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Digital quantum simulation of NMR experiments
Kushal Seetharam1,2*, Debopriyo Biswas3,4, Crystal Noel3,4, Andrew Risinger4†, Daiwei Zhu4,
Or Katz3, Sambuddha Chattopadhyay2, Marko Cetina4,5, Christopher Monroe3,4,6,
Eugene Demler7, Dries Sels8,9

Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting informa-
tion about molecular structure and optimizing experimental protocols but are often intractable on classical
computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate
the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of
acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum
simulation by an order of magnitude using compressed sensing techniques. We show how the intrinsic deco-
herence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-
term quantum hardware and discuss how the experimentally demonstrated quantum algorithm can be used to
efficiently simulate scientifically and technologically relevant solid-state NMR experiments on more mature
devices. Our work opens a practical application for quantum computation.

Copyright © 2023 The

Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

License 4.0 (CC BY).

INTRODUCTION
Nuclear magnetic resonance (NMR) spectroscopy is a widely used
tool in structural biology and materials chemistry, providing insight
into the structure, dynamics, reaction state, and chemical environ-
ment of both liquid-state and solid-state systems (1). Systems
studied with liquid-state NMR range from to small biomolecules
such as metabolites to large biomacromolecules such as proteins,
nucleic acids, carbohydrates, and lipids, while solid-state NMR
can help characterize various rigid and semi-rigid systems such as
membrane proteins, amyloid fibrils, polymers, battery materials,
photovoltaic perovskites, solid state catalysts, and metal-organic
frameworks (2, 3). Despite their versatility, NMR experiments can
be difficult to interpret for large liquid- and solid-state systems.
Current approaches typically combine sophisticated experimental
protocols that simplify the nuclear spin dynamics at the heart of
the experiment with heuristic formulas to infer the information of
interest.When available, numerical simulation of the spin dynamics
can provide an important tool in the analysis and optimization of
conventional high-field liquid-state experiments on large biomole-
cules (4), emerging zero-field experiments on small biomolecules
(5, 6), and many high-field solid-state experiments (2). For
example, simulation can be used to optimize experimental protocols
and pulse sequences, validate chemical and structural information
extracted from heuristic formulas applied to the experiment, and
open the door to novel structure determination paradigms (4).

Numerical simulations of NMR experiments, however, can be
very challenging to perform on classical computers when either

the dynamics itself is hard, meaning that correlations generated
by the quantum dynamics of the system becomes difficult to keep
track of (see the Supplementary Materials), or when an ensemble
(“powder”) average over system orientations is performed (2).
Liquid-state NMR exhibits complex dynamics in zero-field experi-
ments dominated by coherent exchange interactions even for rela-
tively small biomolecules and in high-field experiments dominated
by dipolar relaxation for large biomacromolecules. Solid-state
NMR, dominated by coherent dipolar interactions, often exhibits
hard dynamics and necessitates powder averaging over differently
oriented grains in the sample.

Quantum computers and simulators, themselves described as an
effective system of spins, are naturally suited to simulate the dynam-
ics of spin systems. These simulations may be the first practical ap-
plication of quantum computers to achieve a speed-up compared to
classical computers (7). Quantum hardware may therefore enable
the simulation of NMR experiments with complex dynamics (8).
These spin dynamics simulations can enable inference of Hamilto-
nian parameters encoding the chemical and structural information
of interest in NMRexperiments. Liquid-state zero-field NMRexper-
iments on relatively small molecules may be the earliest achievable
context where quantum computers can display an advantage over
classical computers. Solid-state NMR, on the other hand, is a
more widely relevant context where quantum computers may
have greater practical utility but would require substantial improve-
ments to current quantum hardware to simulate the large systems
typically investigated in experiments.

