
Article https://doi.org/10.1038/s41467-023-43453-2

Dichotomy of heavy and light pairs of holes
in the t−J model

A. Bohrdt1,2, E. Demler3 & F. Grusdt 4,5

A key step in unraveling the mysteries of materials exhibiting unconventional
superconductivity is to understand the underlying pairingmechanism.While it
is widely agreed upon that the pairing glue inmany of these systems originates
fromantiferromagnetic spin correlations, amicroscopic descriptionof pairs of
charge carriers remains lacking. Here we use state-of-the art numerical
methods to probe the internal structure and dynamical properties of pairs of
charge carriers in quantum antiferromagnets in four-legged cylinders.
Exploiting the full momentum resolution in our simulations, we are able to
distinguish two qualitatively different types of bound states: a highly mobile,
meta-stable pair, which has a dispersion proportional to the hole hopping t,
and a heavy pair, which can only move due to spin exchange processes and
turns into a flat band in the Ising limit of themodel. Understanding the pairing
mechanism can on the one hand pave the way to boosting binding energies in
related models, and on the other hand enable insights into the intricate
competition of various phases of matter in strongly correlated electron
systems.

Following the discovery of high-temperature superconductivity in the
cuprates, understanding the mechanism by which pairs of charge
carriers can form in a systemwith repulsive interactions has been a key
question in the field, despite a general agreement that anti-
ferromagnetic spin correlations play a prominent role1–3. Motivated by
experimental results on the cuprate materials, a lot of theoretical and
numerical work has focused on identifying the potential pairing
symmetry4,5 as well as the binding energies in these microscopic
models6,7. Despite a vast research effort over several decades, the
existenceof a superconducting phase in the simplestmodel describing
interacting electrons, the Fermi-Hubbard model, remains debated8.
Competing orders, such as charge density waves and stripes, con-
tribute to the difficulty in realizing as well as understanding
superconductivity9.

In order to unravel the competition between different orders, and
thus the conditions for the existence of a superconducting phase, it is
essential to gain a deeper understanding of the nature of individual

pairs of charge carriers. The existence of pairs close to half-filling does
not imply that for a finite density of holes, the system necessarily
realizes a d-wave paired state. Instead, a finite number of charge car-
riers can for example self-organize into a charge or pair density wave
state10. However, understanding whether and how pairs form in the
two-hole problem is crucial to the subsequent understanding of the
self-organization of many holes.

Here we approach the question of the underlying binding
mechanism from an alternative perspective: through elaborate spec-
troscopic tools, we search for bound states of charge carriers in a
quantum antiferromagnet and directly probe their internal structure.
In particular, we numerically simulate rotational two-hole spectra,
where different angular momenta can be imparted on the system,
using time-dependent matrix product states. Crucially, these rota-
tional spectra go beyond the standard pairing correlations through the
momentum resolution they provide. The momentum dependence of
the peaks in the spectral function enables direct insights into the
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effective mass of the pairs, which is an essential property for under-
standing their ability to condense at finite doping and temperature.

We study pairing between two individual holes doped into the
two-dimensional t−Jmodel,whichcorresponds to the enigmatic Fermi-
Hubbard model to second order in t/U (up to next-nearest neighbor
hopping terms, where U is the on-site interaction) and describes
electrons in cuprates11:

Ĥt�J = � t P̂ P
hi, ji

P
σ

ĉyi,σ ĉj,σ +h:c:
� �

P̂ +

+ J
P
hi, ji

Ŝi � Ŝj � J
4

P
hi, ji

n̂in̂j ,
ð1Þ

where P̂ projects to the subspacewithmaximum single occupancy per
site; Ŝj and n̂j denote the on-site spin and density operators,
respectively. In our numerical simulations, we consider a 40 site long,
four-legged cylinder, which is sufficiently long to ensure that the two-
holewavefront in the timeevolutionwe consider belowdoes not reach
the edges of the system. This alsomeans that the thermodynamic limit
is essentially reached in the long direction, and our resulting spectra
correspond to predictions at zero doping.

