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Understanding the nature of charge carriers in doped Mott insulators holds the key to unravelling
puzzling properties of strongly correlated electron systems, including cuprate superconductors. Several
theoretical models suggested that dopants can be understood as bound states of partons, the analogues of
quarks in high-energy physics. However, direct signatures of spinon-chargon bound states are lacking, both
in experiment and theory. Here we propose a rotational variant of angle-resolved photo-emission
spectroscopy (ARPES) and calculate rotational spectra numerically using the density-matrix renormaliza-
tion group. We identify long-lived rotational resonances for an individual dopant, which we interpret as a
direct indicator of the microscopic structure of spinon-chargon bound states. Similar to Regge trajectories
reflecting the quark structure of mesons, we establish a linear dependence of the rotational energy on the
superexchange coupling. The rotational peaks we find are strongly suppressed in standard ARPES spectra,
but we suggest a multiphoton extension of ARPES which allows us to access rotational spectra. Our
findings suggest that multiphoton spectroscopy experiments should provide new insights into emergent
universal features of strongly correlated electron systems.
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Introduction.—Our understanding of strongly correlated
quantum matter often involves new emergent structures. For
example, emergent gauge fields play a central role for
understanding quantum spin liquids [1], and spin-charge
separation in the one-dimensional Hubbard model can be
related to the fractionalization of fermions into deconfined
spinons and chargons [2–4]. The fate of those partons in
dimensions higher than 1, which is a topic addressed in this
Letter, remains unresolved. Theoretically and experimen-
tally, one faces similar problems as in high-energy physics:
the mathematical models are too challenging to solve and
signatures of parton formation are often indirect or buried in
complex observables. In this Letterwe draw analogies to high
energy physics and report on unambiguous signatures for
parton structures in the two-dimensional (2D) t − J model.
In quantum chromodynamics it is well established that

directly observable nucleons are not the most elementary
constituents of matter. The quark model explains the larger
class of mesons and baryons as composite objects consisting
of two or three valence quarks. A smoking gun demonstra-
tion of the quark model was its ability to explain many
additional resonances observed in collider experiments as
rovibrational excitations of the fundamental parton configu-
rations. In the quark model, many heavy mesons are thus
understood as excited states of the fundamental mesons:
they contain the same quark content but realize a higher

vibrational state or have nonzero orbital angular momentum
[5,6]. A hallmark signature of rotational mesons comes from
analysis of their excitation energy. In a simplistic model, a
meson can be described as a rigid linelike object with
constant energy density per unit length, also known as
“string tension.” The relativistic expression for the energy
of a rotating meson of this type scales linearly with the string
tension andwith the square root of its angularmomentum[7].
The latter relation, known as the Regge trajectory, can be
directly probed in collider experiments and has been
observed experimentally [8]. It provides a strong indication
that the observed mesons are bound states of partons.
An idea almost as old as the problem of high-Tc super-

conductivity itself comprises that strongly correlated elec-
trons in these systems may be ruled by similar principles as
high-energy physics [9]. In analogy with quark confinement,
Béran et al. suggested a description of a hole doped into a 2D
antiferromagnet (AFM) in terms of a composite quasiparti-
cle, consisting of two partons—a chargon, carrying the
charge quantum number and a spinon, carrying the spin
quantum number—bound together by “an interaction obey-
ing a string law” [10]. However, finding direct experimental
or theoretical signatures for such structure has proven to be
difficult. In angle resolved photoemission spectra (ARPES)
no sign of rotational resonances has been seen, and the nature
of a possible first vibrational excitation is debated [11–15].

