
Surface Cooper-Pair Spin Waves in Triplet Superconductors

Nicholas R. Poniatowski,1,* Jonathan B. Curtis,1,2 Charlotte G. L. Bøttcher,1 Victor M. Galitski,3

Amir Yacoby,1,2 Prineha Narang ,2 and Eugene Demler4
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

2John A. Paulson School of Applied Sciences and Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
3Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

4Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

(Received 24 January 2022; revised 8 August 2022; accepted 10 November 2022; published 30 November 2022)

We study the electrodynamics of spin triplet superconductors including dipolar interactions, which give
rise to an interplay between the collective spin dynamics of the condensate and orbital Meissner screening
currents. Within this theory, we identify a class of spin waves that originate from the coupled dynamics of
the spin-symmetry breaking triplet order parameter and the electromagnetic field. In particular, we study
magnetostatic spin wave modes that are localized to the sample surface. We show that these surface modes
can be excited and detected using experimental techniques such as microwave spin wave resonance
spectroscopy or nitrogen-vacancy magnetometry, and propose that the detection of these modes offers a
means for the identification of spin triplet superconductivity.
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Spin triplet superconductors are distinguished from their
conventional spin singlet counterparts by the fact that they
spontaneously break spin-rotation symmetry in addition to
global U(1) symmetry. This additional symmetry breaking
implies the existence of collective modes, analogous to
spin waves in other spin-symmetry breaking systems such
as ferromagnets and antiferromagnets [1], which originate
from the coherent precession of the triplet order parameter.
Therefore, the existence of these modes, manifested in
the spin dynamics of the ordered state, can be used to
experimentally identify spin triplet superconductors. In
fact, this approach proved to be spectacularly successful in
the study of superfluid 3He, where probes of the spin
dynamics, such as NMR, were crucial in the identification
of the triplet order parameter [2–4]. Along these lines,
there have been several proposals to probe spin waves in
triplet superconductors via thermodynamic [5–7] and
transport [8] measurements, but to date these modes have
not been observed in any solid state system. Further, there
has been extensive work concerning orbital collective
modes in unconventional superconductors [9–16] and their
(as yet unrealized) potential use as hallmarks of multi-
component condensates.
In contrast, spectroscopic probes which rely on the

coupling of spin waves to electromagnetic fields have
proven to be a powerful tool in the study of magnetically
ordered systems [17,18]. At the long wavelengths relevant
to experiments, spin dynamics are dominated by dipolar
interactions, which can lead to the emergence of collective
modes corresponding to the coupled fluctuations of spin
waves in the material and incident electromagnetic fields
[19–21]. The most notable example is the Damon-Eshbach

mode in ferromagnets [21] and antiferromagnets [22,23],
which is localized to the sample surface.
In this Letter, we develop an electrodynamic theory of

spin waves in triplet superconductors, including the effects
of dipolar interactions which couple the spin and orbital
dynamics of the condensate. Physically, the precession of
the triplet order parameter generates a magnetic field that
couples back onto the condensate magnetization, support-
ing collective dipolar modes. These modes remain stable
even when coupled to the orbital motion of the condensate
through Meissner screening. At the sample surface, this
effect gives rise to a distinct set of surface modes, analagous
to Damon-Eshbach modes, which we show are especially
promising for experimental detection. The collective modes
are identified from the solutions of Maxwell’s equations in
the triplet medium, characterized by a dynamical magnetic
susceptibility χðΩÞ. Thus, we must begin by developing the
theory of the uncoupled spin dynamics of the triplet system.
Matter dynamics.—A spin triplet superconductor is

characterized by an S ¼ 1 order parameter which is a
symmetric matrix in spin space. It is conventional to
represent this matrix in terms of the so-called “d-vector”
as [2,4]

