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Traditionally, one- and two-point correlation functions are used to characterize many-body systems. In
strongly correlated quantum materials, such as the doped 2D Fermi-Hubbard system, these may no longer
be sufficient, because higher-order correlations are crucial to understanding the character of the many-body
system and can be numerically dominant. Experimentally, such higher-order correlations have recently
become accessible in ultracold atom systems. Here, we reveal strong non-Gaussian correlations in doped
quantum antiferromagnets and show that higher-order correlations dominate over lower-order terms. We
study a single mobile hole in the t − J model using the density matrix renormalization group and reveal
genuine fifth-order correlations which are directly related to the mobility of the dopant. We contrast our
results to predictions using models based on doped quantum spin liquids which feature significantly
reduced higher-order correlations. Our predictions can be tested at the lowest currently accessible
temperatures in quantum simulators of the 2D Fermi-Hubbard model. Finally, we propose to exper-
imentally study the same fifth-order spin-charge correlations as a function of doping. This will help to
reveal the microscopic nature of charge carriers in the most debated regime of the Hubbard model, relevant
for understanding high-Tc superconductivity.
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Introduction.—High-temperature superconductors are
prime examples of strongly correlated quantum matter.
In these quasi-2D systems, superconductivity arises when
mobile dopants are introduced into a parent antiferro-
magnetic (AFM) compound [1,2], but the detailed mecha-
nism remains elusive. It is widely believed that the interplay
of spin and charge degrees of freedom plays a central role
for understanding the underlying physics at low doping and
can be described theoretically by the Fermi-Hubbard or
t − J model [3]. The central goal of this Letter is to
demonstrate that key features of magnetic dressing of
doped holes in the Fermi-Hubbard model can be revealed
by analyzing five-point spin-charge correlation functions.
Furthermore, such high-order correlation functions are
found to be larger than the lower-order ones in the regime
of low doping and low temperatures.
Understanding the nature of charge carriers in strongly

correlated electron systems, such as the doped Fermi-
Hubbard model, is a central problem of quantum many-body
physics. While a single mobile hole inside the 2D quantum-
Heisenberg AFM forms a magnetic (or spin) polaron [4–16],
with spin and charge quantum numbers, it remains unknown
whether spin and charge excitations (spinons and chargons,
respectively) may become deconfined in the strange metal

and pseudogap regimes, usually a characteristic of doped 1D
spin chains [17–20]. Direct experimental or numerical
evidence remains lacking so far.
A common perspective on the puzzling properties of

cuprates is the idea of several competing orders. Thus,
numerical studies of the Fermi-Hubbard and t − J models
have often focused on the analysis of two-point correlation
functions, which also allow one to characterize different
types of broken symmetries. Furthermore, two-point cor-
relation functions can be naturally accessed in solid state
systems using scattering experiments [21–23], and they
play a central role in the development of effective mean-
field theories. Recently, with the advent of quantum simu-
lators based on ultracold atoms and ions and, especially,
quantum gas microscopes [24–31], analysis of higher-order
correlation functions, pioneered in Ref. [32], has become a
new experimental tool in the study of quantum many-body
states [14,33–38]. They have rarely been studied so far, even
though they contain a wealth of information about the
underlying quantum states and are expected to become
relevant when mean-field theories characterized by Gaussian
correlations are no longer sufficient for capturing the
physics. A notable exception is constituted by three-point
spin-charge correlations, which have previously been

PHYSICAL REVIEW LETTERS 126, 026401 (2021)

0031-9007=21=126(2)=026401(7) 026401-1 © 2021 American Physical Society

https://orcid.org/0000-0003-1736-0187
https://orcid.org/0000-0003-2237-3804
https://orcid.org/0000-0003-3531-8089
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.026401&domain=pdf&date_stamp=2021-01-12
https://doi.org/10.1103/PhysRevLett.126.026401
https://doi.org/10.1103/PhysRevLett.126.026401
https://doi.org/10.1103/PhysRevLett.126.026401
https://doi.org/10.1103/PhysRevLett.126.026401


theoretically analyzed [15,39–42] and recently been
measured [14].
Here, we identify lightly doped quantum AFMs as a