PHYSICAL REVIEW LETTERS 127, 197004 (2021)

0031-9007=21=127(19)=197004(6) 197004-1 © 2021 American Physical Society

https://orcid.org/0000-0003-3531-8089
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.197004&domain=pdf&date_stamp=2021-11-05
https://doi.org/10.1103/PhysRevLett.127.197004
https://doi.org/10.1103/PhysRevLett.127.197004
https://doi.org/10.1103/PhysRevLett.127.197004
https://doi.org/10.1103/PhysRevLett.127.197004


Discerning the nature of individual charge carriers in
lightly doped Mott insulators could provide a major boost to
understanding properties of the underdoped cuprates and
elucidating the origin of the pseudogap (PG) phase. In
particular, it should provide a basis for constructing a
consistent description of transport [17] and spectroscopy
[18] experiments. Several theoretical proposals involve
emergent structures of partons, starting on a single dopant
level [10,14,19,20], to effective theories of the PG phase
involving dynamical gauge fields [21–24], exotic composite
Fermi liquids [25–27], scenarios with spin-charge separation
[28,29], and including fractionalized Fermi liquids [30]
where deconfined spinons and chargons form electronlike
bound states [31–33]. These scenarios may also explain the
sudden and pronounced change of ARPES spectra [34] and
the carrier density [17] observed in cuprates around p� ¼
19% doping, as being related to an unbinding transition of
spinons and chargons.
Herewe provide strong numerical evidence that individual

charge carriers in a lightly doped 2DAFMMott insulators are
comprised of partons, which are bound to each other, and
exhibit telltale rotational excitations following Regge-like
trajectories. We show that these rotational excitations are
strongly suppressed in standard ARPES measurements and
propose an extension of ARPES imparting C4-angular
momentum into the system and allowing us to access
rotational excitations experimentally in solids [35] or using
ultracold atoms [36,37]. Our numerical density-matrix
renormalization group (DMRG) simulations of the one-hole
rotational ARPES spectra in the t − J model, see Fig. 1,
reveal narrow quasiparticle peaks at low excitation energies,
which we interpret as a striking proof of the parton picture.
Moreover, we describe the rotational resonances by a micro-
scopic spinon-chargon toy model which explains the
observed features without any free fit parameters.
Rotational ARPES spectrum.—In traditional ARPES the

spectral function Aðk;ωÞ ¼ −π−1ImGðk;ωÞ is measured,
which reveals information about the one-hole Green’s
function Gðj; tÞ ¼ θðtÞPσhΨ0jĉ†j;σðtÞĉ0;σð0ÞjΨ0i; the latter
describes how a fermion ĉj;σ with spin σ is removed from
the initial state jΨ0i and leads to a hole propagating through
the system. In the 2D Fermi-Hubbard model, believed to
describe lightly doped copper oxides [9], a long-lived
quasiparticle peak is found in Aðk;ωÞ [38–40], which
describes how a hole interacting with magnetic fluctuations
forms a spin or magnetic polaron [11,41–45] and moves
through the surrounding AFM.
Our goal is to search for long-lived rotational excitations in

the one-hole spectrum, which provide a direct route to reveal
the composite nature of charge carriers in the Hubbard or
t − J models. To couple to rotationally excited states one
must impart discreteC4 angular momentum into the system.
However, Green’s function Gðk;ωÞ respects the symmetries
of the underlying Hamiltonian: In this case we are particu-
larly interested in the discrete rotational C4 symmetry of the

Hubbard model, which is unbroken in the undoped parent
AFM jΨ0i. Hence, for C4 invariant momenta (C4IM) in the
magnetic Brillouin zone (MBZ) no angular momentum
transfer is allowed and rotational excitations have no weight
in the traditional ARPES spectrum Aðk;ωÞ.
For non-C4IM, lattice effects can, in principle, impart

C4 angular momentum into the system. However, since
Green’s function couples to the center-of-mass momentum
k of the hole, the spectral weight of rotational states is still
expected to be strongly suppressed if the effective masses
of the two supposed partons are significantly different. In
this limit, the lighter parton rotates around the heavier
parton which carries most of the linear momentum k, thus
suppressing couplings of k to the relative angular momen-
tum of the two partons; this intuition is confirmed for toy
models [16]. The Hubbard model in cuprates, with super-
exchange coupling J ≈ t=3, is in such a regime where

(a)

(c)

(b)

