
ARTICLE

A hybrid quantum-classical method for electron-
phonon systems
M. Michael Denner 1, Alexander Miessen 2,3, Haoran Yan4,5, Ivano Tavernelli 2, Titus Neupert1,

Eugene Demler6 & Yao Wang 4,5✉

Interactions between electrons and phonons play a crucial role in quantum materials. Yet,

there is no universal method that would simultaneously accurately account for strong

electron-phonon interactions and electronic correlations. By combining methods of the var-

iational quantum eigensolver and the variational non-Gaussian solver, we develop a hybrid

quantum-classical algorithm suitable for this type of correlated systems. This hybrid method

tackles systems with arbitrarily strong electron-phonon coupling without increasing the

number of required qubits and quantum gates, as compared to purely electronic models. We

benchmark our method by applying it to the paradigmatic Hubbard-Holstein model at half

filling, and show that it correctly captures the competition between charge density wave and

antiferromagnetic phases, quantitatively consistent with exact diagonalization.

https://doi.org/10.1038/s42005-023-01353-3 OPEN

1 Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. 2 IBM Quantum, IBM Research – Zurich, 8803
Rüschlikon, Switzerland. 3 Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. 4 Department of
Physics and Astronomy, Clemson University, Clemson, SC 29634, USA. 5 Department of Chemistry, Emory University, Atlanta, GA 30322, USA. 6 Institute
for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland. ✉email: yao.wang@emory.edu

COMMUNICATIONS PHYSICS |           (2023) 6:233 | https://doi.org/10.1038/s42005-023-01353-3 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01353-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01353-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01353-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01353-3&domain=pdf
http://orcid.org/0000-0002-1762-9687
http://orcid.org/0000-0002-1762-9687
http://orcid.org/0000-0002-1762-9687
http://orcid.org/0000-0002-1762-9687
http://orcid.org/0000-0002-1762-9687
http://orcid.org/0000-0002-4904-7446
http://orcid.org/0000-0002-4904-7446
http://orcid.org/0000-0002-4904-7446
http://orcid.org/0000-0002-4904-7446
http://orcid.org/0000-0002-4904-7446
http://orcid.org/0000-0001-5690-1981
http://orcid.org/0000-0001-5690-1981
http://orcid.org/0000-0001-5690-1981
http://orcid.org/0000-0001-5690-1981
http://orcid.org/0000-0001-5690-1981
http://orcid.org/0000-0003-1736-0187
http://orcid.org/0000-0003-1736-0187
http://orcid.org/0000-0003-1736-0187
http://orcid.org/0000-0003-1736-0187
http://orcid.org/0000-0003-1736-0187
mailto:yao.wang@emory.edu
www.nature.com/commsphys
www.nature.com/commsphys


Understanding strongly correlated many-body systems is
vital to many areas of science and technology, such as the
development and analysis of functional quantum

materials1. Due to the entanglement induced by correlations,
macroscopic properties of quantum materials are often unpre-
dictable from reductive single-particle models. Theoretical ana-
lysis of these systems with strongly entangled degrees of freedom
has, however, been hindered by the exponential growth of their
Hilbert space sizes with the number of particles. Understanding
macroscopic properties of materials requires the analysis of suf-
ficiently large model systems, which cannot be done accurately
with classical computers. Quantum computing technologies,
including hybrid quantum-classical algorithms2–4 constitute an
intriguing new direction for studying quantum many-body sys-
tems and especially quantum materials.

One of the promising representatives of hybrid algorithms is
the variational quantum eigensolver (VQE)2,5–8. This approach
aims to accurately approximate ground states of quantum systems
that can be naturally represented using qubits, such as spin and
fermionic models. An example of such a protocol is shown in the
upper panel of Fig. 1a: one uses a set of parameterized quantum
gates to prepare a variational wavefunction and measures
the expectation value of the Hamiltonian; then, one optimizes
the parameters of these quantum gates using a classical computer.
VQE has been implemented experimentally for small
molecules9–13, providing accurate solutions verifiable by exact
methods. Hardware-efficient implementations of VQE have also
been proposed for solid-state systems, including quantum mag-
nets and Mott insulators14–17. Successful applications of the VQE
approach to describe multi-orbital molecules and intermediate-
size solid-state models pave the way for extending this technique
to broader classes of materials.