system where genuine higher-order spin-charge correla-
tions are present. Different from the situation in the
undoped parent spin models, these higher-order correla-
tions even dominate over lower-order (including three-
point) terms when t=J is sufficiently large; see Fig. 1(a).
Hence, they provide a promising new diagnostic to unravel
the nature of charge carriers and distinguish different many-
body states [43]. Indeed, we show that even nonperturba-
tive effective descriptions, such as doped resonating
valence bond (RVB) states, cannot explain the higher-order
correlations we find numerically at low doping. Instead, our
results can be interpreted as signatures of geometric strings
[15,44] connecting spinons and chargons [45–48], remi-
niscent of an underlying Z2 Gauss law. Physically, strong
five-point correlations indicate that a moving hole leaves
behind a string of flipped spins, as shown in Fig. 2.
In this Letter, after introducing the higher-order spin-

charge correlators, we perform DMRG ground state sim-
ulations of one mobile dopant on an extended cylinder. We
then compare the latter to effective theoretical descriptions
based on doped RVB states and the string picture. Finally,

we use exact diagonalization to determine the temperature
required for an experimental verification. In a follow-up
paper, we include the effect of a pinning potential [49].
Higher-order correlators.—We consider the following

fifth-order ring spin-charge correlator:

C⋄ðrÞ ¼
24

hn̂hr i
hn̂hr Ŝzrþex Ŝ

z
rþey Ŝ

z
r−ex Ŝ

z
r−eyi; ð1Þ

where n̂hr is the hole (dopant) density at site r and Ŝzj
denotes the spin operator in the z direction at site j. To
witness the presence of genuine higher-order correlations,
we calculate the connected correlator in the comoving
frame with the hole (defined in Supplemental Material
[50]). In a spin-balanced ensemble with hŜzi ¼ 0 (see
discussion in Ref. [49]), expectation values with an odd
number of Ŝz operators vanish, and we obtain

Ccon⋄ ¼ C⋄ − 24
X

ði;jÞ∉ðk;lÞ

hn̂hr ŜzrþiŜ
z
rþji

hn̂hri
hn̂hr ŜzrþkŜ

z
rþli

hn̂hr i
: ð2Þ

In weakly correlated quantum systems, the values of
higher-order correlation functions are dominated by more
fundamental lower-order correlators; i.e., connected
nth-order correlation functions Ccon

n decrease with decreas-
ing n, jCcon

1 j > jCcon
2 j > � � �. For classical (product) states

all connected correlations vanish Ccon
n ¼ 0, while in

Gaussian systems only Ccon
1 ; Ccon

2 ≠ 0 are nonzero [51].
Magnetic polarons.—Intriguingly, for a magnetic

polaron, formed when a single mobile hole is doped into
an AFM, we find that the disconnected contributions from
the lower-order correlators, Cdisc⋄ ¼ C⋄ − Ccon⋄ , are signifi-
cantly smaller in magnitude than the higher-order corre-
lators: jCdisc⋄ j > jC⋄ðrÞj, jCcon⋄ ðrÞj. In Fig. 1, we show
DMRG results [52] for the ground state of a single hole
in the t − J [53] model, as a function of t=J. The mobility
of the dopant plays an important role for observing sizable
higher-order spin-charge correlations. As t=J is increased
from t=J ¼ 1 to t=J ¼ 5, the absolute value of Ccon⋄
approximately doubles. Throughout, the product of the
lower-order two-point correlation functions is almost an
order of magnitude smaller.

(a)

(b)

FIG. 1. Fifth-order spin-charge correlations in a quantum AFM
with a mobile dopant are studied in the 2D t − J model and
compared to the corresponding fourth-order correlators in the
undoped Heisenberg AFM (a). We use the density matrix
renormalization group (DMRG) on a 6 × 12 cylinder and
evaluate correlators at the center, in spin-balanced ensembles
with hŜzi ¼ 0. For one mobile dopant, genuine fifth-order
correlations Ccon⋄ [Eq. (2), blue] are significantly larger (by a
factor × 7) than the lower-order disconnected terms Cdisc⋄ ¼
C⋄ − Ccon⋄ (yellow). In the undoped Heisenberg AFM, the
opposite is true: Lower-order correlators are dominant, while
genuine higher-order correlations are smaller (×0.4). (b) Spin-
charge correlators as a function of t=J. Our numerical results
(data points, bare correlations C⋄ in red) are explained by a FSA
ansatz (ribbons; width indicates statistical errors).

