and 〈kαkβkβ〉 = 〈k̃α k̃β k̃β〉 + muα〈k̃β k̃β〉 +
2muβ〈k̃α k̃β〉 + m3nu2uα [here gν (z) is the Bose integral de-
fined in the main text, k̃α = kα − muα , and we used d = 2].
The term 〈k̃α k̃β〉 = Pαβ = nθδαβ + P′

αβ is the pressure tensor,

P′
αβ is the dissipative component, and 〈k̃α k̃β k̃β〉 = qα is the

heat current. Both P′
αβ and qα are estimated below. Replacing

the expectation values into Eq. (B3) results in the charges and
currents:

n, Jα = nvα,

pα = muα, �αβ = Pαβ + npαvβ,

ε = dθ

2
+ pαvβ

2
, Qα = qα + nεvα + Pαβvβ. (B4)

The continuity equations ∂n + ∂αJα = 0, ∂t (npα ) + ∂β�αβ =
0, and ∂t (nε) + ∂αQα = 0 give rise to the hydrodynamic equa-
tions (9) in the main text.

APPENDIX C: ESTIMATING TRANSPORT COEFFICIENTS
FROM THE RELAXATION TIME APPROXIMATION

To compute the leading-order corrections to Pαβ and qα ,
we need to determine δnk induced by gradients in n, uα , and
θ . With this objective in mind, we linearize the Boltzmann
kinetic equation

(∂t + vk,α∂α + Fα∂kα
)n̄k = I (n̄k + δnk). (C1)

Here we assumed that δnk � nk, such that the leading-order
contributions on the left-hand side is given by the derivatives
(both space and time) of n̄k. The right-hand side is already
leading order in δnk because I (n̄k) = 0.

We begin the analysis by considering the left-hand side of
Eq. (C1). We recall that n̄k(n, uα, θ ) is the local distribution
function which depends implicitly on n, uα , and θ . As such,
computing the time and spatial derivatives of n̄k leads to

[∂t + vk,α∂α]n̄k = [ṅ + vk,α∂αn]∂nn̄k|θ,uα
+ [θ̇ + vk,α∂αθ ]∂θ n̄k|n,uα

+ [u̇α + vk,β∂βuα]∂uα
n̄k|n,θ , (C2)

where ∂ n̄k/∂x|y,z denotes the derivative of n̄k with respect to x, leaving y and z constant. In Eq. (C2), we replace the time
derivatives ṅ, u̇α , and θ̇ by the hydrodynamic equations (9) of the main text in the local equilibrium approximation and compute
transport coefficients to leading order in na2 and in, i.e., using Pαβ = δαβnθ/m and qα = 0. This results in

[∂t + vk,α∂α + Fα∂kα
]n̄k =

[
δαβ∂nn̄k

∣∣∣θ,uα
+ m

n
∂nPαβ∂θk n̄k

]
ṽk,β∂αn + [δαβ∂θ n̄k|n,uα

+ m

n
∂θPαβ∂θk n̄k

]
ṽk,β∂αθ

−
[
δαβn∂nn̄k

∣∣∣θ,uα
+ m

n
Pαβ∂θ n̄k

∣∣∣
n,uα

+ mṽk,α ṽk,β∂θk n̄k

]
∂αuβ, (C3)

where we used the identities ∂ n̄k/∂uα|n,θ = −[∂ n̄k/∂θk]mṽk,α and Fα∂kα
n̄k = Fα[∂ n̄k/∂θk]ṽk,α . The terms in brackets in Eq. (C3)

are thermodynamic functions that depend on the local values of T, z,wα and are given by

[∂t + vk,α∂α + Fα∂kα
]n̄k =

[
2π

mT

(
hn(z) + h̃n(z)

θk

T

)
ṽk,α∂αn + 2π

T

(
hθ (z) + h̃θ (z)

θk

T

)
ṽk,α∂αθ

+
(

δαβ

θk

T
− mvk,αvk,β

T

)
∂αuβ

]
n̄k(n̄k + 1), (C4)

where the dimensionless coefficients hn,θ (z) and h̃n,θ (z) are

hn(z) = zg2
2 − (1 − z)g2g2

1

zg2g2
1 − (1 − z)g4

1/2
, h̃n(z) =

[
1

g1
+ zg2

g2
1(1 − z) − 2zg2

]
,

hθ (z) = zg2
2 − (1 − z)g2g2

1

zg2g2
1 − (1 − z)g4

1/2
, h̃θ (z) =

[
1

g1
+ zg2

g2
1(1 − z) − 2zg2

]
.