In order to probe a possible bound state of two charges, we
consider an extension of conventional angle-resolved photoemission
spectroscopy (ARPES). In particular, we excite the initially undoped
antiferromagnet by creating not one, but two charges while simulta-
neously imparting angular momentum on the system. The resulting
spectra thus directly contain information about the existence of pos-
sible bound states, their ground state energy, as well as their disper-
sion relation. In our numerical matrix product state calculations, we

find well-defined peaks in the rotational spectral function for all
angular momenta, for spin-singlet as well as triplet pairs, and
throughout an extended frequency range.

In order to gain a deeper understanding of the rotational two-
hole spectra, we also consider the conceptually simpler t−Jz model,
where the SU(2) invariant spin interactions are replaced by Ising-
type interactions. Without additional spin dynamics, a direct com-
parison of our numerical results to an effective theory describing
pairs of charge carriers bound by strings is possible, yielding
excellent agreement in terms of the existence as well as the dis-
persion of the various bound states we observe. In particular, we
discover a strongly dispersive low-energy peak, with a dispersion
scaling with the hole hopping t, as well as completely flat bands at
competitive energies. We attribute the flat bands to destructive
interference of pairs with d-wave symmetry (See Supplementary
Information file).

Upon introducing spin dynamics, the flat bands develop into
weakly dispersive bands, whereas the t-dependent feature remains
largely unchanged. We thus discover two qualitatively different
kinds of bound states: highly dispersive peaks, including a high-
energy feature with strong spectral weight in the s-wave spectra;
and a weakly dispersive band, which has a high amount of spectral
weight in the d-wave spectra. The dispersion of the latter is deter-
mined by the spin coupling J. The emergence of a slow time-scale set
by J is intuitive and well-known in the case of a single hole12, which
forms a spinon-chargon bound state and can thus only move as fast
as the spin excitation13. In contrast, it is surprising to find a coherent
bound state peak of two holes in the spectrum with a dispersion ∝ t
extending over a wide range of energies without decaying into
incoherent pairs of individual holes.

The remainder of this paper is organized as follows. We start by
introducing the rotational two-hole spectra. We then discuss results
for the t−Jz model, where the SU(2) invariant spin interactions are
replaced by Ising-type interactions. We discuss the features found in
thenumerically obtained spectra indetail andcompare them toa semi-
analytical theoretical description of pairs of charge carriers14. Finally,
we consider the full t−J model.

Results
Rotational Spectra
In order to probe the internal structure of pairs of charge carriers, we
study rotational spectra. We define an operator Δ̂m4

ð j,σ,σ0Þ that cre-
ates a pair of holes on the bonds adjacent to site j with discrete C4

angular momentum m4 = 0, 1, 2, 3 as

Δ̂m4
ð j,σ,σ0Þ=

X
i:hi, ji

eim4φi�j ĉi,σ0 ĉj,σ , ð2Þ

with φr = argðrÞ the polar angle of r; see Fig. 1a for an illustration. In
order to annihilate a spin-singlet, we define the singlet pair operator
(and similar for triplets) as

Δ̂
ðsÞ
m4

ð jÞ= Δ̂m4
ð j, " , #Þ � Δ̂m4

ð j, # , "Þ: ð3Þ

The simplest term creating a spin-singlet excitation with discrete
angular momentumm4, charge two, and total momentum k is directly
given by the spatial Fourier transform of the singlet pair operator as

Δ̂
ðsÞ
m4

ðkÞ=
X
j

e�ik�jffiffiffiffi
V

p Δ̂
ðsÞ
m4

ð jÞ ð4Þ

with volume V. The discrete angularmomentumm4 is a goodquantum
number at C4 invariant momenta k = (0, 0), (π, π) only. Based on this

Fig. 1 | Rotational spectroscopy of two holes in a singlet state in the t−Jmodel
with t/J = 3, on a 40× 4 cylinder, based on a time evolution up to Tmax/J = 3 and
bond dimension χ = 1200. Energies are measured relative to the undoped parent
antiferromagnet. a Sketch of the response probed by the rotational spectrum.
b The upper (lower) plot corresponds to ky =0(π) and a d-wave (s-wave) excitation.
Data are shown as a function ofmomentum kx and frequencyω/J. Gray dashed lines
correspond to a cosine dispersion �2Jα cosðkx Þ+bJ , black line corresponds to a
cosine dispersion �2tα cosðkxÞ+bt , where α =0.33 in both cases, bJ = −11J,
and bt = −9J.
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operator, we now consider the rotational Green’s function