Δ̂ ¼
�Δ↑↑ Δ↑↓

Δ↓↑ Δ↓↓

�
¼

�−dx þ idy dz
dz dx þ idy

�
: ð1Þ

Physically, one may envision d̂ as the direction along which
the condensate has an m ¼ 0 spin projection. In rare cases,
the condensate may be “nonunitary,” and possess a net spin
polarization given by Q ¼ id × d̄ [24].
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To describe the low energy behavior of a triplet super-
conductor, we may construct a phenomenological Ginzburg-
Landau free energy,

F ¼
Z

d3r

�
−rd̄ · d− Γd̄zdz þ

u
2
ðd̄ · dÞ2 þ ũ

2
Q2 − gQ ·h

�
;

ð2Þ

where r, u, ũ, and g are coupling constants and we have
neglected gradient terms [25]. We have introduced a
phenomenological easy-axis spin anisotropy, Γ > 0 that
pins the d vector along the ẑ axis [26]. The sign of ũ
determines whether or not an equilibrium condensate
magnetization is favored, and in what follows we will take
ũ > 0 to study unitary states, since spin-polarized nonuni-
tary states are generally energetically unfavorable and thus
exceedingly rare. Finally, we have coupled the condensate
magnetic moment gQ to an external magnetic field, h.
Although Q vanishes in equilibrium for unitary states, the
energetics of sustaining a fluctuating Q out of equilibrium
affects the spin dynamics, as will be shown below. We
consider only applying a weak field (which does not affect
the equilibrium d-vector) as a means to probe the system.
We note that this model is essentially equivalent to that of a
spin-one spinor condensate [27].
Considering a static system and minimizing Eq. (2), the

equilibrium d-vector is found to be d0 ¼ vẑ, with
v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrþ ΓÞ=up

. To study the order parameter fluctua-
tions, we parametrize the six real collective modes of the
triplet superconductor as

d ¼ eiφ½ðvþ hÞẑþ aþ ib�; ð3Þ

where the global phase mode φ is lifted to the plasma
frequency by the Anderson-Higgs mechanism [28], and
the longitudinal fluctuation of the d-vector is the usual
amplitude Higgs mode which resides at the gap edge
[29]. Additionally, there are four transverse modes
a ¼ ðax; ay; 0Þ and b ¼ ðbx; by; 0Þ which are, respectively,
in and out of phase with the equilibrium condensate.
Physically, these modes are two species of spin waves
associated with the coherent fluctuation of the super-
conducting condensate, i.e., Cooper-pair spin waves.
By applying the S ¼ 1 representations of the generators

of SUð2Þ spin rotations to d0, we see that the a mode
corresponds to long-wavelength rotations of the d-vector.
In the absence of anisotropy, a is a Goldstone mode,
while a finite anisotropy Γ gaps the mode to Ωa ¼ Γ. In
contrast, the b mode gives rise to a fluctuating magneti-
zation δQ¼2d0×b, and is gapped to a frequency Ωb¼
2ũv2þΓ since magnetization fluctuations around the
unitary ground state are energetically costly. The a and
b modes are analogous to the fluctuations of the Neél
vector and magnetization in an antiferromagnet, which

can be thought of as in- and out-of-phase fluctuations of
the sublattice magnetizations, respectively.
In order to study the collective dynamics of the triplet

system, we employ a time-dependent Ginzburg-Landau
formalism [30,31], which allows for both coherent and
dissipative order parameter dynamics, with the equation of
motion (taking ℏ ¼ 1)

i∂td ¼ δF
δd̄

þ α∂td; ð4Þ

where α is a dimensionless damping parameter that is
analogous to the Gilbert damping parameter in the Landau-
Lifshitz-Gilbert theory for magnetic dynamics. This phe-
nomenological damping is meant to model the damping of
spin waves by, e.g., nodal quasiparticles, which are other-
wise absent in our purely bosonic theory. This Landau
damping can be computed microscopically within weak
coupling theory for a given model.
Solving the equations of motion, we can identify the

magnetization m ¼ −δF=δh and, correspondingly, the
dynamic magnetic susceptibility m ¼ χh. Doing so, we
find the transverse susceptibility χxx ¼ χyy ¼ χ⊥,