(C5)

Let us now focus on the right-hand side of Eq. (C1).
There are many schemes to calculate I[n̄k + δnk]. The sim-

plest approach is to use the relaxation time approximation. In
this approximation, the collision integral is written as I[n̄k +
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δnk] ≈ −δnk/τk, where τk is defined in Eq. (A1). Importantly,
we keep the explicit dependence on the magnon wave vector.
We note that 1/τk was calculated using uα = 0, but its value
remains valid so long as uα �

√
T/m [corrections to 1/τk due

to finite drift velocity are O(u2
α )]. As a result, δnk becomes

proportional to gradients in n, θ , and uα:

δnk = τk

[
2π

mT

(
hn(z) + h̃n(z)

θk

T

)
ṽk,α∂αn+

× 2π

T

(
hθ (z) + h̃θ (z)

θk

T

)
ṽk,α∂αθ

+
(

δαβ

θk

T
− mvk,αvk,β

T

)
∂αuβ

]
n̄k(n̄k + 1). (C6)

Using nk = n̄k + δnk and integrating over k leads to

Pαβ = nθ

m
δαβ + ν(∂αuβ + ∂βuα ) − νδαβ∂γ uγ ,

qα = κn∂αn + κθ∂αθ, (C7)

where only linear terms on ∂αn, ∂αθ , and ∂αuβ were consid-
ered (i.e., gradients of thermodynamic quantities are small).
For a 2D magnon gas with quadratic dispersion and col-
lision rate of the form 1/τk ∝ k2 (i.e., only considering
exchange coupling), the relaxation time yields that dissipation
is dominated by viscosity ν(T, z) ∼ J2

T , while κn = κθ are
second-order effects (in powers of T/J) compared with ν; κn

and κθ are dominated by deviations to quadratic dispersion
and/or finite scattering at low scattering, e.g., dipolar interac-
tions.

APPENDIX D: MEASUREMENT OF
MAGNON SOUND MODES

We consider a spin-1/2 qubit with an intrinsic level split-
ting ω placed a distance d above the magnetic insulator. The
dynamics of the qubit and the ferromagnet are governed by
the Hamiltonian Ĥtotal = Ĥ + Ĥc + Ĥq. Here HF is the Hamil-
tonian of the ferromagnet; see the main text. The term Ĥq is
the qubit Hamiltonian given by Ĥq = 1

2ωnq · σ, where nq is
the intrinsic polarizing field of the spin probe. For instance,
in the case of NV centers in diamond, nq is the axis of the
NV defect in the diamond lattice. Finally, the term Ĥc is the
qubit-ferromagnet coupling given by

Hc = μ2
B

2
σ̂ · B̂, B̂ = 1

4π

∑
j

[
Ŝ j

r3
j

− 3(Ŝ j · r j )r j

r5
j

]
, (D1)

where B is the magnetic field at the position of the probe
induced by dipolar interactions with the 2D ferromagnet, and
r j = (x j, y j,−d ) is the relative position between the i-th spin
in the 2D lattice and probe.

In thermal equilibrium, the 2D ferromagnet is described by
the density-matrix ρF =∑n e−εn/kBT |n〉〈n|, where |n〉 are the
eigenstates of the ferromagnet. The absorption rate, 1/T1,abs,
and emission rate, 1/T1,em, is obtained from Fermi Golden’s
rule using the initial state |i〉 = |−〉 ⊗ ρF and |i〉 = |+〉 ⊗ ρF,
respectively,

1/Tabs,em = 2π
∑
nm

ρnB±
nmB∓

mnδ(ω ± εmn). (D2)

Here Bα
nm denotes 〈n|B̂α|m〉, and εmn is the energy difference

between states m and n, εmn = εm − εn. The relaxation rate is
defined as 1/T1 = 1