However, realistic materials usually contain more complex
interactions than simplified electronic models, such as the Hub-
bard model which only features local Coulomb interaction. The
interaction between mobile electrons and the ionic lattice in
solids, so-called electron-phonon coupling (EPC), underlies
electric and mechanical properties of materials. Notably, it has

been suggested that the interplay between the electron-phonon
interaction and the electronic Coulomb repulsion is crucial for
many novel quantum phases, such as unconventional super-
conductivity in cuprates18–23 and twisted bilayer graphene24–29.
Achieving predictive control of these quantum phases calls
for developing reliable theoretical models describing materials
with EPC30–32, which has motivated studies based on small
clusters33–35 or perturbative couplings36–39. Quantum simulation
of materials with strong EPCs, however, remains challenging due
to the unbounded phonon Hilbert space40–43. The common spirit
of quantum algorithms is to traverse quantum states encoded by
the combination of available qubits. Therefore, even with a single
electronic band and single phonon mode, the system has much
higher computational complexity compared to electrons alone:
inclusion of phonons in an L-site spinful system increases the
Hilbert-space size from 4L (for electrons) to 4L(m+1)L where m is
the (truncated) maximal local phonon occupation. For materials
with non-negligible EPCs, the required m≫ 1 leads to an
unreasonably large, and even unbounded Hilbert space. This issue
prohibits not only classical simulations, but also an efficient
encoding on a quantum machine.

To this end, we design a hybrid quantum algorithm which
leverages the capability of VQE with quantum computers and the
variational non-Gaussian description of non-perturbative
polaronic dressing44–46. We prove the validity of our approach
using the one-dimensional Hubbard-Holstein model and its
variants, which is summarized together with the specifics of the
algorithm in the “Methods” section. We then show that our
hybrid quantum algorithm is able to reliably capture the ground-
state properties of the paradigmatic Hubbard-Holstein model in
all regions of the phase diagram, when compared to non-
Gaussian exact diagonalization (NGSED) results. Our algorithm
does not require any additional qubit overhead stemming from
unbounded phononic degrees of freedom and the truncation to a
low phonon occupation40,42,43, as we implicitly sample the pho-
non Hilbert space. This makes it possible to analyze electron-
phonon systems over a broad range of parameters, including both
adiabatic and anti-adiabatic regimes of the phonon frequencies.
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Fig. 1 Hybrid quantum algorithm. a The hybrid quantum algorithm iterates between a variational quantum eigensolver (VQE) for the electronic and a non-
Gaussian solver (NGS) for the phonon part of the many-body ground state. The quantum circuit structure for a 4-site example at half filling contains Givens
rotations G, on-site gates P, and hopping gates H. The P and H layers are repeated n times to express the ground state wavefunction. Within each layer,
gates share the same variational parameters θi, which are optimized on a classical computer inside each VQE iteration. b Convergence of the NGS-VQE
algorithm, reflected by the total energy as a function of inner-loop (NGS or VQE) iteration steps for a 4-site Hubbard-Holstein model with u= 10, λ= 10,
and ω= 1. VQE steps were performed with quantum circuit statevector simulations and a circuit depth of n= 5. Alternative outer-loop iterations are
colored in red (for VQE) and blue (for NGS) and the data points are compressed after NGS #1, for illustration purposes. c Convergence of the ground state
infidelity 1− F during each iteration. The reference state chosen for each outer-loop iteration was obtained by exact diagonalization on classical computers.
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We conclude our analysis by investigating the scaling of the
algorithm’s performance with respect to the system size, indi-
cating the reduction of exponentially increasing complexity.
Moreover, unlike prior studies on EPC systems implemented in
trapped ions47,48, our approach is not limited to a particular
hardware platform. This makes our algorithm a promising can-
didate for studying systems with strong EPCs and electron-
electron interactions beyond classically solvable problems.