χ⊥ðΩÞ ¼ χ0
ΩbðΓ − iαΩÞ

ðΓ − iαΩÞðΩb − iαΩÞ − Ω2
: ð5Þ

The susceptibility takes the simple form χ⊥ðΩÞ ¼ χ0Ω2
0=

ðΩ2
0 − Ω2Þ in the absence of damping (with the resonant

frequency Ω2
0 ¼ ΓΩb and oscillator strength χ0 ¼ 2g2v2=

Ωb), and is plotted in Figs. 1(c) and 1(d). Like conventional
magnetic systems, we take χ0 to coincide with the normal
state paramagnetic susceptibility.
This phenomenological model is meant to capture the

key features of the low-frequency dynamics of a triplet
condensate, in particular the pinning of the d vector along
an easy axis by spin-orbit coupling. Given a specific
material, one can construct a more detailed model taking
into account the relevant point group symmetry, but we
expect the main results of our analysis to hold for purely
triplet superconductors on the general grounds that the
transverse susceptibility exhibits a resonance (associated
with a bare spin wave excitation) at finite frequency [32].
The extension of our results to nonunitary or mixed-parity
states is left as the subject of future work.
This generic form of the susceptibility can be illustrated

by a microscopic weak coupling calculation for a simple
model system, which we describe in the Supplemental
Material [36]. We consider a two-dimensional p-wave
superconductor with an easy-axis spin anisotropy. At zero
temperature, we find that the a mode disperses according to
Ω2 ¼ Ω2

0 þ v2Fq
2=2, where vF is the Fermi velocity and the

Cooper-pair spin wave frequency Ω2
0 ¼ γBCSð2Δ0Þ2 is set

by a dimensionless measure of the spin anisotropy γBCS (see
the Supplemental Material [36]) and the superconducting
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gap 2Δ0. Meanwhile, the b mode has the dispersion
Ω2 ¼ ð4Δ0Þ2 þ Ω2

0 þ v2Fq
2=2, which shows that Ωb coin-

cides with the gap edge in the spin-rotation symmetric
system, and is pushed up into the quasiparticle continuum
by anisotropy. Intrinsically, these modes disperse over
electronic length scales, which can be safely neglected
when studying the long-wavelength behavior of the system.
The transverse susceptibility [43] in this model is χ⊥ðΩÞ ¼
χ0Ω2

0=ðΩ2
0 −Ω2Þ, consistent with the undamped suscep-

tibility derived from time-dependent Ginzburg-Landau
theory. This calculation also confirms that χ0 should be
identified as the normal-state paramagnetic susceptibility.
Electrodynamics.—Having derived the properties of the

bare Cooper-pair spin waves, we may now consider their
interaction and hybridization with classical electromagnetic
fields. Since the system is a superconductor, the diamagnetic
response of the condensate, originating from orbital screen-
ing currents, must be taken into account when studying the
spin wave electrodynamics. That is, the Cooper-pair spin
waves generate a fluctuating dipolar magnetic field, which
must be screened by the Meissner currents. This unusual
form of electrodynamics, where the spin dynamics and
orbital currents are coupled at a classical level, distinguishes

spin triplet superconductors from both ferromagnets and
antiferromagnets as well as spinful, but uncharged, con-
densates such as superfluid 3He or atomic spinor Bose-
Einstein condensates.
In the quasimagnetostatic approximation, Maxwell’s

equations read (with μ0 ¼ 1)

∇ · b ¼ 0; ð6aÞ

∇ × h ¼ js; ð6bÞ

where js is the screening supercurrent. This current must be
conserved, and is governed by the London equation