2 [1/Tabs + Tem]. More compactly, 1/T1 can
be expressed as

1

T1
= μ2

B

2

∫ ∞

−∞
dteiωt 〈{B̂−(t ), B̂+(0)}〉. (D3)

For computation it is more convenient to express 1/T1 in
terms of retarded correlation functions. In this direction, the
fluctuation-dissipation theorem reads∫ ∞

−∞
dteiωt 〈{B̂−(t ), B̂+(0)}〉 = coth

( ω

2T

)
Im
[
χR

B−B+ (ω)
]
,

(D4)
where χR

B−B+ (ω) = −i
∫∞

0 dt〈[B̂−(t ), B̂+(0)]〉 is the retarded
correlation function.

Finally, 1/T1 can be expressed in terms of spin-spin cor-
relation functions. Expressing Ŝα

τ =∑k
eik·τ√

N
Ŝα

k in momentum

space and inserting into Eq. (D1), we can express B̂α in
terms of S±

k and Sz
k. Without loss of generality, we assume

k = (k, 0). For B̂x, we find

B̂x
k =

∑
j

eikx j

[(
1

r3
j

− 3x2
j

r5
j

)
Sx

k − 3x jy j

r5
j

Sy
k + 3x jd

r5
j

Sz
k

]
.

(D5)
Using the continuum approximation to approximate

∑
j →

1
a2

∫
d2x, the first term on the right-hand side of Eq. (D5) is

∑
j

eikx j

(
1

r3
j

− 3x2
j

r5
j

)
→ 1

a2

∫∫
dxdy eikx

(
1

r3
− 3x2

r5

)

= 2

a2

∫
dxeikx d2 − x2

(d2 + x2)2

= 2

da2

∫
dξei(kd )ξ 1 − ξ 2

(1 + ξ 2)2
. (D6)

In the last step, we can use the residue theorem to express∫∞
−∞ dξei(kd )ξ 1−ξ 2

(1+ξ 2 )2 as
∮

dzei(kd )z 1−z2

(1+z2 )2 = π (kd )e−kd , where
for kd > 0 we use a contour of integration in the upper-half
complex plane. As a result, we obtain

∑
j

eikx j

(
1

r3
j

− 3x2
j

r5
j

)
≈ ke−kd

2a2
, (D7)

exact in the continuum limit. For the second term on the right-
hand side of Eq. (D5), we find

∑
j eikx j x j y j

r5
j

= 0. Finally, for

the third term in the right-hand side of Eq. (D5), we find

3
∑

j

eikx j
x jd

r5
j

≈ 3ikd

a2

∫∫
dx dy

x2

r5
= ik

2a2
. (D8)

Repeating the same procedure for B̂y and B̂z and general-
izing our results for a generic k = (kx, ky), we obtain B̂α =

1√
N

∑
k Bα

k with⎛
⎜⎝

B̂x
k

B̂y
k

B̂z
k

⎞
⎟⎠ = e−|k|z

2a2

⎛
⎜⎝

k2
x /|k| kxky/|k| ikx

kxky/|k| k2
y /|k| iky

ikx iky −|k|

⎞
⎟⎠
⎛
⎜⎝

Ŝx
k

Ŝy
k

Ŝz
k

⎞
⎟⎠. (D9)
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The B±
k = Bx

k ± iBy
k terms can be written as a function of S±

k and Sz
k such that Eq. (D9) can be recasted as

⎛
⎜⎝

B̂+
k

B̂−
k

B̂z
k

⎞
⎟⎠ = e−|k|z

2a2

⎛
⎜⎜⎜⎝ |k|/2 (kx + iky)2/2|k| ikx − ky

(kx − iky)2/2|k| |k|/2 ikx + ky

(ikx + ky)/2 (ikx − ky)/2 −|k|

⎞
⎟⎟⎟⎠
⎛
⎜⎝

Ŝ+
k

Ŝ−
k

Ŝz
k

⎞
⎟⎠. (D10)

Using Eq. (D10) in Eq. (D3), the spin qubit relaxation time is given by

1

T1
= coth

( ω

2T

) μ2
B

2a2

∫
d2k

(2π )2
e−2|k|d |k|2[χR

−+(k, ω) + χR
+−(k, ω) + 4χR

zz(k, ω)], (D11)

where we denote χR
αβ (k, ω) = −i

∫∞
0 dt〈[Ŝα

−k(t ), Ŝβ

k (0)]〉.