Results
Variational non-Gaussian VQE (NGS-VQE) method. We con-
sider a prototypical correlated system, where electronic correla-
tions are described by the local Coulomb interaction—the
Hubbard model, while electron-phonon coupling follows the
linear Fröhlich-type density-displacement interaction. While the
latter is usually also simplified into local couplings—the Holstein
model—recent experimental discoveries in cuprates have indi-
cated the importance of nonlocal couplings49–52. Including all
these interactions, we obtain the Hubbard-extended-Holstein
(HEH) model, whose Hamiltonian is

HHEH ¼ �t ∑
hi;ji;σ

cyi;σcj;σ þ h:c:
� �

þ U ∑
i
ni;"ni;#

þ ∑
i;j;σ

gij ai þ ayi
� �

nj;σ þ ω0 ∑
i
ayi ai:

ð1Þ

Here, ci;σ (cyi;σ) annihilates (creates) an electron at site i with spin

σ, and ai (a
y
i ) annihilates (creates) a phonon at site i; ni;σ ¼ cyi;σci;σ

denotes the electron density operator for site i and spin σ. Among
the model parameters, t sets the (nearest-neighbor 〈i, j〉)
hopping integral, U sets the on-site repulsive interaction, ω0 sets
the Einstein phonon energy. gij is the coupling strength between
the phonon displacement at site i and electron density at site j.
While our method can tackle any distribution of EPCs, as dis-
cussed later, we restrict ourselves to local g= gii and nearest-
neighbor coupling g 0 ¼ gi;i ± 1 in one dimension.

When the EPC is local, i.e., gij= gδij, the HEH model is reduced
to the Hubbard-Holstein model. The physical properties of the
Hubbard-Holstein model have been studied with various
numerical methods, in one-dimensional (1D) systems53–60, two-
dimensional (2D) systems61–65, and infinite dimensions66–68. The
phase diagram of the Hubbard-Holstein model is controlled by
three dimensionless parameters, notably u=U/t for electronic
correlations, λ= g2/ω0t for the effective EPC, and ω= ω0/t for
phonon retardation effects. The presence of nonlocal EPCs
has been studied recently, motivated by the observed attractive
nearest-neighbor interactions in cuprate chains49. Due to this
reason, numerical studies of the HEH model primarily focused on
1D systems50,51. In this paper, we also restrict ourselves to
periodic 1D systems, while the presented algorithm can be
naturally extended to 2D.

To handle the strongly entangled electronic wavefunction and
unbounded phonon Hilbert space simultaneously, we employ a
variational non-Gaussian construction of the many-body
wavefunction44,69. A universal electron-phonon wavefunction
can always be written in the form of

Ψj i ¼ UNGSðff qgÞ ψph

���
E
� ψe

�� �
; ð2Þ

where the right-hand side is a direct product of electron and
phonon states (denoted as ψe

�� �
and

��ψph

�
, respectively), with the

variational non-Gaussian transformation UNGS ¼ eiS and the
(Hermitian) operator S being a polynomial formed by c, c†, a,
and a† operators (with any sub-indices). The functional class of
Eq. (2) is a complete representation of the full electron-phonon
Hilbert space. The variational solution based on this approach is

guaranteed to be accurate, provided that S can assume arbitrary
polynomials. The accuracy usually converges at a relatively low
order in the exponent70. When determining the order of
polynomials in S, one should balance theoretical needs and
computational feasibility: including high-order powers of electro-
nic and phonon operators in S improves the accuracy and expands
the applicability to complex models; however, these powers also
lead to a large variational parameter space and a complex energy
representation form. As benchmarked by exact diagonalization
(ED) and determinant quantum Monte Carlo (DQMC) simula-
tions of small clusters45,46, it is sufficient to truncate the S operator
to the lowest-order terms for the Holstein-type coupling [see Eq.
(7) in the “Methods” section]. Denoting these lowest-order
coefficients as {fq} (q is the quantum number, naturally chosen as
momentum for periodic systems), we have the variational non-
Gaussian transformation UNGS({fq}) fully determined by these
parameters.