FIG. 1. Rotational resonances. (a) Bound states of spinons and
chargons in a C4-symmetric doped 2D AFM Mott insulators
feature characteristic rovibrational excitations. In an effective
microscopic theory, the string with the light chargon (gray) can
rotate around the heavy spinon (blue). (b) To detect rotational
resonances, we propose a multiphoton ARPES scheme. Follow-
ing the creation of a hole by a first photon, a second photon
couples to lattice vibrations and excites rotational modes with C4

angular momentum m4 ¼ 0, 1, 2, 3. (c) Energy distribution
curves for rotational ARPES spectra at the nodal point k ¼ π=2
with different angular momenta, from top to bottom: m4 ¼ 2, 1,
0. The lowest (dash-dotted) curve corresponds to the usual
ARPES spectrum with m4 ¼ 0. All spectra are normalized by

their total area,
R
dωAðmÞ

ðrotÞ. The lowest mesonic resonances

(ground state 1S, vibrational 2S and rotational 1P, 1D, 1F
excited states) correspond to long-lived excited states. We
performed time-dependent DMRG simulations for a t − J model
on a 4 × 40 cylinder, with t ¼ 3J. The shaded areas correspond to
toy model calculations [16] where we introduced small energy
shifts and broadening as fit parameters.
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significantly different parton masses ≃1=J and ≃1=t are
expected.
To allow significant overlap with possible rotational

excitations, we devise a rotational extension of ARPES
where angular momentum is directly imparted into the
system, even at C4IM. The simplest term creating an
excitation with discrete angular momentum m4 ¼ 0, 1,
2, 3, spin σ, charge one, and total momentum k is given by

R̂m4;σðkÞ ¼
X

j

e−ik·jffiffiffiffi
V

p
X

i∶hi;ji
eim4φi−j

X

σ0
ĉ†j;σ0 ĉi;σ0 ĉj;σ; ð1Þ

with φr ¼ argðrÞ the polar angle of r. The action of this
operator on a product Néel state, R̂m4;σjNi, is illustrated in
Fig. 1(b): Here the second and third fermion operators in
R̂m4;σ create a stringlike excitation with C4 angular momen-
tum m4 and nonzero overlap to the rotational states
predicted for a hole in an Ising AFM [46].
Instead of the usual Green’s function, we consider the

rotational Green’s function

Gðm4Þ
rot ðk; tÞ ¼ θðtÞ

X

σ

hΨ0jR̂†
m4;σðk; tÞR̂m4;σðk; 0ÞjΨ0i; ð2Þ

which we calculate by time-dependent DMRG (see
Ref. [47]) [48–50]. The corresponding rotational spectrum,

−π−1ImGðm4Þ
rot ðk;ωÞ, in Lehmann representation is

Aðm4Þ
rot ðk;ωÞ¼

X

σ;n>0

δðω−EnþE0ÞjhΨnjR̂m4;σðkÞjΨ0ij2; ð3Þ

where jΨ0i (E0) is the correlated ground state (energy) and
jΨni (En) for n > 0 are the eigenstates (eigenenergies) with
an added hole. Hence, if long-lived rotational excitations
exist, they manifest in pronounced quasiparticle peaks in
the rotational ARPES spectrum in Eq. (3). For m4 ¼ 0 the
same selection rules apply as for the conventional ARPES
spectrum and the same states contribute, but with modified
spectral weights.
The rotational spectrum can be experimentally measured

using a multiphoton extension of ARPES. We propose to
use one set of beams for lattice modulation, which imparts
angular momentum into the system by coupling to specific
phonon modes [56] or directly by modulating the lattice
potential with appropriate phases in solids or ultracold
atoms [57]. The other beam is the usual ARPES beam
which creates the hole excitation. Further details of our
scheme are provided in Ref. [16].
Rotational resonances.—Now we present our numerical

results obtained for one hole doped into a 2D AFM Mott
insulator. Specifically, we considered the t − J model on
extended four-leg cylinders and for t=J ¼ 3, the exper-
imentally most relevant value for cuprates. In Fig. 1(c) we
show numerically obtained spectra (energy distribution