APPENDIX E: TRANSVERSE SPIN FLUCTUATIONS

The spectral weight of the correlator χ+−(k, ω) =
−i
∫∞

0 dteiωt 〈[Ŝ−
−k, S+

k (0)]〉 is concentrated at the magnon fre-
quency ωk = � + εk and is associated to the production of a
single magnon. Off-resonant processes, however, give rise to
a finite contribution to χ−+(k, ω) below the magnon gap; see
Fig. 4(a). As such, we estimate the contribution of such pro-
cesses in the noise spectrum and show that they give a small
contribution to χ+− compared with that of the sound mode.
With this objective in mind, we calculate the leading-order
contribution of the imaginary part of the magnon self-energy
�(k, ω) and approximate the correlation function as

χ+−(k, ω) = 1

ω − ωk + i�′′(k, ω)
, (E1)

where energy shifts to the single magnon dispersion are
neglected. From the effective interaction in Eq. (5) of the
main text, this is given by the second-order process depicted
in Fig. 4(b). In terms of Matsubara frequencies, it can be
written as

�(k, ω) = −J2a4
∑

pq

∑
iω′

niω′′
n

(k · p)2

× 1

(iω′
n−ωp)(iωn+iω′′

n−ωk+q)(iω′
n−iω′′

n−ωp−q)
.

(E2)

FIG. 4. (a) In addition to the sound mode, off-resonant processes
can also give a finite contribution to χ−+ below the magnon gap.
(b) Sunrise diagram contributing to the magnon self-energy of χ−+.

The retarded correlator is obtained by analytical continuation
iωn → ω + iε and taking the imaginary part of the resulting
expression:

�′′(k, ω) = J2a4
∑

pq

(k · p)2δ(ω − � + εp − εk+q

− εp−q)(np − ñp)(1 + nk+q + np−q), (E3)

where we denote ñp = n(εp + ω). A similar analysis follows
for the correlator χ+−(ω) ≈ δ(ω + ωk). Dimensional analysis
in the limit ω � T yields �′′ scaling as �(q, ω) = T ω

J (qa)2.

APPENDIX F: EFFECT OF DIPOLAR INTERACTIONS

Dipolar interactions, which can be sizable in a 2D ferro-
magnet, introduce a variety of effects that need to be carefully
taken into account, namely, it modifies the collision term by
adding hard-core repulsion and induces magnon leakage via
three-body interactions. We incorporate dipolar interactions
via the term

Ĥd = μ2
B

4π

1

2

∑
j j′

[
Ŝ j · Ŝ j′

r3
j j′

− 3
(Ŝ j · r j j′ )(Ŝ j′ · r j j′ )

r5
j j′

]
, (F1)

where μB is the Bohr magneton, and r j j′ is the relative dis-
tance between spins j and j′. It is important to consider the
combined effect of the Zeeman term,

Ĥz = �
∑

i

Ŝz
i , (F2)

and dipolar interactions. In particular, in the presence of a
Zeeman field, it is convenient to pick a quantization axis
which is canted from the 2D plane r = (x, y, 0),

Ŝz
j → cos θ Ŝz

j − sin θ Ŝx
j ,

Ŝx
j → cos θ Ŝx

j + sin θ Ŝz
j,

Ŝy
j → Ŝy

j ,

(F3)
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where θ will be conveniently chosen below. Inserting Eq. (F3) into Eq. (F1), we find

Ĥd = μ2
B

8π

∑
jτ

1

τ 3

[
Ŝx

j Ŝ
x
j+τ

(
1 − 3 cos2 θ

τ 2
x

τ 2

)
+ Ŝy

j Ŝ
y
j+τ

(
1 − 3

τ 2
y

τ 2

)
+ Ŝz

j Ŝ
z
j+τ

(
1 − 3 sin2 θ

τ 2
x

τ 2

)