Here, we simulate a zero-field NMR experiment on a trapped-
ion quantum computer (9). The quantum computer implements
a carefully compiled sequence of unitary rotations and entangling
interactions on 171Yb+ ion qubits to implement a digital quantum
circuit that emulates the NMR experiment (see the Supplementary
Materials). Specifically, we compute the spectrum of selectively
isotope-labeled acetonitrile, with four NMR-active nuclear spins,
and show that the resonance frequencies in the spectrum quantita-
tively match the experimental NMR data from (10), while the peak
intensities match in their ordering.
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We obtain high spectral resolution within the resource limita-
tions of the trapped-ion device by exploiting compressed sensing
techniques (11) and a state-of-the-art quantum circuit synthesis al-
gorithm (12). These techniques, which leverage the power of the in-
dividual qubit control of a digital quantum computer, enable more
versatile simulations of NMR spectra than would be possible on
typical analog quantum simulators that seek to natively implement
the desired dynamics (13). They reduce the resource cost for simu-
lating classically hard NMR systems substantially and are likely to
prove useful in quantum simulations of hard systems that appear in
quantum chemistry and condensed matter physics (14). We give re-
source estimates for quantum simulations of relatively small mole-
cules whose zero-field NMR spectra are practically challenging to
simulate on classical computers, showing how the dephasing com-
monly present in nuclear spin dynamics may enable these simula-
tions on relatively near-term quantum devices. We then discuss
how more mature quantum hardware may enable efficient analysis
of large systems such as membrane proteins and battery materials
studied using solid-state NMR experiments.

RESULTS
An NMR experiment involves polarizing the nuclear spins of a
sample via an external magnetic field or a chemical process,
letting the spins evolve in time, and measuring the average magne-
tization of the system. The measured time-dependent magnetiza-
tion is called the free induction decay (FID), and its Fourier
transform yields the NMR spectrum. Letting the operators {Si} rep-
resents the nuclear spins, the initial state of the system when polar-
ized via either a large magnetic field or a chemical process can be
described as ρ0 � I þ λ~Sztot, where I is the identity operator and
~Sztot ¼

P
iγiSzi , with γi being the gyromagnetic ratio of the nuclear

isotope i. In the case of a one-dimensional NMR experiment, the
measured FID corresponds to the quantity

FIDðtÞ ¼ Tr½UðtÞy~SztotUðtÞ~S
z
tot� ð1Þ

whereU(t) = exp(−iHt/ℏ) produces the time evolution of the system
generated by a Hamiltonian H. Most NMR experiments can be
modeled by Eq. 1 with different Hamiltonians and, in the case of
multidimensional protocols, global spin rotations that modify the
time evolution (1). The evolution of liquid-state molecular
samples is typically well captured by

H ¼
X

i;j
2πJijSi � Sj þ

X

i
ωiSxi ð2Þ

where we have taken Planck’s constant ℏ = 1. The J couplings {Jij}
characterize the strength of bond-mediated exchange interactions,
and the chemical shifts {ωi} represent local magnetic screening
around nuclei in different chemical environments in response to
an external magnetic field (1).

Zero-field NMR protocols avoid the external field, opening the
possibility of portable and cheaper experiments as they obviate the
need for cryogenically cooled superconducting magnets (5, 6, 10).
Without a large background field, however, the interactions
between spins become dominant. Therefore, a notable limitation
of zero-field protocols is that their spectra are hard to interpret
without access to simulations of the NMR experiment, which can
be rendered classically intractable for even relatively small

molecules (15). High-field liquid-state protocols, in contrast, are
typically easy to simulate as the scalar Si · Sj interaction in Eq. 2
reduces to its secular component Szi S

z
j , which substantially simplifies

the complexity of the dynamics.
We compute the zero-field spectrum of acetonitrile, a compound

that is commonly used as an industrial solvent. The molecule is
isotope-labeled to have four NMR-active spin-1/2 nuclei, a 13C
and three 1H, that make up a methyl group (see inset in Fig. 1).
There are three nonzero J couplings, corresponding to the three
13C─1H bonds, all with value J = 136.2 Hz. The FID signal of Eq.
1 can be computed on a quantum computer using four qubits by
initializing the system qubits in basis states with a positive average
magnetization, enacting time evolution under the Hamiltonian via
an appropriate quantum circuit (Eq. 2 and then measuring the
average magnetization of the system. We write this measurable as

