Multiparticle Interactions for Ultracold Atoms in Optical Tweezers: Cyclic Ring-Exchange Terms

Annabelle Bohrdt,1,2,† Ahmed Omran,3,† Eugene Demler,3 Snir Gazit,4 and Fabian Grusdt5,2,1,*
1Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
2Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
4Racah Institute of Physics and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
5Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstrasse 37, München D-80333, Germany

(Received 15 October 2019; accepted 16 January 2020; published 19 February 2020)

Dominant multiparticle interactions can give rise to exotic physical phases with anyonic excitations and phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class. In this Letter, we propose a protocol showing how SU(N)-invariant multibody interactions can be implemented in optical tweezer arrays. We utilize the flexibility to rearrange the tweezer configuration on short timescales compared to the typical lifetimes, in combination with strong nonlocal Rydberg interactions. As a specific example, we demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder geometry. We study its phase diagram using density-matrix renormalization group simulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also discuss how the proposed protocol can be utilized to implement the strongly frustrated J–Q model, a candidate for hosting a deconfined quantum critical point.

DOI: 10.1103/PhysRevLett.124.073601

Introduction.—Ultracold atoms in optical lattices have become a versatile platform for performing analog quantum simulations, with widely tunable interactions [1] and the ability to control the single-particle band structure [2–8]. Using atoms with permanent electric or magnetic dipole moments [9] or in Rydberg states [10] allows us to study systems with long-range dipole-dipole or van der Waals interactions, which can mimic the long-range Coulomb repulsion between electrons in a solid. These ingredients can be combined to study exotic phenomena in strongly correlated many-body systems, related, for example, to quantum magnetism [11–17] or the fractional quantum Hall effect [18–20]. Leveraging the capabilities of ultracold atoms, such experiments promise new insights, for example, to directly measure topological invariants [21–25] or image the quantum mechanical wave function with single-site resolution [26–31].

In this Letter, we go beyond the two-body interactions realized so far and propose a general protocol to implement highly symmetric multiparticle interactions with ultracold atoms in optical tweezer arrays. Multiparticle interactions can lead to exotic ground states with intrinsic topological order [32,33], with applications for quantum computation [34,35], and they are an important ingredient for realizing lattice gauge theories [36–39] central to the quantum simulation of high-energy phenomena or deconfined quantum criticality [40,41]. If these higher-order couplings possess additional symmetries, e.g., SU(N) invariance in spin systems, models with strong frustration can be realized for which the ground states are strongly correlated quantum liquids.

In condensed matter systems, multispin interactions of this type emerge from higher-order virtual processes [42], leading to corrections to the pairwise Heisenberg couplings of SU(2) spins in a half filled Hubbard model. These cyclic ring-exchange terms play a role in frustrated quantum magnets like solid 3He [43] and possibly also for the phase diagram of high-Tc cuprate superconductors [44,45]. In this Letter, we demonstrate how such multispin interactions can be realized and independently tuned in ultracold atom systems without resorting to high-order virtual processes.

A promising route to implementing multiparticle processes is to use strong interactions between atoms in different Rydberg states representing spin degrees of freedom (d.o.f.). This allows us to build a versatile quantum simulator that can be used to realize ring-exchange interactions in spin systems by representing them as sums of products of Pauli matrices [46] or to implement local constraints giving rise to emergent dynamical gauge fields [47,48].

Here we follow a similar strategy, but propose to combine strong Rydberg interactions with the capabilities to quickly change the spatial configuration of atoms...
In ultracold atoms, similar higher-order processes have been used to realize nonchiral cyclic ring-exchange couplings [57,58].

We start by explaining the general scheme using the example of CCR interactions. Our method is more versatile, however, and we discuss how it can be adapted to implement the J–Q model, which has been proposed as a candidate system realizing deconfined quantum criticality [40,41]. We also analyze the phase diagram of the CCR Hamiltonian (1) in a ladder geometry, with exactly one SU(2) spin per lattice site. We show that the phase diagram contains a gapped Haldane phase with topologically protected edge states [59–61] at intermediate values of $\pi/4 \lesssim \phi \lesssim 3\pi/4$, a ferromagnetic phase for $\phi \gtrsim 3\pi/4$, and a dominant vector chirality for $\phi \lesssim \pi/4$.