Gðm4Þ
rot ðk, tÞ= θðtÞ Ψ0

� ��Δ̂ðsÞy
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ðk, tÞΔ̂ðsÞ
m4

ðk, 0Þ Ψ0

�� �
, ð5Þ

which we calculate using time-dependent matrix product states15–17.
The corresponding two-hole rotational spectrum, �π�1ImGðm4Þ

rot ðk,ωÞ,
in Lehmann representation is

Aðm4Þ
rot ðk,ωÞ=

X
n

δ ω� En + E
0
0

� �
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� ��Δ̂ðsÞ
m4
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���
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where jΨ0
0i (E0

0) is the ground state (energy) of the undoped system
and Ψn

�� �
(En) are the eigenstates (eigenenergies) with two holes.

The two-hole rotational spectral function defined above is closely
related to the dynamical pairing correlations frequently considered in
the literature8,18,19,

PðωÞ=
Z

dt eiωt Δ̂
ðsÞy
m4

ðtÞΔ̂ðsÞ
m4

ð0Þ
D E

, ð7Þ

where Δ̂
ðsÞ
m4

=
P

jΔ̂
ðsÞ
m4

ð jÞ. Here, however, we consider the fullmomentum
dependence of the pairing correlations, which enables direct insights
into the center-of-mass dispersion of pairs of charge carriers.

The resulting rotational spectra thus directly probe the existence
of bound states and their internal structure: If a bound state of two
holes with long-lived rotational excitations exists, the rotational
spectra should exhibit well-defined coherent peaks. If on the other
hand, such bound states do not exist, the excitationwith the rotational
operator Δ̂m4

ðkÞ will lead to a broad continuum in the corresponding
spectral function.

In Fig. 1b, we show the two-hole spectral function with angular
momentum, i.e.,m4 = 0 (s-wave) andm4 = 2 (d-wave) for the t−Jmodel

for momenta 0 ≤ kx ≤ π and ky =π and ky =0, respectively. We find a
well-defined coherent peak at low energies for all momenta, indicating
the existence of a bound state. The spectrum furthermore reveals a
plethoraof different features, including ahighlydispersive band (black
line, s-wave excitation) as well as bands with a dispersion proportional
to the spin-exchange J (gray dashed lines, d-wave excitation). At
momentum k = (π, π), the spectral weight vanishes for all energies for
the s-wave excitation since Δ̂

ðsÞ
0 ðk = ðπ,πÞÞ=0.

In order to gain a deeper understanding of these intriguing
results, we take a step back and analyze the conceptually simpler t−Jz
model in the following section.

The t−XXZ model
We now consider a modification of the t−J model, where the SU(2)
invariant spin interactions are replaced by in-plane and Ising-type spin
interactions with coupling constants J⊥ and Jz:

Ĥt�XXZ =
X
hi, ji
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In the limit of J⊥≪ Jz, also called the t−Jz model, the lack of spin
dynamics facilitates our theoretical understanding. Experimentally,
the anisotropic interactions can for example be realized by employing
Rydberg interactions20,21 or using ultracold molecules in tweezer
arrays21.

Remarkably, the two-hole spectral function, Fig. 2, exhibits a
highlydispersive peakwith amass proportional to 1/t, best identified at
ky =π (bottom panel); I.e., we find a long-lived, tightly bound state of
two holes, which canmove as fast as the hole hopping t. This is in stark
contrast to the case of a single hole in the samemodel, whichhas a very
high effective mass≫ 1/t and thus an almost flat dispersion22, since it
can only move due to Trugman loops23, which are higher-order
processes.