FIDðtÞ ¼
X

~mn.0
~mn ~mnðtÞ j~S

z
tot j ~mnðtÞ ð3Þ

where f~mn; ~mng are the eigenstates and eigenvalues of ~Sztot and
~mnðtÞ ¼ UðtÞ~mn. For a system of N spins, the sum in Eq. 3 can
have a number of terms that scales exponentially withN, naively ne-
gating the quantum computational advantage. However, the vari-
ance of the estimator is much smaller than exponential and can
be bounded by N2 due to the bounded operator norm of the total
magnetization being measured; at most, N2 terms of the sum can
thus be used to estimate the FID via either uniform or importance
sampling (8). The described quantum algorithm can be straightfor-
wardly generalized to simulate a diverse array of NMR experiments,
including protocols with different initial conditions, multiple di-
mensions, solid-state samples, and different isotope labeling. Mul-
tidimensional protocols can be simulated by inserting single-qubit
rotations into the time evolution of U(t), and solid-state experi-
ments can be simulated by including a dipolar interaction term in
the Hamiltonian of Eq. 2 (see the Supplementary Materials).
Isotope labeling is incorporated by the choice of basis states that
the qubits are prepared in and by the choice of qubits to measure
at the end of the simulation.

Figure 1 shows the spectrum we compute on an trapped-ion
quantum computer in comparison with the seminal zero-field
NMR experiment of (10). We see that the quantum computation
accurately reproduces the resonances at frequencies J and 2J. Specif-
ically, the corresponding resonance frequencies extracted from the
quantum simulation are 136.20 ± 0.09 and 272.41 ± 0.09 Hz, which
are within 1σ of the exact frequencies of 136.2 and 272.4 Hz. The
extracted resonance frequency uncertainty is Fourier limited by
the total acquisition time; a Lorentzian fit to the reconstructed
peaks results in a width smaller than the frequency grid spacing.
We therefore take half the grid spacing as the uncertainty. Given
that the zero-field NMR experiment can only resolve the spectral
peaks within 0.1 Hz (10), we demonstrate that quantum computers
can accurately simulate NMR data with a quality comparable to real
experiments.

The spectrum computed on the quantum computer has peak in-
tensities that match the ordering of peaks in (10) but has a quanti-
tative mismatch with spectral weight transferred from the resonance
at 2J to an additional resonance at J/2 that is not present in the NMR
experiment. This additional spectral peak arises from a combination
of errors in the quantum computer and the high symmetry of the
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molecule, which induces dynamical recurrences that are captured
by the specific method we use to synthesize the time evolution cir-
cuits. These artifacts are unlikely to appear in classically intractable
NMR simulations whose large, strongly correlated molecules typi-
cally do not exhibit many-body revivals. Furthermore, we provide a
simple method to remove artifact peaks in future experiments even
for the small, highly symmetric systems where they may occur (see
the Supplementary Materials).

To calculate the spectrum, we first compute the FID (Eq. 3) at a
nonuniform random sampling of time points lower than the
Nyquist rate. We synthesize the time evolution quantum circuits
using the numerical optimization algorithm in (12) after tailoring
it to the gate set and qubit topology of the trapped ion device (see
the Supplementary Materials). This numerical synthesis procedure
efficiently produces low-depth circuits but is limited to a small
number of qubits because it searches of the full space of possibly
unitaries. It can, however, be a useful tool when simulating larger
systems by combining it with a cluster Trotterization method, as de-
scribed in the Supplementary Materials.