FIG. 2. The three-point spin-charge correlator diagonally next
to the hole, hn̂hj Ŝzjþex

Ŝzjþey
i (green bubble next to gray dot),

vanishes for a mobile hole moving through a classical Néel state
at the end of an Sz string of length l ≥ 1. The fifth-order
correlations C⋄ ∝ hn̂hj Ŝzjþex

Ŝzjþey
Ŝzj−ex Ŝ

z
j−eyi remain sizable and

negative.
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We can define related fourth-order correlators in the
absence of doping as D⋄ðrÞ ¼ 24hŜzrþex Ŝ

z
rþey Ŝ

z
r−ex Ŝ

z
r−eyi; a

corresponding expression is obtained for the connected
part Dcon⋄ ðrÞ. In the classical Ising AFM, D⋄ ¼ 1 and
Dcon⋄ ¼ 0. For the 2D Heisenberg model, we performed
DMRG simulations on a 6 × 12 cylinder and obtained
D⋄ ¼ 0.12 and Dcon⋄ ¼ −0.083 in the ground state, as
indicated in Fig. 1(a). The connected fourth-order corre-
lator becomes negative only because we subtract the
significantly larger and positive two-point correlators,
Ddisc ¼ D⋄ −Dcon⋄ ¼ 0.20. As expected for a weakly
correlated quantum system and different from the ground
state with a mobile hole in the t − J model, the lower-order
correlators dominate in the 2D Heisenberg model: They
are more than twice as large as the genuine fourth-order
correlations.

Orders of magnitude and the signs of DðconÞ⋄ can be
understood from a simple model of spontaneous symmetry
breaking. Consider an ensemble of classical Néel states
with AFM order parameters pointing in random directions.
Because D⋄ is always measured in the z basis, we average
over the entire ensemble and obtain

D⋄jcl ¼ 0.2; Dcon⋄ jcl ¼ −0.133: ð3Þ

These correlations are purely classical. Quantum fluctua-
tions are expected to further reduce these values in the
SU(2)-invariant Heisenberg model, as confirmed by our
DMRG calculations.
Geometric and Sz strings.—Negative fifth-order corre-

lations Ccon⋄ ðrÞ < 0 provide a signature of AFM correla-
tions hidden by the motion of dopants. To understand the
origin of such higher-order correlations, we first consider a
toy model of a single hole in an Ising AFM pointing along
the Sz direction. Neglecting string configurations affecting
more than one spin in the direct vicinity of the mobile
dopant, we notice that C⋄ switches sign if the hole is
attached to a string Σ of overturned spins (Sz string) of
length l > 0. Hence, C⋄ can be expressed by the proba-
bility pl>0 for the string to have nonzero length, namely,
C⋄ ≈ pl¼0 − pl>0 or C⋄ ≈ 1–2pl>0.
Assuming that the system is in an equal superposition of

all string configurations, we can estimate various correla-
tion functions. Because the hole is equally likely to occupy
either sublattice, hn̂hr Ŝzr�ex;y

i ¼ 0. Three-point correlations

hn̂hr Ŝzr�ex;y
Ŝzr�ex;y

i ¼ 0 vanish, as can be seen by averaging

over the four possible orientations of the first string
segment, counting from the hole, and neglecting string
configurations which affect more than one spin in the
immediate vicinity of the hole; see Fig. 2. Hence, Ccon⋄ ðrÞ ¼
C⋄ðrÞ ≈ −1 for sufficiently many nonzero strings pl>0 ≈ 1.
In this setting, relevant to the 2D t − Jz model [44,54],