In Fig. 3, we further analyze the scaling of the mass of the pair by
analyzing the position Δωmax of the lowest energy peak at ky =π as a
function of kx for different values of t/Jz = 1, 2, 3 and J⊥/Jz = 0.1. Note that
the frequency Δωmax is defined relative to the energy of the highly

Fig. 2 | Two-hole rotational spectra in the t−XXZmodel for t/Jz = 3 and J⊥/Jz =0.1
on a 40 × 4 cylinder, based on time evolution up to Tmax/Jz = 10 and bond
dimension χ = 600. The colormap corresponds to numerical matrix product state
simulations of the singlet two-hole rotational spectrum, blue lines are geometric
string theory predictions for the position of states (all shifted by −0.35Jz), and the
black line is a cosine fit. The upper (lower) plot corresponds to ky =0 (ky =π) at
m4 = 2, d-wave (m4 = 0, s-wave), and data are shown as a function of momentum kx
and frequencyω/Jz. In the toppanel, the overall ground state energy for twoholes is
marked by orange circles for ky =0, and the green dashed line corresponds to twice
the energy of a single hole (indicating a small pairing gap on the order of Jz).

Fig. 3 | Strongly dispersive pair state in the t−XXZmodel for t/Jz = 1, 2, 3 and J⊥/
Jz =0.1, 1.0 and m4 = 0 (s-wave). The symbols correspond to the position of the
lowest energy peak at ky =π extracted from numerical matrix product state simu-
lations of the singlet two-hole rotational spectrum. Yellow crosses correspond to
the isotropic case, Jz = J⊥ = J with t/J = 3. All data points are shifted vertically to
collapse at kx =0. The blue dashed lines are geometric string theory predictions for
the position of the strongly dispersing states. The black line is a cosine fit,
0:62 cosðkxÞ+0:72, to the extracted peak positions for t/Jz = 3, J⊥/Jz =0.1.
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dispersive peak atmomentum k = (0,π), and shown in units of the hole
hopping t. We find a remarkable agreement in the overall shape of the
dispersive peak for different values of t/Jz, thus highlighting the scaling
with the hole hopping t.

The lowest-lying peak for ky =0 and ky =π/2 is—within our
numerical resolution—completely flat. Note that the situation of two
unbound, and thus approximately immobile, holes should have a very
small matrix element in the spectral function considered here, and
therefore cannot account for the pronounced flat band peaks we find
in the two-hole spectra. This is further corroborated by the direct
comparison of the energy for two holes (E2h−E0h = −12.08Jz, orange
circles in top panel Fig. 2) with twice the energy of a single hole
(2 ⋅ (E1h−E0h) = −11.01Jz, green dashed line in top panel Fig. 2): the latter
is higher by ≈ Jz, well above our spectral resolution.

In a companion paper14, we extend the geometric string theory
developed for a single hole22, 24 to the case of two charge carriers. In
particular, this geometric string theory approach describes the prop-
erties of two holes bound together by a string of displaced spins, and
thus provides estimates of the energy and dispersion relation of such
pair states, see blue lines in Figs. 2 and 3. Note that the existence of a
state at a given energy does not imply that said state is visible in the
spectral function, since the spectral weight, i.e. the overlap with the
excitation we consider, can still be zero.

The geometric string theory correctly predicts the highly dis-
persive peak, as well as the existence of completely flat bands. Within
this effective theory, the highly dispersive peak can be attributed to
configurationswhere one hole re-traces the string created by the other
hole, which allows the pair to move freely through the host anti-
ferromagnet with an overall dispersion ~ t. The completely flat bands
we find have also been predicted by an earlier theoretical study using a
similar effective model25. We attribute them to the destructive inter-
ference of hole pairs with non-trivial rotational symmetry. A self-
contained summary of the effective string theory is provided in the
methods section.

Results for the t−J model
In the isotropic case, J⊥ = Jz, the strongly dispersive peak remains visi-
ble, see Fig. 1 bottom. In Fig. 3, we compare the peak position for the
isotropic t−Jmodel (yellow crosses) with the t−XXZmodel at J⊥/Jz = 0.1
and find that the momentum dependence along the x-direction of the
lowest-lying peak for ky =π is qualitatively very similar between the two
cases. This indicates in particular that also in the t−J model, a highly
mobile, tightly bound pair state exists.