The undersampled FID measured in experiment is reconstruct-
ed into a spectrum by a recovery algorithm, which assumes that the
time domain signal is sparse in the frequency domain. These two
steps—nonuniform sampling (NUS) and spectral reconstruction
—form the basis of compressed sensing. Compressed sensing tech-
niques have their root in information theory (16) but have been
further developed in the experimental NMR community where
they can markedly reduce the data collection burden (11). While
these techniques have recently been used in quantum sensing
(17), we demonstrate their use in quantum simulation experiments
to similarly reduce the computational cost (14). In Fig. 2A, we plot a
noisy emulation of the trapped-ion experiment at all values of the
uniform dense time grid and compare to the NUS points that were
actually collected in the experiment. Noise is modeled with ampli-
tude and phase damping channels acting on each two-qubit gate,
with the rate of each channel determined by fitting the emulation
to experimental data. Experimental data were collected up to
times t = 6 s (see the Supplementary Materials) but are only

shown up to t = 0.2 s to allow a clear comparison to the noisy em-
ulation. We use a sine-weighted Poisson gap NUS schedule that is
dense at short times as it has been shown to reduce reconstruction
artifacts (18). Figure 2B shows the spectrum resulting from Fourier
transforming the experimental data before running the reconstruc-
tion algorithm. We see that the signal-to-noise ratio in this raw
spectrum is poor because of NUS artifacts, with a Lorentzian fit
to the peaks resulting in an uncertainty of approximately 1 Hz.
The same spectrum is shown after we run the iterative soft thresh-
olding (IST-S) reconstruction algorithm; the signal-to-noise ratio is
markedly improved, with the uncertainty reducing by an order of
magnitude to approximately 0.1 Hz. The reconstructed spectrum
matches the spectrum resulting from fully sampled noisy emulation
(see the Supplementary Materials). Experimentally, only 102 of the
4096 time points were collected, indicating that compressed sensing
reduced the computational burden of the experiment by more than
a factor of 40. This reduction is particularly crucial for experiments
with slow repetition rates. We note that compressed sensing tech-
niques will remain applicable to quantum simulation of NMR ex-
periments on large, classically intractable systems well-beyond the
small molecule demonstrated in this work. The multidimensional
NMR protocols used to study these systems are designed to
spread spectral weight across different dimensions to improve inter-
pretability of the spectrum, thus manifesting the frequency-domain
sparsity required for compressed sensing.

In Fig. 2C, we asses the quality of the trapped-ion simulation by
comparing the outputs of all 102 circuits (×8 initial states) with the
ideal outputs resulting from a noiseless circuit emulation. These
synthesized circuits, each corresponding to a time t, have varying
circuit depths according to the entanglement generated in the
system at that time (see the Supplementary Materials). The Bhatta-
charyya coefficient, which provides an upper bound for the fidelity
of the prepared quantum state (see the Supplementary Materials),
indicates that a typical two-qubit gate operation was enacted with
fidelity at most 98.9%. The Bhattacharyya coefficient is an informa-
tive metric for states with high fidelities, but it saturates to a value of
0.5 for the random states that the system tends to after decoherence
runs its course. We therefore also examine a generalized cross-
entropy benchmark (gXEB) introduced in (19), which is a better es-
timate for the fidelity. The gXEB yields an estimate of 97.7% fidelity
per operation enacted in the trapped-ion experiment. It should be
noted that, similar to the XEB (20), the gXEB can be negative.

While the present experiment is performed on state-of-the-art
quantum hardware, it is still easily tractable on a classical computer.
To elucidate the hardware resources required to scale quantum sim-
ulations to classically hard zero-field NMR experiments, we
examine three challenging systems that are at the border of what
is classically simulable (21, 22).

The compounds are depicted in Fig. 3A and are taken from the
example set of Spinach (23), an advanced classical simulation
package that leverages decoherence in the NMR experiment to
make the compuation more efficient (4). Each system can be simu-
lated on a classical computer in several hours, provided access to 32
CPU cores, 128-GB random-access memory, and a graphics card as
powerful as the Titan V. The interaction graphs characterizing the
molecules’ nuclear spin Hamiltonians have a compact structure and
are composed of strongly interacting clusters of four to seven spins
that are weakly connected to other clusters. The compact nature of
the interaction graphs—which give rise to rapidly spreading strong

Fig. 1. Liquid-state NMR spectrum computed on quantum hardware. Zero-
field (ZF) spectrum of acetonitrile computed on an trapped-ion quantum comput-
er (blue curve) compared with the NMR experiment (green curve) performed in
(10). The inset shows the chemical structure of acetonitrile, highlighting the
methyl group that was probed in the experiment. arb. units, arbitrary units.
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correlations—makes these systems hard to simulate on a classical
computer, although these NMR experiments can be described
without the long-range dipolar interactions that are central to
other challenging NMR experiments such as solid-state NMR.