Implementation.—For simplicity, we consider a single plaquette, restrict ourselves to $N_p = 4$ sites and assume SU(2) symmetry, see Fig. 1. Generalizations of our scheme to more than one plaquette, $N_p \neq 4$, and SU(N) symmetry are possible (see Supplemental Material [62]).

Each of the four sites, labeled $j = 1,\ldots, 4$, consists of a static optical tweezer trapping a single atom, where recently demonstrated rearrangement methods [49–53] allow for populating each site with high fidelity. We assume that the atoms remain in the vibrational ground states of the microtraps throughout the sequence. Every atom has two internal states $\sigma = \uparrow, \downarrow$, which we use to implement an effective spin-1/2 system. As a specific configuration we suggest to use 133Cs atoms and utilize their $F = 3, m_F = 2, 3$ hyperfine states to represent the two spins. Optical pumping with site-resolved addressing can then be employed to prepare arbitrary initial spin patterns [58] and study their dynamics under Eq. (1).

The key ingredient for our proposed implementation of CCR interactions is to realize collective permutations of the entire spin configuration in the plaquette. This can be achieved by physically rotating the tweezer array around the center of the plaquette, while ensuring that the motional and spin states of the atoms are preserved and coherence is not lost. The effect of clockwise rotations of the microtraps on the spin states is described by the operator \hat{P},

$$\hat{P}\sigma_1,\sigma_2,\sigma_3,\sigma_4 = |\sigma_4,\sigma_1,\sigma_2,\sigma_3\rangle.$$ \hfill (2)

Optimized trajectories can be chosen to cancel heating effects from the motion [65]. These require a timescale set by the quantum speed limit that scales as the inverse energy gap of each trap $t_{rot} \sim 1/\Delta \epsilon$. For deep trapping potentials where $\Delta \epsilon \approx 150$ kHz, rotation times of $t_{rot} < 10$ ms are achievable.

In contrast to Eq. (2), the effective Hamiltonian leads to a superposition of permuted and nonpermuted states in every infinitesimal time step Δt, as can be seen from a Taylor expansion: $e^{-i\hat{H}_{CCR}\Delta t} = 1 - i\hat{H}_{CCR}\Delta t$. To create such superposition states in our time evolution, we assume
that every atom has a second internal d.o.f. labeled by \(\tau = 0, 1 \). Concretely, we propose to realize the new states \(|\tau = 1\rangle\sigma\rangle\) in \(^{133}\text{Cs}\) atoms by \(F = 4, m_F = 3, 4\) hyperfine levels, where \(m_F = 3 \) (\(m_F = 4\)) corresponds to \(\sigma = \downarrow \) (\(\sigma = \uparrow \)). These additional levels will be used as auxiliary states, whereas the states \(|\tau = 0\rangle\sigma\rangle\) introduced before—implemented as \(F = 3, m_F = 2, 3\) levels in \(^{133}\text{Cs}\)—realize the physical spin states.

One part of our protocol consists of a permutation of the spins \(\sigma \), but only in the manifold of auxiliary states. This step requires a total time \(t_{\text{rot}} \) and can be described by the unitary transformations

\[
\hat{U}_+ = \prod_j |1\rangle_j |1\rangle \otimes \hat{P} + \prod_j |0\rangle_j |0\rangle \otimes \hat{i}_\sigma, \quad \hat{U}_- = \hat{U}_+^\dagger. \tag{3}
\]

To implement this evolution, two sets of optical tweezer arrays can be used, of which only one is rotating. We suggest to realize it by the near-magic wavelength \(\lambda_{\text{magic}} \approx 871.6\) nm in \(^{133}\text{Cs}\), which strongly confines atoms in the state \(\tau = 1 \), but almost does not affect atoms in \(\tau = 0 \). By applying \(\hat{U}_\pm \) to superposition states with either all atoms in \(\tau = 1 \) or all atoms in \(\tau = 0 \), one can realize the desired superpositions of permuted and nonpermuted spin configurations. Such states can be realized by collective \(\pi \) pulses conditioned upon a control qubit trapped in the center of the plaquette [66], as described next.