C⋄ takes the role of a Z2 Gauss law: The mobile dopants
represent Z2 charges, and the Z2 electric field lines

correspond to Sz strings of overturned spins. Similarly,
in the SU(2)-invariant t − J or Fermi-Hubbard models, the
higher-order correlator C⋄ serves as an indicator for geo-
metric strings [15,44] of displaced spins.
The t=J dependence observed in Fig. 1 can be explained

within the geometric string theory by a frozen-spin
approximation (FSA) ansatz [44]. As in Refs. [55,56],
we start from snapshots of the Heisenberg ground state in
the Fock basis along Sz and create a hole by randomly
removing one spin. This dopant is subsequently moved
through the system in random directions, rearranging the
positions of the surrounding spins while keeping their
quantum state frozen; the string length distribution is
calculated from a linear string model with string tension
dE=dl ¼ 2JðC2 − C1Þ [44], where C1ð2Þ are nearest (next-
nearest) neighbor spin correlations in the undoped AFM.
This way, new sets of snapshots are generated for every
value of t=J, from which the higher-order correlators can
then be obtained [55].
Doped spin liquids.—A class of microscopic variational

wave functions that has been used to model doped quantum
spin liquids is based on Anderson’s RVB paradigm [57,58].
Being able to resolve properties of the many-body wave
function on microscopic scales, ultracold atom experiments
provide an opportunity to put the RVB theory to a rigorous
experimental test in a clean system.
Here, we calculate the higher-order spin-charge correla-

tions CðconÞ⋄ for two paradigmatic doped RVB trial
states. The uniform RVB state starts from an unpolarized
Fermi sea jFSi of free spin-up and spin-down spinons f̂k;σ.
To describe a free hole excitation moving through the
system, one spinon with momentum k and spin σ is
removed. A meaningful trial state for the t − J model,
without double occupancies and independent of t=J, is
obtained by applying the Gutzwiller projection: jΨuRVBi ¼
NP̂GWf̂k;σjFSi normalized by N . We use standard

Metropolis Monte Carlo sampling [59] to evaluate CðconÞ⋄
in the trial state jΨuRVBi and show our result in Fig. 3. We

find CðconÞ⋄ ¼ −0.040ð4Þ with significantly smaller magni-
tude than found for large values of t=J by DMRG; cf. Fig. 1.
We find a similar result for the doped π-flux RVB state

[60], for which decent agreement with experimental data
has recently been reported in ultracold atoms at finite
doping [55,56]. The π-flux state with a single hole has the
same form as the uRVB state above, except that the Fermi
sea jFSi is replaced by a Dirac semimetal of spinons
obtained when introducing π magnetic flux per plaquette
in the effective spinon Hamiltonian [61]. In this case,
Ccon⋄ ¼ −0.049ð3Þ slightly increases and C⋄ ¼ −0.008ð3Þ
decreases in magnitude. Both are significantly weaker than
numerically expected from DMRG when t > J.
In a recently proposed extension of the RVB ansatz,

geometric strings are included in the trial wave function
[15,62]. Now we demonstrate that the presence of such
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geometric strings increases the expected higher-order
correlators. We start from the optimized RVB wave
function for half filling (no doping) [63,64], which includes
a weak spontaneously formed staggered magnetization
along the Sz direction. A spinon is removed in the usual
way, and after the Gutzwiller projection a geometric string
is added to the hole, thus rearranging the spins surrounding
the dopant; see Refs. [15,62] for details.

In Fig. 3 (right panel), we show how CðconÞ⋄ evaluated for
this string wave function depends on the ratio of hole
tunneling t and the linear string tension dE=dl underlying
the model. When t=J ¼ 0, the length of geometric strings is
zero, and the observed increase of the higher-order correlator
is due to the staggered magnetization along Sz included in
the trial wave function. For increasing tunneling t, the
string length grows and another significant increase of

CðconÞ⋄ is observed. This supports our picture that the
mobility of dopants leads to long geometric strings,
which, in turn, underly strong higher-order spin-charge
correlations.
Experimental considerations.—We turn to a discussion

of the limitations and requirements to observe higher-order
correlations in the doped Hubbard model.
Figure 4 demonstrates how thermal fluctuations suppress

higher-order correlations. We show the lower-order dis-
connected terms Cdisc⋄ and compare them to the higher-
order correlators C⋄, in two cases: For the undoped
Heisenberg model, we use quantum Monte Carlo simu-
lations [65]. For a single mobile dopant, our predictions are
based on the frozen-spin approximation (FSA and geo-
metric strings) [44,55,56] described above. The correlators
are evaluated from 104 snapshots for each T=J. We also
compare to exact diagonalization (ED) calculations in a
4 × 4 system and find good agreement.