We estimate the resources required to simulate these systems
using a quantum computer by using product formulas to prescribe
circuits that implement time evolution under the Hamiltonian of
Eq. 2. While there are many quantum algorithms that implement
quantum dynamics, product formulas are considered to have the
lowest resource overhead and be most suitable for early quantum
devices (7, 24). We exploit both the cluster structure of the
nuclear interactions and inherent dephasing in the NMR experi-
ment to further reduce the cost (see the Supplementary Materials).
With the total number of qubits fixed to the number of nuclear
spins, the performance crucially depends on the accuracy of the
Hamiltonian engineering (Trotter error) and the fidelity with
which each operation can be performed.

In Fig. 3B, we plot the achievable linewidth Δf of the NMR spec-
trum as a function of the circuit depth D for quantum computers

with various levels of noise, here, we model the decoherence and
dephasing with a single parameter F that encapsulates the average
fidelity of a gate. We assume that the time evolution quantum cir-
cuits are designed using a clustered first-order product formula (see
the Supplementary Materials). We define the circuit depth as the
number of (arbitrarily connected) two-qubit gates, as available in
trapped-ion quantum computers (9). We observe a 1=

ffiffiffiffi
D
p

scaling,
reminiscent of the standard quantum limit, up to a critical depth
where the decoherence of the quantum computer takes over. The
improvement in resolution is due to a decrease in the Trotter
error with circuit depth. At any given value of the gate fidelity F,
there is an optimal circuit depth ∼1/log(1/F) arising from a compe-
tition between algorithmic error and decoherence, resulting in line-
width Δf ≏

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=FÞ

p
. Figure 3C depicts the expected optimal

linewidth for all the molecules considered in this work. While we
clearly observe that the larger molecules from Fig. 3A are consider-
ably harder to simulate than the four spin methyl group that was
computed here, it should be noted that these curves are expected

Fig. 2. Compressed sensing reconstruction and benchmarking. (A) Comparison of the FID of a noisy quantum circuit emulation (blue line) and the nonuniform,
sparsely sampled points experimentally measured on the trapped-ion quantum computer (green circles). The noise is modeled by two-qubit gates subject to both
amplitude and phase damping with rates of 0.005 and 0.035 s, respectively. (B) NMR spectrum extracted from the digital quantum simulation, where the spectrum is
the real part of the Fourier transform of the FID. Green dots show the spectrum after replacing unsampled points of the FID with zeros. Dashed blue line shows the best
(under ‘1-norm) Lorentzian fits to this zero-padded data. Solid yellow line shows the reconstructed spectrum after applying the IST-S algorithm. The y axis is rescaled
(zoomed-in) compared to Fig. 1 tomake the features more visible. (C) Fidelity of quantum simulation. The yellow crosses show the squared Bhattacharyya coefficient, and
the green dots show a generalized cross entropy benchmark (gXEB) (19) as a function of the circuit depth measured in the number of two-qubit gates. arb. units, ar-
bitrary units.
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to saturate for Hamiltonians corresponding to clustered molecules.
To simulate the phosphorus cluster (Fig. 3A, iii) to the same level as
the physical NMR experiment, we expect to require circuits of O
(105) gates with a typical gate infidelity of O(10−4), an infidelity
that is two orders of magnitude better than the present experiment.
These infidelities have been achieved in small trapped-ion systems
(25, 26), and future scaling strategies hold great promise for reach-
ing the above performance metrics (22).