If the control atom is in the state \(|+\rangle_c\rangle\), it is transferred to a Rydberg state \(|\rho\rangle_c\rangle\) with a resonant \(\pi \) pulse and Rabi frequency \(\Omega_r \), see Fig. 1. If the control atom is in state \(|-\rangle_c\rangle\), the laser \(\Omega_r \) is off-resonant and no Rydberg excitation is created. Next, a Raman transition by lasers \(\Omega_r^{(1)} \), \(\Omega_r^{(2)} \) through an intermediate Rydberg state \(|j\rangle\rangle\) is used to implement a \(\pi \) pulse transferring the physical states \(|0\rangle\rangle\) to \(|1\rangle\rangle\), without changing their spin state \(|\sigma\rangle\rangle\). In the presence of a coupling field \(\Omega_{\text{EIT}} \) that establishes two-photon resonance to the Rydberg state with each Raman laser, electromagnetically induced transparency (EIT) [67] suppresses the transition \(|0\rangle\rangle\leftrightarrow|1\rangle\rangle\). However, the EIT condition is lifted by the Rydberg blockade mechanism if the control atom is in the Rydberg state \(|\rho\rangle_c\rangle\) [66], enabling the transfer. After the transfer is complete, another \(\pi \) pulse by \(\Omega_r \) is applied to the control atom. This ensures that the control atom remains trapped during the protocol, even if the Rydberg excited state is not subject to a trapping potential. In summary, this part is described by the unitary transformation

\[
\hat{U}_\text{sw} = |+\rangle_c\langle +| \otimes \left(\prod_j |1\rangle_j |0\rangle + \text{H.c.} \right) \otimes \hat{i}_\sigma \\
+ |\rangle_c\langle \rangle| \otimes \hat{i}_r \otimes \hat{i}_\sigma. \tag{4}
\]

The total time required to implement this switch (sw) is denoted by \(t_{\text{sw}} \).

Finally, we need to introduce quantum dynamics between the states of the control atom. This can be realized by a dressing laser \(\Omega_c \) driving transitions between \(|\pm\rangle_c\rangle\) at a detuning \(\Delta_c \). These dynamics take place over a period of time \(t_c \) and are described by the unitary evolution \(\hat{U}_c = e^{-i\hat{\mathcal{H}}_c t_c} \) with \(\hat{\mathcal{H}}_c = \Delta_c |\pm\rangle_c\langle +| + \Omega_c (|+\rangle_c\langle |- + \text{H.c.}) \). During the remaining steps of the protocol, Eqs. (3) and (4), we assume that \(\Omega_c = 0 \) is off and the control atom picks up a phase \(\pm \phi_c \) if it is in state \(|+\rangle_c\rangle\). This phase can be adjusted by the detuning \(\Delta_c \) and the duration \(t_{\text{rx}} = 2t_{\text{sw}} + t_{\text{rot}} \), during which the time evolution of the control is \(\hat{U}_{\pm\phi_c} = |+\rangle_c\langle +| e^{i\phi_c} + |\rangle_c\langle \rangle \).

The complete protocol is summarized in Fig. 2. It consists of a periodic repetition of the individual steps described above. At the discrete time steps \(nT \), where \(T = 2(t_c + t_{\text{rot}}) \), the unitary evolution is described by an effective Hamiltonian \(\hat{\mathcal{H}}_{\text{eff}} \),

\[
e^{-i\hbar t\hat{\mathcal{H}}_{\text{eff}}} = (\hat{U}_T)^n = (\hat{U}_{\text{rx},+}\hat{U}_c\hat{U}_{\text{rx},-}\hat{U}_c)^n, \tag{5}
\]

where we defined \(\hat{U}_{\text{rx},\pm} = \hat{U}_\text{sw}(\hat{U}_{\pm\phi_c} \otimes \hat{U}_\pm)\hat{U}_\text{sw} \). As will be shown below, \(\hat{\mathcal{H}}_{\text{eff}} \) realizes CCR interactions with a tunable phase \(\phi = -\phi_c \) and amplitude

\[
K = -\frac{1}{2\hbar} \left(\frac{\Omega_c}{\Delta_c} \right)^2, \tag{6}
\]

provided that

\[
t_c \ll 2\pi/\Delta_c, \quad \Omega_c \ll \Delta_c. \tag{7}
\]

Now we estimate the strength \(|K|\) of the CCR interactions that can be achieved with the proposed setup. To satisfy Eq. (7), we assume \(\Omega_c = 0.2\Delta_c \) and \(t_c\Delta_c = 0.4 \).