Using this ansatz, we solve the HEH problem by minimizing
the average energy

Eðff qg; ψph

���
E
; ψe

�� �Þ ¼ hΨjHHEH Ψj i ð3Þ

self-consistently with respect to the unrestricted electronic state ψe

�� �
and the variational parameters inUNGS({fq}) and

��ψph

�
. Within each

iteration, the variational non-Gaussian parameters {fq} and the
phonon wavefunction

��ψph

�
(here restricted to be a Gaussian state)

are optimized using the imaginary-time equations of motion derived
in ref. 45 (see Fig. 1a). This is referred to as the non-Gaussian (NGS)
solver, whose computational complexity scales polynomially with
the system size L. On the other hand, the fully entangled electronic
part ψe

�� �
of the wavefunction, represented by a tailored quantum

circuit, can be obtained by regarding the
��ψph

�
and {fq} as fixed and

further minimizing the total energy. The latter step is equivalent
to solving the electronic ground state of an effective Hubbard
Hamiltonian Heff ¼

�
ψph

��Uy
NGSHHEHUNGS

��ψph

�
. Physically, this

Heff describes the behavior of polarons, formed by phonon-dressed
electrons. The phonon dressing gives rise to a heavier effective mass
by modifying the hopping strength ~t and mediates a long-ranged
attraction ~Vij<0 between polarons, in the form of Eq. (9) in the
“Methods” section. In the case of Holstein couplings, Gaussian states
are an efficient representation of the phonon wavefunction��ψph

�
44,45,69. Gaussian states allow to represent the effective

nearest-neighbor hopping and phonon-mediated interactions in
closed-form, as shown in Eqs. (10) and (11) of the “Methods”
section (see also ref. 50).

Within each self-consistent iteration, the key complexity of
solving the electron-phonon-coupled problem has thus been
converted into solving a purely electronic Hamiltonian Heff with
extended Hubbard interactions ~Vij. This electronic problem can
be efficiently embedded on a quantum hardware by using a
suitable fermionic encoding. Here, we employ the Jordan-Wigner
transformation, which maps each electron with given spin
orientation to one qubit [see “Methods” section]. By applying a
set of parameterized rotations to these qubits, we obtain a
quantum circuit representing a variational electronic wavefunc-
tion ψeðfθigÞ

�� �
. The self-consistent quantum-classical iterations in

VQE then optimize the variational gate parameters {θi} to
minimize the energy

�
ψeðfθigÞ

��Heff

��ψeðfθigÞ
�
. The solution of

VQE approximates ψeðfθigÞ
�� �

in the variational ground state of
Eq. (2). Unless explicitly specified otherwise, we conduct the VQE
step of the NGS-VQE iterations with exact statevector simula-
tions using Qiskit71.
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The standard Hubbard model has been successfully studied
with various quantum circuits. Here, we employ the Hamiltonian
variational ansatz72, which can be naturally extended to nonlocal
interactions: inspired by the quantum adiabatic theorem, it starts
from an efficient encoding of the non-interacting lattice model
with translational symmetry73–76, and then evolves the state using
alternating kinetic energy and interacting terms15,17 [see
“Methods” section]. The specific ansatz for the quantum circuit
is presented in the upper panel of Fig. 1a. Since the ground state
of a finite-size periodic system preserves translational symmetry,
we assume the quantum gates in the same layer to share the same
parameters (denoted as θn in Fig. 1a). The expressibility of the
quantum circuit ansatz is controlled by the repetition number n
of the evolution block (P and H gates in Fig. 1a). Depending on
the hardware specific transpilation, the number of CNOT gates
for a given n follows as 6+ 5 × n. This quantum circuit represents
an efficient encoding if n does not scale exponentially with the
system size L. We investigate the scaling with the system size in
the “Scaling in circuit depth and system size” subsection, and
show that the chosen ansatz leads to a quantitatively accurate
performance of the hybrid quantum algorithm.