curves) at the nodal point k ¼ π=2, with π ¼ ðπ; πÞ. For
m4 ¼ 0 (red line, second from bottom) the rotational
spectrum shows the same quasiparticle peak as the conven-
tional ARPES spectrum (black, bottom line), at the same
energy. This peak, labeled 1S, corresponds to the magnetic
polaron ground state [15]. A possible excited state with
small spectral weight is also visible at m4 ¼ 0, which we
label 2S and which has previously been argued to corre-
spond to the first vibrational excitation of the magnetic
polaron [11–15].
Much clearer indications for long-lived excitations of

magnetic polarons can be found in the nontrivial rotational
ARPES spectra withm4 ≠ 0. Form4 ¼ 2 (top, blue curve in
Fig. 1) we find a pronounced quasiparticle peak correspond-
ing to an excitation energy ΔE ∼ 1.7J. Remarkably, no
significant spectral weight appears below this energy; in
particular, we find zero spectral weight at the polaron ground
state energy.We note that this is not simply a consequence of
selection rules: First, the nodal point does not correspond to a
C4IM, not even in the reduced MBZ. Second, the AFM has
gapless magnonmodes which should in principle allow us to
carry away angular momentum and allow an excited mag-
netic polaron to decay to its ground state. Based on these
observations, we identify the resonance found at m4 ¼ 2
with a 1D excited state of the magnetic polaron.
Similarly, the rotational spectrum withm4 ¼ 1 features a

pronounced peak at a slightly higher excitation energy
ΔE ∼ 2.3J above the ground state (second from top,
turquoise curve in Fig. 1). In this case we find weak
hybridization with the 1S state, as indicated by a small
quasiparticle peak at the ground state energy. Based on its
quantum numbers, we identify the new excited state as 1P.
By applying a combination of time-reversal and inversion
symmetry, it follows that them4 ¼ 1 andm4 ¼ 3 rotational
spectra coincide exactly. Hence the 1P state is associated
with a degenerate 1F state at m4 ¼ 3.
Our observation of long-lived quasiparticle peaks in the

rotational spectrum provides a direct indication that mobile
holes in lightly doped AFM Mott insulators have a discrete
internal structure. To understand our reasoning, consider a
theoretical model of magnetic polarons without a rigid
internal structure. In this case, the action of the operator
R̂m4;σðkÞ in the rotational Green’s function would generi-
cally be expected to have two separate effects: The first
fermion operator ĉj;σ in Eq. (1) creates a mobile hole with a
large overlap to the structureless magnetic polaron. The
subsequent pair of fermion operators,

P
σ0 ĉ

†
j;σ0 ĉi;σ0 in

Eq. (1), then couples to the surrounding spins and creates
separate magnon excitations. In this case one would expect

Aðm4Þ
rot ðk;ωÞ to become a convolution of a polaron and a

magnon contribution, possibly renormalized weakly by
interaction effects. This would lead to a broad and mostly
featureless spectrum—in stark contrast with our numerical
findings in Fig. 1(c).
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Regge-like trajectories.—Béran et al. [10] have sug-
gested that mobile holes in an AFM Mott insulator can be
described as mesonic bound states of two strongly inter-
acting partons, a light chargon and a heavy spinon; see also
Refs. [46,58]. The operators R̂m4;σðkÞ create rotational
excitations, which explains the peaks in the rotational
spectra in Fig. 1. Now we study how the excitation energies
ΔE of these rotational peaks, as well as the first vibrational
peak, depend on the underlying coupling strength J=t in the
system.
In Fig. 2 we numerically extracted the positions of the

peaks from frequency cuts Aðm4Þ
rot ðπ=2;ωÞ of rotational

spectra at the nodal point, for different values of J=t.
We find that the positions of the rotational peaks scale
linearly with the spin exchange

ΔErot ≃ J; ð4Þ
whereas the gap to the vibrational excitation 2S has a
characteristic power-law dependence on t and J [15],