−6 sin θ cos θ
τ 2

x

τ 2
Ŝx

j Ŝ
z
j+τ − 6 cos θ

τxτy

τ 2
Ŝx

j Ŝ
y
j+τ − 6 sin θ

τxτy

τ 2
Ŝz

j Ŝ
y
j+τ

]
, (F4)

where τ denotes relative positions between spins on a 2D square lattice (not restricted to nearest neighbors). After rearranging
terms, we find

Ĥd = 3μ2
B

8π

∑
jτ

1

τ 3

[(
Ŝ j · Ŝ j+τ

)(1

3
− τ 2

x

τ 2

)
+ sin2 θ

τ 2
x

τ 2
Ŝx

j Ŝ
x
j+τ + cos2 θ

τ 2
x

τ 2
Ŝz

j Ŝ
z
j+τ − τ 2

y − τ 2
x

τ 5
Ŝy

j Ŝ
y
j+τ

−2 sin θ cos θ
τ 2

x

τ 2
Ŝx

j Ŝ
z
j+τ − 2 cos θ

τxτy

τ 2
Ŝx

j Ŝ
y
j+τ − 2 sin θ

τxτy

τ 2
Ŝz

j Ŝ
y
j+τ

]
. (F5)

Note that the first term on the right-hand side can be incorporated into the definition of J with a small anisotropy in the x direction
which we will neglect. For convenience, we define Ĥd = Ĥzz + Ĥxz + Ĥxx + Ĥyy + Ĥxy + Ĥyz, with

Ĥzz = εd cos2 θ
a3

πS2

∑
jτ

τ 2
x

τ 5
Ŝz

j Ŝ
z
j+τ , Ĥxx = εd sin2 θ

a3

πS2

∑
jτ

τ 2
x

τ 5
Ŝx

j Ŝ
x
j+τ , Ĥxz = −2εd sin θ cos θ

a3

πS2

∑
jτ

τxτy

τ 5
Ŝx

j Ŝ
z
j+τ ,

(F6)

Ĥyy = εd
a3

πS2

∑
jτ

τ 2
y − τ 2

x

τ 5
Ŝy

j Ŝ
y
j+τ , Ĥxy = −2εd cos θ

a3

πS2

∑
jτ

τxτy

τ 5
Ŝx

j Ŝ
y
j+τ , Ĥyz = −2εd sin θ

a3

πS2

∑
jτ

τxτy

τ 5
Ŝy

j Ŝ
z
j+τ ,

where we defined the dipolar energy as

εd = 3S2μ2
B

4a3
. (F7)

The Zeeman splitting term in the rotated frame is given Ĥz = Ĥx + Ĥz, with

Ĥx = � cos θ
∑

j

Ŝx
j , Ĥz = −� sin θ

∑
j

Ŝz
j . (F8)

Focusing on Ĥzz first, we define Ŝz
j = −S(1 − n̂ j ), which leads to

Ĥzz = εd cos2 θ
a3

π

∑
jτ

τ 2
x

τ 5
(1 − 2n̂ j + n̂ j n̂ j+τ ) = εd cos2 θ

(
NS − 2

∑
j

n̂ j + a3

π

∑
jτ

τ 2
x

τ 5
n̂ j n̂ j+τ

)
, (F9)

and where, in the last step, we used

∑
τ

e−ik·τ τ 2
x

τ 5
= π

a3
+ O(q2). (F10)

Similarly, for Ĥxz we find

Ĥxz = 2εd sin θ cos θ
a3

πS

∑
jτ

τ 2
x

τ 5
Ŝx

j (1 − n̂ j+τ ) = 2εd sin θ cos θ

S

(∑
j

Ŝx
j − a3

π

∑
jτ

τ 2
x

τ 5
Ŝx

j n̂ j+τ

)
. (F11)