(a) time \(t \)

\[
\begin{array}{cccc}
\hat{U}_{\text{rx},+} & \hat{U}_c & \hat{U}_{\text{rx},-} & \hat{U}_c \\
T & t_{\text{rx}} & t_c & t_{\text{rx}} & t_c & 0
\end{array}
\]

(b) \(\hat{U}_c \)

\[
\begin{array}{c}
\hat{U}_c \\
\Delta_c \gg \Omega_c \\
t_c \Delta_c \ll 1 \\
t_c \\
\hat{U}_{\text{sw}} & \hat{U}_\pm & \hat{U}_{\text{sw}} \\
s & \Omega_c = 0 \\
t_{\text{sw}} & t_{\text{rot}} & t_{\text{sw}}
\end{array}
\]

FIG. 2. Proposed protocol: The sequence in (a) is repeated periodically with period \(T = 2(t_c + t_{\text{rot}}) \). When \(t_c \ll 2\pi/\Delta_c, 1/\Omega_c \) it implements a Trotterized time evolution of the effective Hamiltonian (8), which realizes CCR couplings when \(\Delta_c \gg \Omega_c \). The individual time steps are illustrated in (b).
a rotation time $t_\text{rot} = 10 \mu s$ and assuming $t_{\text{sw}}, t_c \ll t_\text{rot}$, a reasonable strength of $K/\hbar = 50 \text{ Hz} \times 2\pi$ can be achieved. This requires $\Omega_c/2\pi \gg 1.3 \text{ kHz}$, which can be easily realized; the condition $t_{\text{sw}} \ll 10 \mu s$ can also be met, as the Rydberg π pulses on the control atom can be executed in $\sim 100 \text{ ns}$ each, and the Raman transfer between the states $|0\rangle_j$ and $|1\rangle_j$ can be driven with coupling strengths above 1 MHz.

Effective Hamiltonian.—Next we show that our protocol realizes the Hamiltonian in Eq. (1). When $t_c/2\pi \ll 1/\Delta_c, 1/\Omega_c$, we can write $\hat{U}_c = 1 - i\hat{A}_c t_c$ and calculate $\exp[-i\hat{A}_c t_c]$ to leading order in t_c. Equations (3) and (4) yield

$$
\hat{H}_\text{eff} = \frac{t_c}{T} \{ 2\Delta_c |+\rangle_c \langle + | \\
+ \Omega_c (| - \rangle_c \langle + | (1 + e^{i\phi_c} \hat{P}) + \text{H.c.} \}.
$$

When $\Omega_c \ll \Delta_c$ we can eliminate the state $|+\rangle_c$, which is only virtually excited. This further simplifies the effective Hamiltonian and we obtain

$$
\hat{H}_\text{eff} = K (2 + e^{-i\phi_c} \hat{P} + e^{i\phi_c} \hat{P}^\dagger).
$$

Up to the energy shift $2K$ this realizes CCR interactions in an isolated plaquette. The result can be extended to multiple plaquettes by implementing the Trotterized time step \hat{U}_T interchangeably on inequivalent plaquettes.

Two-leg ladder with CCR.—Now we discuss the physics of the SU(2) CCR Hamiltonian in a two-leg ladder. We vary the phase ϕ in the Hamiltonian (1) with $K = 1$ and calculate the ground state phase diagram using the density-matrix renormalization group (DMRG). For $\phi = \pi$, the ground state has ferromagnetic correlations, see Fig. 3(c). It can be readily seen that the variational energy $\langle \hat{H}_\text{CCR}(\pi) \rangle$ is minimized for ferromagnetic configurations. In the sector $S_{\text{tot}} = 0$ used in our DMRG in Fig. 3(c), we find phase separation with two ferromagnetic domains of opposite magnetization.

At intermediate ϕ, we find an emergent Haldane phase, with two-fold degenerate states in the entanglement spectrum, see Fig. 3(a). For a finite $S_{\text{tot}} = 1$, the expectation value $\langle \hat{S}_{L,1}^z \rangle$ at the edge is nonzero, see Fig. 3(b). The spin gap $\Delta_S = E_{0,S=1} - E_{0,S=0}$, defined as the difference between the ground state energy with and without finite total magnetization, is zero in this phase, since the additional spin can be placed in the spin-1/2 topological edge states of the system without increasing the total energy. We corroborate this picture further by considering the $K-K'$ model with alternating strengths K, K' of the CCR interactions on adjacent plaquettes. In the Supplemental Material [62], we provide an explicitly derivation of a spin-1 model with a gapped Haldane ground state [60,68] for $\phi = \pi/2$ and $K' \ll K$.