∇ · js ¼ 0; ð7aÞ

∇ × js ¼ −λ−2b; ð7bÞ

where λ is the London penetration depth. Finally, in the
triplet system, b and h are related by the constitutive
relation b ¼ μh with μ ¼ 1þ χ where the susceptibility
(5) encodes the bare spin wave spectrum. The magnetostatic
collective modes are then the normal modes of the coupled
Eqs. (6) and (7), comprising of intertwined fluctuations of
the magnetic field, Cooper-pair spin waves, and induced
supercurrent.
Bulk modes.—We begin by considering an infinite triplet

system, where we can solve the magnetostatic equations in
momentum space to find two branches of solutions. The first
mode has the magnetic field polarized transverse to the
d-vector and satisfies μðΩÞ þ λ2q2 ¼ 0, where μðΩÞ ¼ 1þ
χ⊥ðΩÞ and q is the wave vector of the mode. This mode is
dispersive even in an infinite system on account of the
Meissner effect. In addition to this transverse, isotropically
dispersing mode, the second mode is anisotropic and
partially longitudinal, satisfying ð1þ λ2q2sin2ϕÞμðΩÞþ
λ2q2cos2ϕ ¼ 0, where ϕ is the angle between q and the
d-vector. The dispersions of the bulk modes are plotted in
the Supplemental Material [36].
Surface modes.—Next, we consider a semi-infinite triplet

superconductor occupying the half space z < 0, with
vacuum above (z > 0). We take the d-vector to lie in the
plane of the sample, along the x axis. The magnetostatic
Eqs. (6),(7) must then be supplemented by the boundary
conditions that bz, hx, and hy be continuous across the
interface, and that js;z must vanish at the interface to ensure
supercurrent conservation. The details of this calculation are
summarized in the Supplemental Material [36], and the key
results are shown in Fig. 2.
Figure 2(a) shows the dispersion of the surface mode

for different directions of propagation with respect to the
d-vector. Figure 2(b) shows the surface mode dispersion
alongside the bulk spin wave bands projected onto the
surface, which form two continua of scattering states as the
out-of-plane wave vector qz is varied. As the direction of

(b) (c)

(d)

(a)

FIG. 1. Cooper-pair spin waves. (a) Illustration of Cooper-pair
spin waves, represented as both the precession of the d-vector,
and (schematically) of the associated triplet Cooper-pair spins
that arise due to the time-dependent transverse fluctuations of the
d-vector. (b) Illustration of the collective modes of a triplet
superconductor: the longitudinal Higgs mode, h, and the trans-
verse spin waves a and b. The a mode is in phase with the
equilibrium d-vector, while the b mode is out of phase. (c) and
(d) Dynamical transverse susceptibility χ⊥ðΩÞ for different
values of the damping parameter α with χ0 ¼ 0.1 and
Γ=Ωb ¼ 0.05. All curves exhibit resonant behavior at the
Cooper-pair spin wave frequency Ω2

0 ¼ ΓΩb.
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in-plane propagation becomes parallel to the d-vector
(ϕ → 0), the surface mode intersects the bulk spin wave
bands and ceases to be a distinct, surface-localized mode.
The Cooper-pair spin wave frequency can be estimated

for the candidate triplet superconductor UPt3 [44,45],
where NMR [46] and neutron scattering experiments
[47] show that the d-vector is depinned by a field of
μ0Hpin ¼ 230 mT. We may then estimate the d-vector
anisotropy to be Γ ≈ 2μBμ0Hpin ≈ 300 mK, and using
the weak-coupling expression 2Δ0 ≈ 3.5kBTc ≈ 1.75 K,
estimate the Cooper-pair spin wave frequency to be
14 GHz in this material. Broadly speaking, most candidate
triplet superconductors have transition temperatures on the
order of 1 K [48–50]. Estimating Γ=2Δ0 ≈ 5% − 20%
[51,52], we expect Cooper-pair spin waves to generally
reside at 15–30 GHz. However, these modes may be much
lower lying in organic superconductors [5] or graphene-
based systems [53–55], where the spin-orbit coupling
responsible for pinning the d-vector is extremely weak.
Experimental detection.—Cooper-pair spin waves con-