The flat bands, particularly visible in the J⊥/Jz =0.1 case at
momenta ky =0 in the d-wave channel (and at ky =0, π/2 in the d- and
for all ky in the p-wave channels, see Supplementary Figure 10), acquire
a dispersion approximately proportional to J2?=Jz , as can be seen in the
top plot in Fig. 1. We analyze this behavior in more detail by explicitly
extracting the peak position Δωmax at ky =0 for t/Jz = 3 and different
values of J⊥/Jz in Fig. 4.

Again, the geometric string theory14 correctly captures the highly
dispersive peak withmass proportional to 1/t (black lines) discussed in
Fig. 3. However, since this theoretical description does not account for

Fig. 4 |Weakly dispersive pair in the t−XXZmodel for t/Jz = 3, J⊥/Jz =0.1, 0.5, 1.0,
andm4 = 2 (d-wave). The symbols correspond to the position of the lowest energy
peak at ky =0 extracted from matrix product state simulations of the singlet two-
hole rotational spectrum. All data points are shifted vertically to collapse at kx =0.
Dashed lines are a cosine fit to the extracted peak positions with pre-factor as
indicated in the legend, and additional offsets (not indicated).

Fig. 5 | Angular momentum dependence of the rotational two-hole spectra in the t−Jmodel. We set t/J = 3 and ky =0, and form4 = 0, 2 (left, right column) calculated
singlet two-hole spectra from time-dependent matrix product state simulations.
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spin dynamics, it does not predict the dispersion proportional to J2?=Jz
(gray dashed lines). The corresponding bands in the t−Jzmodel are flat,
as predicted by the geometric string theory.

Different angular momenta
In Fig. 5, we show the spectral function for the t−J model at t/J = 3 and
momentum ky = 0 for m4 = 0, 2, corresponding to s- and d-wave exci-
tations. We find that the spectral weight exhibits a strong dependence
on the angular momentum m4 of the excitations. Before we have
identified two qualitatively different types of bound states: a strongly
dispersive band, see Fig. 3, and a weakly dispersive band, see Fig. 4. By
considering different rotational excitations, we establish in Fig. 5 that
the weakly dispersive pair, realizing the overall ground state within
our spectral resolution, has almost exclusively spectral weight for the
d-wave (m4 = 2) excitation; for the s-wave (m4 = 0) excitation, a large
fraction of the spectral weight appears in a strongly dispersive high-
energy feature. Both of these observations are also predicted by the
geometric string theory14.

Since the 40 × 4 cylinder geometry used in our numerical simu-
lations weakly breaks the C4 symmetry, m4 = 0 and m4 = 2 excitations
can in principle hybridize. We find, however, that such hybridization is
very weak with no significant mixing of spectral weight, see Fig. 5. This
indicates weak finite-size effects in our calculations on 4-leg cylinders.

We note that in early exact diagonalization studies on small
systems18, 19, the integration overall momenta, or the consideration of
only momentum zero, leads to a much sharper low-energy peak in the
d-wave than in the s-wave case.We attribute this to thewidely different
dispersions of the s- and d-wave peaks revealed here, and the exact C4

symmetry in small systems.
The geometric string theory correctly predicts the d-wave char-

acter of the weakly dispersive band, as well as the accumulation of
spectral weight at high energies for k = (0, 0)14. A more detailed com-
parison of spectral weights for different values ofm4 shows very good
qualitative agreement at low energies (see Supplementary Figures 1-3).

So far, we considered a singlet excitation. In order to annihilate a
triplet instead, we define the triplet pair operator as

Δ̂
ðtÞ
m4

ð jÞ= Δ̂m4
ð j, " , #Þ+ Δ̂m4

ð j, # , "Þ: ð9Þ

Upon considering the corresponding triplet spectral function, we find
that the lowest-lyingpeaks are at higher energies than in the case of the
singlet spectral function. This finding furthermore suggests that the
lowest energy peak in the singlet spectral function cannot be
attributed to the unbound states of two holes.