For small values of ϕ, the ground state of the CCR Hamiltonian is a dominant vector chirality phase, as discussed in Ref. [69]. This phase is characterized by correlations of the form $\hat{S}_{x,y}^z \otimes \hat{S}_{x',y'}^z$ in a staggered arrangement around each plaquette. We find that the staggered correlation between different rungs, measured from the center $L/2$ of the chain,

$$
(-1)^x \langle (\hat{S}_{L/2,1}^x \otimes \hat{S}_{L/2,2}^x) \cdot (\hat{S}_{L/2+x,1}^y \otimes \hat{S}_{L/2+x,2}^y) \rangle,
$$

decays slowly as a function of the distance x and retains significant nonzero values over the considered system sizes, see Fig. 3(d). The transition between the dominant vector chirality and Haldane phases is a symmetry-protected topological (SPT) phase transition.

Using the global SU(2) symmetry, the staggered vector chirality becomes $6\langle \hat{S}_{L/2,1}^x \hat{S}_{L/2,2}^y \hat{S}_{L/2+x,1}^x \hat{S}_{L/2+x,2}^y - \hat{S}_{L/2+x,1}^x \hat{S}_{L/2+x,2}^y \hat{S}_{L/2,1}^y \hat{S}_{L/2,2}^x \rangle (-1)^x$. Measuring it requires access to two four-point functions of the form $\langle \hat{S}_{x,y}^z \otimes \hat{S}_{x',y'}^z \rangle$, which can be detected by making use of local addressing techniques (see, e.g., [70]). To detect the Haldane phase experimentally, we propose to study weakly magnetized systems and image the topological edge states. Alternatively, one could...
work in the plaquette basis (see Supplemental Material [62]) and measure the Haldane string order parameter. An interesting future extension would be to use machine learning techniques to retrieve nonlocal order parameters from a series of quantum projective measurements.

Summary and outlook.—In summary, we propose a general method for implementing multibody interactions in ultracold atom experiments using optical tweezer arrays. The approach is particularly useful in the presence of additional, e.g., global SU(N) spin, symmetries. Specifically, we consider a four-body cyclic ring-exchange term, which can be realized with a combination of multiquit gates based on Rydberg states and movable optical tweezers. We numerically study the ground state of the cyclic ring-exchange Hamiltonian and find different dominant correlation functions as the complex phase of the ring-exchange term is varied.

Our Letter paves the way for future studies of the interplay between ring- and pair-exchange terms, as discussed in Ref. [71] for the nonchiral case $\phi = 0$. In the experimental realization proposed here, it is conceptually straightforward to introduce mobile holes into the system, leading to a finite doping. The interplay between spin and charge d.o.f. could be further studied by adding direct tunneling terms, which lead to rich Hamiltonians in the spirit of t–J–Δ-like models. The physics of this type of model is completely unknown and provides an exciting prospect for future theoretical and experimental research. The proposed protocol is versatile enough to implement larger classes of models with multispin interactions, such as the J–Q model [41] (as we discuss in the Supplemental Material [62]). In two dimensions, this model features a phase transition between an antiferromagnet and a valence-bond solid, which has been proposed as a candidate for a deconfined quantum critical point [41]. Moreover, the experimental protocol can be varied to study different types of problems, such as discrete time evolutions of complex models or impurity models, which can be realized by an inclusion of the control qubits into the models.

The authors would like to thank T. Calarco, M. Endres, M. Greiner, A. Kaufman, M. Knap, and M. Lukin for fruitful discussions. A.B. and F.G. acknowledge support from the Technical University of Munich—Institute for Advanced Study, funded by the German Excellence Initiative and the European Union FP7 under Grant No. 291763, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2111—390814868, DFG Grant No. KN1254/1-1, DFG TRR80 (Project F8). A.B. acknowledges support by the Studienstiftung des deutschen Volkes. A.O. acknowledges support from a German Research Foundation (DFG) research fellowship. E.D. acknowledges support by Harvard-MIT CUA, AFOSR-MURI Quantum Phases of Matter (Grant No. FA95501610323), DARPA DRINQS program (Grant No. D18AC00014). S.G. acknowledges support from the Israel Science Foundation, Grant No. 1686/18. F.G. acknowledges support by the Gordon and Betty Moore Foundation through the EPiQS program.

*Corresponding author.
fabian.grusdt@lmu.de

These authors contributed equally.

[49] D. Barredo, S. de Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, An atom-by-atom assembler of defect-free...