tribute to experimentally observable electrodynamic
response functions such as the surface impedance and
reflectance of the triplet medium. We calculate these
functions within a two-fluid model of electrodynamics
where the charge response is described via the conduc-
tivity σðΩÞ ¼ σnðΩÞ þ i=ðλ2ΩÞ. The first term describes
the dissipative conductivity due to quasiparticles, while the

second describes the kinetic inductance of the condensate.
The complex surface impedance, which can be measured
using cavity resonator techniques, is then given by
ZsðΩÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðΩÞ=εðΩÞp

, where εðΩÞ ¼ 1þ iσðΩÞ=Ω is the
dielectric function of the triplet medium (see the
Supplemental Material [36] for details). The surface
resistance and reactance, Zs ¼ Rs − iXs, are plotted in
Figs. 3(a) and 3(b) and exhibit a strong resonance at the
bare Cooper-pair spin wave frequency Ω0, as well as a
weaker feature at the frequency of the bulk dipolar mode.
The surface Cooper-pair spin wave lies outside of the

light cone (i.e., disperses with a velocity much slower than
the speed of light), and thus must be excited by a near-field
source, such as an antenna or microwave strip line [56–58].
The same is true for dipolar spin waves in ferromagnets,
and consequently near-field microwave spectroscopy tech-
niques are well developed [19,59,60]. The appropriate
response function to describe such a measurement is the
near-field reflection coefficient rsðΩ; qÞ [61,62] which is
calculated in the Supplemental Material [36]. This reflec-
tion coefficient is presented in Fig. 3(d), and features a peak
at the surface mode frequency. This demonstrates that
surface Cooper-pair spin waves can be excited and detected
much like other dipolar spin waves. For example, they can
be excited by a microwave transmission line and detected
either inductively by a second transmission line [59,60], or
electrically via the inverse spin Hall effect [63,64].
Finally, recent advances in nitrogen-vacancy magne-

tometry [65,66] have enabled nitrogen-vacancy sensors to

(b) (d)

(c)(a)

FIG. 3. Experimental signatures. (a) and (b) Surface resistance
and reactance Zs ¼ Rs − iXs calculated within the two-fluid
model. Both exhibit peaks at the bare Cooper-pair spin wave
frequency Ω0 and Xs features a dip at the bulk dipolar mode
frequency. (c) Illustration of the surface mode in a semi-infinite
sample with an in-plane d-vector. The magnetic field profile of
the mode propagates in the plane of the interface, and decays over
a length LH ∼ λ inside the triplet superconductor and over a
length L0 in vacuum, while the supercurrent profile of the mode
decays over a length LJ. d. Near-field reflection coefficient
evaluated at q ¼ 1=λ, which exhibits a peak at the surface mode
frequency.

(a)

(b)

FIG. 2. Surface Cooper-pair spin waves. (a) Dispersion of the
surface mode for different directions of in-plane propagation with
respect to the d-vector. (b) Angular dependence of the bulk and
surface mode frequencies for fixed in-plane wave vector λq ¼ 1.
The surface-projected bulk spin wave bands form two continua,
and the surface mode exists within the gap between them.
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operate at the mK temperatures needed to access triplet
superconductivity [67], allowing for the magnetic field
profile of the surface modes to be directly imaged, just as
Damon-Eshbach modes have recently been imaged in
ferromagnets [56].
Conclusions.—We have identified a class of magneto-

static modes in triplet superconductors and demonstrated
their coupling to experimental probes. The detection of
these modes in a given material would constitute strong
evidence for spin triplet superconductivity, just as the
detection of various collective modes in 3He proved crucial
to identifying distinct superfluid phases [2,68]. Our results
complement prior works on orbital collective modes in
multicomponent superconductors [9–16], and tighten the
analogies between unconventional superconductors, super-
fluid 3He, and magnetic materials.
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