ΔEvib ≃ t1=3J2=3: ð5Þ

These scaling behaviors can be explained by a simplistic
meson model [46]: In this model the two partons are
connected by a line-like object on the square lattice with
constant energy density dE=dl. This string tension must be
proportional to the spin exchange energy dE=dl ∝ J to
obtain the observed scaling laws in Eqs. (4) and (5).
Since J corresponds to the string tension between the

two partons, Eq. (4) resembles the Regge formula from

particle physics, which relates the meson excitation energy
to its angular momentum and the underlying string tension
[7]. While high-energy experiments cannot tune the string
tension, which is determined by the coupling constant g of
quantum chromodynamics, cold atom quantum simulators
[37,45,59,60] can be used to tune the coupling J=t in the
Hubbard model and directly measure the Regge-like
trajectories we predict for rotational excitations in Fig. 2.
In further analogy with the Regge formula from high-

energy physics, we can study the dependence of the meson
excitation energy ΔE on its angular momentum m4. While
quarks in high-energy physics are described in a continuous
space-time, lattice effects are strong in the Hubbard or t − J
models we consider. As a result, the simplistic meson
model from Ref. [46] predicts that all rotational states with
m4 ≠ 0 should be degenerate when J=t ≪ 1, and be located
between purely vibrational states in this limit. Refined
meson models predict small splittings of the rotational
lines, however. We confirm in Fig. 2 that all rotational
excitations are close in energy, and well separated from the
first vibrational peak.
Discussion and outlook.—We have proposed a rotational

extension of ARPES, which we used to predict the
previously unknown long-lived rotational excitations of
individual charge carriers in 2D AFM Mott insulators. Our
finding of pronounced quasiparticle peaks in the rotational
spectra allows us to conclude that strong interactions
between spin and charge must be present. By analyzing
Regge-like trajectories, describing the dependence of the
excitation energy on the superexchange J, we found
compelling evidence that mobile holes in lightly doped
AFM Mott insulators have a rich internal structure and can
be understood as spinon-chargon bound states. This finding
is further supported by the good agreement we report with a
microscopic toy model of spinons and chargons connected
by a string [16].
Our research provides the most direct evidence yet for

the decades old idea [10,58] that the physics of lightly doped
2D AFM Mott insulators—and by extension high-temper-
ature superconductors—is captured by emergent partons. In
particular our results support the picture of the pseudogap
phase in cuprates as a liquid of fermionic mesons, modeling
charge carriers as bound states of spinons and chargons. We
emphasize the importance of a direct experimental confir-
mation that charge carriers have a rich internal structure: An
observation of the long-lived rotational resonances we
predict would strongly support this view. Experiments,
and further theoretical analysis, will be required to inves-
tigate the robustness of the internal structure of charge
carriers when the concentration of dopants is increased.
The meson structure of charge carriers in lightly doped

2D AFM Mott insulators may have further theoretical
implications. On the one hand it may contribute to our
understanding how stripes form at low temperatures [61].
On the other hand, understanding possible unbinding
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FIG. 2. Regge-like trajectories. We show the dependence of the
excitation gap ΔE at the nodal point k ¼ π=2 on the super-
exchange energy J. The gap was extracted from peak positions in
numerically obtained spectra. The low-lying rotational resonan-
ces (1P, 1D, 1F) have a gap scaling linearly with J (light dotted
lines denote linear fits: ΔE1D ¼ 1.44J þ 0.061t and ΔE1P;1F ¼
2.12J þ 0.047t). The gap to the first vibrational peak (2S) scales
with t1=3J2=3 [15]. Solid lines are parameter-free calculations
neglecting spinon dynamics [16]. The inset shows the same data,
but with energy measured in units of J instead of t.
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transitions of spinons and chargons may contribute to a
deeper understanding of the rich phase diagram of cuprates.
An interesting future direction would be to explore how the
parton picture relates to the sudden change of carrier
properties observed around a critical doping p� ≈ 19%
[17,34,62]; see also Ref. [63].
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