DISCUSSION
Zero-field NMR experiments on molecules of similar size to those
in Fig. 3A may thus be a context where prospective near-term
quantum devices can show an advantage over classical computers.
Amore practically compelling context, however, is solid-state NMR.
The same quantum algorithm described by Eq. 1 can be used to ef-
ficiently simulate the dynamics of solid-state NMR experiments
after adding a dipolar interaction term to the Hamiltonian in Eq.
2 (see the Supplementary Materials). Magic angle spinning proto-
cols can be modeled by endowing this dipolar term with time-de-
pendant coefficients. Simulating solid-state NMR experiments,
however, necessitates performing a powder average over 103 to
104 orientations of the system, each corresponding to an indepen-
dent FID that must be computed. On classical computers, the sim-
ulation of each fixed orientation FID can be challenging for large
systems such as membrane proteins or battery materials, thus
making the overhead of powder averaged calculations onerous
even after exploiting parallelization. The resource cost for
quantum simulation of the powder-averaged FID for these
systems, however, is roughly the same as the cost for computing a
single FID corresponding to a fixed orientation.

Specifically, the sample complexity of the two cases is approxi-
mately equivalent on a quantum device. The FID computed for a
fixed system orientation (Eq. 1), can be viewed as an estimator for
a random variable corresponding to the total magnetization of the
system (8). The powder-averaged FID can be computed by sampling
a different orientation every time a term in Eq. 3 is sampled. Letting

Et;Ω½M� be the expectation value corresponding to the FID at time t
for a system in orientation Ω, the powder-averaged FID is simply
EΩ½Et;Ω½M��, with the outer expectation corresponding to a classical
average over a uniform distribution of orientations. The variance of
the estimator for the powder-averaged FID is

Var½M� ¼ EΩ½Vart;Ω½M�� þ VarΩ½Et;Ω½M�� ð4Þ

The first term is the average quantum shot noise associated with
the simulation of a fixed orientation FID and scales as N2 (27). The
second term captures the classical noise associated with sampling
the uniform distribution of orientations comprising the powder
average. Empirically, at most, 103 to 104 such samples are typically
required. For large systems consisting of N = 102 to 104 spins where
quantum devices may prove advantageous over classical computers,
the quantum shot noise dominates the classical noise. Therefore,
roughly N2/ϵ repetitions (shots) of the quantum simulation
suffice to achieve a precision ϵ for both fixed orientation and
powder-averaged computations.

The resources required to simulate solid-state NMR experiments
on quantum hardware is thus primarily determined by that required
to simulate the dynamics of a single orientation of the system.While
the hundreds to thousands of simulation-relevant spins in a large
solid-state NMR samples may preclude computation of its dynam-
ics on near-term quantum computers without any error correction,
more mature quantum hardware may be able to perform the task.

Our zero-field demonstration provides the first proof of princi-
ple that quantum computers can simulate NMR spectra within ex-
perimental resolution and the experimentally demonstrated
algorithm may eventually facilitate analysis of solid-state NMR ex-
periments performed on systems of scientific and technological rel-
evance. While scaling quantum NMR simulations to classically
intractable systems will be challenging, it should be noted that the
resource projections in Fig. 3 are substantially less demanding than
most other near-term quantum computing applications (7, 28, 29).
The physical reason behind the reduced resource cost is that de-
phasing is inherent in the dynamics of nuclear spin systems, with

Fig. 3. Scaling up to classically hard liquid-state zero-field NMR simulations. (A) Chemical structures of (i) anti-3,4-difluoroheptane (38), (ii) a systemwith two coupled
tert-butyl groups, and (iii) the B[ACR9]3 phosphorous system (21). Light green atoms do not contribute to the NMR signal, and dashed boxes indicate strongly interacting
clusters where circuit synthesis can substantially speed up the quantum computation (see the Supplementary Materials). (B) Experimental design curves for (Me3Si)3P7
[(A), iii], showing 1=