Discussion
In this work, we extensively studied the properties of pairs of charge
carriers in the t−J and t−XXZ models through rotational spectra. We
find well-defined coherent peaks at low energies for all momenta and
angularmomentam4. Our work provides an extensive numerical study
of the mass of pairs of charge carriers in extended systems. We have
revealed two qualitatively different types of bound states: First, a
weakly dispersive peak with a dispersion approximately proportional
to J2?=Jz , which has the most spectral weight for a d-wave excitation.
Second, a highly dispersive peak, corresponds to tightly bound pairs
with a mass proportional to 1/t. We find the same signatures of these
light pairs of charge carriers in the t−Jz and the SU(2) invariant t−J
models. The bands corresponding to these light pairs, as well as the
bands corresponding to heavy pairs, are qualitatively captured by a
semi-analytic geometric string theory approach14.

Our numerical studies of spectra are currently limited to four-leg
systems since we cannot reach sufficiently long times to achieve the
desired spectral resolutionwhenworkingwith larger bond dimensions
required for six-leg systems. Finite-size effects can be expected to play
a role, in particular on a quantitative level, but the good qualitative

agreement of our results with predictions by the genuinely two-
dimensional geometric string approach, along with the absence of
significant hybridization of d and s wave excitations, support the view
that four-leg cylinders are sufficient to capture key qualitative prop-
erties of hole pairs.

An intriguing direction for future research is the direct
experimental probe of the two-hole rotational states. Under-
standing the pairing mechanism in the Fermi-Hubbard and related
models has been one of the key motivations in the development of
quantum simulators, and in particular cold atoms in optical
lattices26. In the past two decades, remarkable progress has been
made in the field27,28, and several proposals to probe the pairing
symmetry have been put forward29,30. More recently, the single-hole
spectral function has been measured experimentally using ultra-
cold atoms31,32. Using additional lattice modulations, the two-hole
rotational spectral function considered here could be accessed
experimentally. In solid state experiments, the s-wave two-hole
spectral function can be accessed through coincidence angle-
resolved photoemission spectroscopy33, which relies on simulta-
neous measurements of two photo-electrons and provides direct
insights into the pair Green’s function. A different approach is based
on Anderson-Goldman pair tunneling in a tunnel junction setup34–36:
to study the structure of individual pairs in a strongly underdoped
quasi-2D material as considered here, we propose to tunnel-couple
the latter to a probe-superconductor along z-direction. Momentum
resolution can in this case be obtained through an in-plane
magnetic field.

The observation of light as well as heavy pairs in the spectra
shown here furthermore suggests a real-space and -time experiment.
Upon slowly releasing two holes next to each other in a cold atom
experiment, a low-energy state of the pair can be prepared. In the
ensuing time evolution, we predict the pairs to spread through the
system in two distinct wave-fronts, corresponding to the light and the
heavy pair, respectively. This phenomenology is expected more
broadly, including in mixed-dimensional bilayer systems37,38.

Finally, the existence of flat or weakly dispersive bands opens a
new avenue to understand the many competing orders found experi-
mentally in cuprate materials as well as numerically in Fermi-Hubbard
and t−Jmodels atfinite doping8,39,40. In the next step,wewill investigate
the dichotomybetween two types of light and heavy pairs in the Fermi-
Hubbardmodel. Furthermore, ourwork raises the interesting question
of how the two types of tightly bound hole pairs discovered here relate
to the Cooper pairs constituting high-temperature superconductors in
copper oxides and whether they play any role in the pairing mechan-
ism of the latter at all.

Methods
Geometric string theory
In order to interpret our numerically obtained two-hole spectra, we
compare them to predictions by a simplified effective theory. The
latter describes pairs of indistinguishable holes that are tightly bound
by a geometric string of displaced spins. The detailed derivation and
discussion of this two-hole geometric string theory can be found in
ref. 14; see also ref. 25 for related earlier work. Here we will only pro-
vide an overview of the key structure, assumptions, and results of this
theory. We emphasize that the main focus of the present article is on
unbiased numerical results, which do not require major uncontrolled
approximations beyond our choice of the microscopic model—in
contrast to the effective geometric string theory.