Turning to Ĥxx and using Ŝx
j = (Ŝ+

j + Ŝ−
j )/2, we find

Ĥxx = εd sin2 θ

4

a3

πS2

∑
jτ

τ 2
x

τ 5
(Ŝ+

j Ŝ+
j+τ + Ŝ−

j Ŝ−
j+τ + 2Ŝ+

j Ŝ−
j+τ ) = εd sin2 θ

4S2

∑
k

(Ŝ+
−kŜ+

k + Ŝ−
−kŜ−

k + 2Ŝ+
−kŜ−

k ), (F12)

where, in the last step, we used Eq. (F10). The term Ĥxx introduces coherent creation/destruction of two magnons. The term Ĥxy

also introduces similar two-magnon processes such as those in Ĥxx,

Ĥxy = −εd cos θ

2i

a3

πS2

∑
jτ

τxτy

|τ|5 (Ŝ+
j Ŝ+

j+τ − Ŝ−
j Ŝ−

j+τ ) = −2εd cos θ

iπS2

∑
k

kxky

a
(Ŝ+

−kŜ+
k − Ŝ−

−kŜ−
k ), (F13)
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but the matrix elements of Ĥxy are O(q2) smaller than those corresponding to Ĥxx [in the last step of Eq. (F13), we used∑
τ eik·τ τxτy

τ 5 = 4kxky

a + O(k4)]. As a result, we neglect Ĥxy. Finally, for Ĥyz, we find

Ĥyz = −2εd sin θ a3

πS

∑
jτ

τxτy

τ 5 Ŝy
j (1 − n j+τ ) = −2εd sin θ a3

πS

(∑
jτ

τxτy

τ 5 Ŝy
j −∑ jτ

τxτy

τ 5 Ŝy
j n̂ j+τ

)
= 6εd sin θ a3

πS

∑
jτ

τxτy

τ 5 Ŝy
j n̂ j+τ ,

(F14)

where the first term in the third equality is zero because
∑

τ τxτy/τ
5 = 0, thus giving only a cubic term. The cubic term, however,

has matrix elements O(q2) smaller than those corresponding to Ĥxz because of the factors τxτy. As a result, we neglect the matrix
elements introduced by Ĥyz when compared with those in Ĥxz.

The Zeeman splitting term Ĥx and the dipolar term Ĥxz both generate terms which are linear in Ŝx
i . In particular,

Ĥx + Ĥxz = −� sin θ
∑

j

Ŝx
j + 2εd sin θ cos θ

S

∑
j

Ŝx
j − 2εd sin θ cos θ

S

∑
jτ

τ 2
x

τ 5
Ŝx

j n̂ j+τ . (F15)

As a result, we conveniently define θ such that the linear term is canceled. This leads to

cos θ = S�

2εd
, 0 � S� � 2εd,

θ = 0, S� > 2εd. (F16)

Therefore in this case, the terms

Ĥx + Ĥxz = −2εd sin θ cos θ

S

∑
jτ

τ 2
x

τ 5
Ŝx

j n̂ j+τ (F17)

lead to a cubic interaction term after a Holstein-Primakoff transformation.
In the same spirit, combining Ĥz from Zeeman splitting and Ĥzz from dipolar interaction, we find

Ĥz + Ĥzz = (�S cos θ − 2εd cos2 θ )
∑

j

n̂ j + εd cos2 θ
a3

π

∑
jτ

τ 2
x

τ 5
n̂ j n̂ j+τ . (F18)

As a result, the combination of Hz and Hzz gives rise to a magnon gap induced by Zeeman splitting and dipolar interactions and
a quartic interaction induced by dipolar interactions.

1. Effective Hamiltonian

To cast the dipolar Hamiltonian into a long-wavelength, effective Hamiltonian, we use the Holstein-Primakoff transformation
to leading order, which results in

∑
jτ

τ 2
x

τ 5
n̂ j n̂ j+τ =

∑
jτ

τ 2
x

τ 5
â†

j â
†
j+τ â j+τ â j =

∑
kpq

(∑
τ

e−iq·τ τ 2
x

τ 5

)
â†

k+qâ†
p−qâpâk ≈ π

a3

∑
kpq

â†
k+qâ†

p−qâpâk. (F19)

In the last step, we used Eq. (F10). In addition, for Eq. (F17) we use

∑
jτ

τ 2
x

τ 5
Ŝx

j n̂ j+τ =
√

S

2

∑
jτ

τ 2
x

τ 5
(â†

j â
†
j+τ â j+τ + â†

j+τ â j+τ â j ) =
√

S

2N

∑
kpτ

τ 2
x

τ 5
[e−p·τ â†

pâ†
kâk+p + e−ik·pâ†

k+pâpâk]