In the geometric string theory, Cdisc⋄ is approximately zero
up to temperatures T ≲ 0.5J, while the higher-order corre-
lator C⋄ is of the order of −0.1. Without a hole, the
disconnected part Ddisc⋄ is significantly larger than D⋄ for
these small temperatures. For T ≳ 0.6J, the correlations
decay quickly. The relevant temperature range has already
been accessed experimentally [66], and we expect that more
quantum gas microscopes operating in this regime will
follow in the near future [27,29,34,67,68]. Similar to
quantum gas microscopy, the higher-order correlations in
Fig. 4 are extracted from snapshots. We expect that the main
experimental challenge will be to collect sufficient amounts
of data to obtain acceptable error bars. Current experiments
offering simultaneous spin and charge resolution [36] are
very close to the temperature regime required for observing
the higher-order correlations proposed here.
Summary and outlook.—We propose to study fifth-order

spin-charge correlations to explore the microscopic nature
of charge carriers in the doped Hubbard model from a new
perspective. Such correlators have recently become acces-
sible in state-of-the-art quantum gas microscopes. The
observables we consider are direct generalizations of the
three-point spin-charge correlators hŜzj−1n̂hj Ŝzjþ1i underly-
ing hidden AFM correlations in the 1D doped Hubbard
model [69,70]. We analyze similar correlations in 2D,
which can be understood only by theories with non-
Gaussian correlations.
Our numerical studies for a single doped hole reveal the

importance of the hole mobility for establishing such
higher-order correlations and making them become the
dominant spin-charge correlations in the system. In a
subsequent work, we demonstrate this explicitly by con-
sidering the effect of a localized pinning potential for the
hole [49]. Here, we also established that doped quantum

0 1 2
-0.4

-0.3

-0.2

-0.1

FIG. 3. Comparison of RVB and geometric string trial states in
a 14 × 14 system with Sztot ¼ 1=2. For the “plain vanilla”uniform
and π-flux RVB states doped with a single hole (left), CðconÞ⋄ is
small. The string wave function (right), with a weak SU(2)-
breaking staggered magnetization along Sz, exhibits larger values
of the spin-charge correlator and shows a strong dependence on
the ratio of t and the string tension dE=dl ¼ 1.09J [15], which
determines the average length of geometric strings in the trial
state. Note that the doped RVB states have no t=J dependence.
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FIG. 4. Temperature dependence of the higher-order correla-
tions C⋄ (red lines) and the disconnected Cdisc⋄ (yellow lines) parts
[using Eq. (2)]. We compare the corresponding correlators D⋄ in
the undoped Heisenberg model (top) to predictions for a mobile
dopant (with t=J ¼ 2), using the FSA in a 16 × 16 lattice based
on Heisenberg quantum Monte Carlo (QMC) snapshots, and ED
simulations in a periodic 4 × 4 system.
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spin liquids have reduced higher-order correlations,
whereas fluctuating geometric strings can explain the
observed enhancement when t=J is increased.
An interesting question concerns the behavior of the

higher-order correlations when doping is increased and
numerical studies of the Fermi-Hubbard model become
more challenging [71]. In this regime, we propose to
measure the higher-order correlators by state-of-the-art
ultracold atom experiments. Such studies can shed new
light on the nature of charge carriers in the pseudogap
and strange-metal [72] regimes or the pairing mechanism
between dopants. They also provide a new experimental
route to distinguish theoretical trial states, e.g., in the RVB
class. While a recent machine-learning analysis [56]
suggests that up to ≃15% doping a model based on
geometric strings may be favorable compared to doped
π-flux RVB states, further refined experiments as proposed
here will be required to establish where and how the nature
of charge carriers changes upon doping.
Our results can be applied to extend studies of the

formation dynamics of magnetic polarons [73–75] or to
investigate correlation effects in Bose polaron problems in
an optical lattice [76]. Other possible extensions include the
study of SU(2)-invariant generalizations of the higher-order
spin-charge correlators introduced here.
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