The first key assumption of the geometric string theory is on the
level of the employed Hilbert space. We consider exactly two holes, at
positions x1,2 on the square lattice, and assume that for each state a
unique string Σ can be defined, composed of a sequence of string
segments definedon the links of the lattice, which connectsx1 tox2; i.e.
x2 is uniquely defined by attaching Σ to x1. By construction, we assume
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that these string states x1,Σ
�� �

span an orthonormal basis, i.e.

x0
1,Σ

0� ��x1,Σ
�
= δΣ0 ,Σδx0

1 ,x1
: ð10Þ

The basic motivation for working with this effective Hilbert space
comes from considering two holes in a perfect Néel state in two
dimensions: Starting from two neighboring holes, identified with the
string-length ∣Σ∣ = 1 states, moving one hole away from the other cre-
ates a string-like memory of its trajectory, up to self-retracing paths, in
the form of displaced Ising spins. For sufficiently short strings, the so-
constructed truncated two-hole Hilbert space maps identically to the
effective Hilbert space of the geometric string theory. For longer
strings, this mapping no longer works due to loop effects, but their
relative importance can be expected to remain small for sizable string
lengths22. Going beyond the perfect Néel state, e.g., to the quantum
Heisenberg antiferromagnet, even short-string states are not perfectly
orthonormal due to quantum fluctuations, but it can still be expected
that an orthonormalized basis with a similar structure can be
constructed.

The second key assumption is on the level of the effective
Hamiltonian. In the geometric string theory, we include hole tunneling
by including processes where the string is extended or retracted by
one segment on either end. Moreover, we take into account spin-spin
couplings indirectly, through a string potential VΣ; we further assume
that the latter depends only on the length ℓΣ of the string VΣ∝ ℓΣ, with a
pre-factor that can be determined from the case of straight strings22.
This string potential models the energy cost associated with the fru-
strated bonds created by the motion of the holes through the host
antiferromagnet.

Finally, to solve the effective stringmodel, we further truncate the
basis by taking into account only the lowest-lying rotational
excitations22 of the strings and restricting their overall length. Making
use of the conservation of the pair’s center-of-mass momentum, we
canderive themomentum-resolved low-energy excitation spectrumof
the tightly bound pairs14. This leads to the line shapes shown in Figs. 2
and 3 of the main text.

Since the geometric string theory, per construction, correctly
captures the short-length strings, it provides a natural phenomen-
ological theory to employ for the description of two-hole spectra: The
latter characterize tightly bound two-hole eigenstates featuring a siz-
able overlapwith string-length one states at a given total momentum k
and C4 angular momentum m4. Other, much more loosely bound,
paired states of individual magnetic polarons, could also lead to fea-
tures in the two-hole spectrum, althoughwith reduced spectral weight
due to theiroverall size. Suchstates, however, canneither bedescribed
by the geometric string theory nor do we find any clear signatures for
them in our numerically obtained spectral functions.

The central predictions of the effective geometric string theory
entail14: (i) The existence of two types of tightly bound hole states,
namely a highly dispersive set of states with bandwidth∝ t; and a
completely flat set of states with zero bandwidth originating from
destructive interference effects, see supplements. (ii) A distribution of
spectral weights in the two-hole spectra which is in good qualitative
agreement with our numerical observations; this includes in particular
the prediction of flat d-wave pairs at low energies and a pronounced
high-energy feature in the spectrum at k =0 in the s-wave channel—see
supplement for comparisons of our numericswith the effective theory.
(iii) The association of d-wave pairing symmetry with flat, or weakly
dispersing, bands; and the association of s-wave pairing symmetrywith
highly dispersive bands corresponding to light hole pairs.

These features can also be observed in our unbiased numerical
calculations of the two-hole spectra. The effective geometric string
theory thus allows us to interpret our numerical findings in an intuitive
way, supporting our claim that long-lived tightly bound paired states
of holes exist in the two-dimensional t−Jmodel. The underlying pairing

is facilitated by the frustrating effect of strings, formed directly
through the hole motion in the host antiferromagnet.

Data availability
All presented data are available from the authors upon request.

Code availability
The used numerical code (TenPy Package) is publicly available at
refs. 41,42.
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