≈
√

S

2N

π

a3

∑
kp

(â†
pâ†

kâk+p + â†
k+pâpâk). (F20)

Putting everything together, we find that, at long wavelength, the dipolar and Zeeman Hamiltonian can be effectively written as

Ĥd + Ĥz ≈
∑

k

[�â†
kâk + λ2(âkâ−k + â†

kâ†
−k)] − λ3√

N

∑
kp

(â†
pâ†

kâk+p + â†
k+pâpâk) + λ4

N

∑
kpq

a†
p+qâ†

k−qâpâk,

�̃ = (�S cos θ − 2εd cos2 θ ) + εd sin2 θ

S
, λ2 = εd sin2 θ

2S
, λ3 = εd

√
2/S sin θ cos θ, λ4 = εd cos2 θ. (F21)
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2. Bogoliubov transformation

For small Zeeman fields, the canting angle lies in the range
0 < θ � π/2, and λ2,3 are finite. The quadratic part of the
Heisenberg Hamiltonian combined with Eq. (F21),

Ĥ2 =
∑

k

[(� + εk)â†
kâk + λ2(âkâ−k + â†

kâ†
−k)], (F22)

can be diagonalized using a Bogoliubov transformation:

âk = skβ̂k + tkγ̂
†
−k, â−k = skβ̂k + tkγ̂

†
−k, (F23)

where sk and tk are k-dependent real numbers. It is straight-
forward to show that

sk = cosh ϕk, tk = sinh ϕk, (F24)

diagonalizes Ĥ2,

Ĥ2 =
∑

k

Ek[β†
kβk + γ

†
k γk], Ek =

√
(εk + �)2 − λ2

2,

(F25)
where ϕk is the solution of

sinh 2ϕk = − λ2

2Ek
. (F26)

Several comments are in order. First, we note that the
magnon dispersion is quadratic, with or without dipolar inter-
actions. In particular, in the presence of dipolar interactions,
there will be a small correction to the magnon mass at low
energies on the order of O(εd/J ), and which we will neglect
(quadratic dispersion greatly simplifies the hydrodynamic de-
scription, as will be discussed below). Second, we are mainly
interested in the hydrodynamic behavior at large T such that
magnon–magnon collisions become important. In the regime
εd � T � J , most magnons will typically have large kinetic
energies εk such that corrections due to the Bogoliubov trans-
formation are negligible.

For sufficiently large Zeeman fields, when � � εd and
θ = 0, then the coupling terms verify λ2,3 = 0. In this case,

the quadratic part of ĤJ + Ĥd + Ĥz is already diagonal in the
(âk, a†

k) basis and there is no need for a Bogoliubov transfor-
mation.

3. Magnon leakage

Three magnon processes in Eq.(F21) do not preserve par-
ticle number. This means that the distribution function n̄k =
[z−1eεk/T − 1]−1 is a quasiequilibrium distribution if 0 < z <

1 and invalidates our hydrodynamic theory for frequencies
below the leakage rate. The total magnon leakage rate can be
calculated from

dn

dt
= − λ2

3

N2

∑
kp

2πδ(εk + εp + � − εk+p)

× [n̄kn̄p(1 + n̄k+p) − (1 + n̄k)(1 + n̄p)n̄k+p]. (F27)

Here we note that three magnon processes are not neces-
sarily suppressed by energy and momenta conservation. For
instance, if the incoming magnon states have momenta that
verify k · p = m�, then energy and momentum are conserved
after the collision. For concreteness, let us assume that uα �√

T/m, which leads to

dn

dt
= −γleak (z2 − z3)

4π

T λ2
3

J2a2
, (F28)

where we normalized k̃ = k/k̄ and the value of γleak (z) can
be shown numerically to be γleak ∼ O(1). From here we can
define the leakage rate

1

τleak
= 1

n

dn

dt
= γleakλ

2
3

2J
(z2 − z3). (F29)

Using J ∼ 1000 K, λ3 ∼ 1 K, and z ≈ 0.9, we obtain
1/τleak ∼ 5 MHz. As such, the magnon number can be as-
sumed to be a good conserved quantity for ω � 1 MHz.
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