ffiffiffiffi
D
p

scaling, where D is the circuit depth, of the frequency resolution up to a minimally achievable width set by the decoherence of the quantum
computer. The circuit depth is measured by the number of (arbitrarily connected) two-qubit gates. (C) Optimal resolution for all three molecules. The circles indicate the
resolution at optimal circuit depth, and the dashed black horizontal lines indicate the resolution accessible in NMR experiments.
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a rate given by the finite linewidth of spectral peaks in NMR exper-
iments. Quantum simulations can tolerate decoherence in the
quantum device as long as it is less than the dephasing rate of the
spin system (8). We note that the noise characteristics in a quantum
simulation platform will not typically be the same as an NMR ex-
periment, as evidenced by the spurious peak seen in Fig. 1. If the
noise of the simulation platform is well understood, then it can
either be mitigated (30) or made to mimic the noise of the NMR
experiment (31, 32). If the noise of the platform is unknown, then
techniques such as twirling can be used to turn it into an effective
depolarizing channel (33, 34), which is the channel used for the es-
timates in Fig. 3. In either case, as long as the finite magnitude of
noise is sufficiently small, the platform can be used to faithfully sim-
ulate NMR experiments.

The hope for an advantage from these digital quantum simula-
tions of NMR lies in time evolution on quantum hardware scaling
with a lower-order polynomial of system size than state-of-the-art
classical simulation packages such as Spinach. These classical
methods also exploit decoherence in the NMR experiment to
reduce the state space that is simulated from one scaling exponen-
tially with system size to one scaling polynomially (4). The subse-
quent computation, extraction of the NMR spectrum from density
matrix time evolution performed to machine precision using Taylor
series expansions, is formally classically tractable but can prove
practically challenging when high correlation orders must be kept
in zero-field and solid-state NMR, corresponding to a state space
scaling as a large polynomial of system size. Density matrix renorm-
alization group (or tensor train) methods, which also exactly simu-
late density matrix time evolution on classical computers, have
alternatively been applied in the context of NMR (35) but have
struggled to simulate large systems due to the irregular three-di-
mensional interaction graphs that manifest between spins. Recent
methodological developments, such as those discussed in (27),
may be able to alleviate these issues to an extent, but it is yet
unclear whether all simulation contexts will become tractable.
QuantumMonte Carlo methods are another possible classical com-
puting approach to simulating time evolution of quantum spin
systems. These methods sample dynamical trajectories rather than
exactly simulating density matrix dynamics and can, in principle,
take advantage of decoherence in the NMR experiment and
render the powder averaging overhead for solid-state NMR redun-
dant similar to quantum hardware approaches. However, these
methods remain largely unexplored in the context of NMR simula-
tion. NMR thus provides a natural task wherewe can seek a practical
quantum advantage from near-term quantum devices: simulation
of noisy spin systems using noisy quantum computers.

MATERIALS AND METHODS
NMR simulation circuits are run on a trapped ion quantum com-
puter that uses the 2S1/2 states of 171Yb+ ions as the qubit states. We
trap 15 ions in a chain for the simulation, and the circuits use four of
those ionic qubits. Before each circuit iteration, ions are cooled
using Doppler cooling and Raman sideband cooling and then
reset to the logical 0 state via optical pumping. The qubit state is
manipulated using 355-nm pulsed Raman beams. Single-qubit
gates are implemented using SK1 pulses (36), and two-qubit gates
are mediated by Mølmer-Sørensen interactions (37)—these gates
are run sequentially. We measure the qubit states by shining 369-

nm light resonant on the 2S1/2 → 2P1/2 cycling transition that scat-
ters photons.

The time series data used to construct the NMR spectrum of ace-
tonitrile were computed from 1000 shots of 102 different circuits,
for each of which eight different initial basis states were prepared.
Each circuit of 1000 shots took approximately 60 s to run. The total
runtime to collect the data was therefore approximately 13.5 hours.
Most of the runtimewas taken up by classical compilation overhead.
Improving the gate compilation procedure would lead to a reduc-
tion of runtime in the near term, thereby allowing faster computa-
tion of spectra.

While running circuits on the quantum machine, we perform
system calibrations of trap voltages and gate amplitudes every
hour to mitigate effects of system drift on circuit performance.
We do not correct for state preparation and measurement
(SPAM) errors in this study, and a table of our system’s SPAM char-
acterization is presented in (9).
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