Figure 1b shows an example of the NGS-VQE simulation for a
4-site Hubbard-Holstein model with u= 10 and λ= 10. Due to
the variational nature of each step in the self-consistent NGS-
VQE iteration, the total energy E always decreases. Thus, this
NGS-VQE iteration is ensured to converge to a local energy
minimum within the variational space set by Eq. (2), which
provides a good approximation for the ground state. It is worth
noting that the energy evolution is not always smooth, where a
sudden drop indicates a dramatic change in the variational
wavefunction from one phase to another. In the example
presented in Fig. 1b, the initial state is prepared by setting the
phonon wavefunction to vacuum. Consequently, the first outer-
loop iteration with VQE (VQE#1 in the panel) starts with a pure
Hubbard model, followed by the adjustment of phonon states and
NGS parameters (NGS#1 in the panel). After the entire first
outer-loop iteration (VQE#1 and NGS#1), the electronic state��ψe

�
lies in an antiferromagnetic (AFM) state as a solution for the

pure Hubbard model, while the phonon state
��ψph

�
induces a

large attractive potential in the form of Eq. (11) in the
“Methods” section. This phonon-mediated interaction tends to
stabilize a charge density wave (CDW), which contradicts the
AFM state (see discussion in “Charge and spin phases in the
Hubbard-Holstein model” for details). As a result, the electronic
state rapidly evolves once the second self-consistent iteration
(VQE#2) starts.

In addition to the energy evolution, we parameterize the
wavefunction error using the infidelity, defined as 1− F with the
fidelity F ¼ �

ΨVQEjΨED

��� ��2. In this context, the reference ground
state ΨED

�� �
is chosen as the optimal solution for each VQE and

NGS step of the outer-loop iteration. Figure 1c shows the
convergence of the wavefunction for the same system as Fig. 1b.
By comparing these two panels, one can observe that a slow
energy evolution may come with a relatively rapid change of
wavefunction parameters, indicative of a barren plateau14.
Therefore, the infidelity may experience significant changes in
later (outer-loop) iterations when the energy is close to
convergence. We emphasize that the infidelity is posterior and
cannot be used as the target function of the iteration.

In contrast to solving a Hubbard model, the NGS-VQE method
involves a self-consistent outer loop between electrons and
phonons. Thus, the combined NGS-VQE efficiency is essential for
optimal results. To mitigate optimization issues of the variational
quantum circuit, for instance the barren plateau or a multitude of
local minima, we employ a three step optimization. First of all,

since all gates within a single ansatz layer share the same
variational parameter θi, we can reuse parameters across circuits
for different system sizes L. We therefore pre-run the VQE with
smaller system sizes to initialize the circuit of the target system
with these converged variational parameters. Moreover, the
ground state evolves adiabatically for small changes in the model
parameters (u, λ, and ω) within the same phase. This is why
we further recycle converged parameters if results for similar
model parameters exist. Finally, we adaptively adjust the VQE
convergence criterion during the outer-loop NGS-VQE iterations
by increasing the number of quantum measurements. Since the
initial phonon state and variational non-Gaussian parameters are
far from saddle points, we start using just a small number of
measurements to give a low-accuracy estimation of the
electronic ground state; with the progress of NGS-VQE
iterations, we gradually raise the convergence criterion for the
electronic state. All these strategies help to improve the overall
performance and reduce the runtime of the hybrid NGS-VQE
algorithm, especially relevant in hardware implementations
(see Supplementary Note 1).

Simulating correlated electron-phonon systems
Charge and spin phases in the Hubbard-Holstein model. The
Hubbard-Holstein model and its extension set the stage to study
the interplay of electronic correlations and EPCs in quantum
materials. At half-filling and in 1D, this model results in a rich
phase diagram, hosting an AFM, CDW, and a narrow inter-
mediate phase53–60. To demonstrate the accuracy and efficiency
of the NGS-VQE algorithm, we first restrict ourselves to the
pristine Hubbard-Holstein model with g 0 ¼ 0 and simulate the
spin and charge structure factors of the ground state for different
model parameters. The (static) spin structure factor is defined as

SðqÞ ¼ ∑
ij
hðni" � ni#Þðnj" � nj#Þie�iq�ðri�rjÞ=L; ð4Þ

while the (static) charge structure factor is defined as

NðqÞ ¼ ∑
ij
hðni" þ ni#Þðnj" þ nj#Þie�iq�ðri�rjÞ=L: ð5Þ

Using the half-filled system as the benchmark platform in this
paper, we focus on the nesting momentum q= π for both structure
factors. In the regime where electronic interactions dominate
(u≫ λ), the spin structure factor S(π) prevails over the charge
structure factor, reflecting an AFM state in a finite cluster (see
Fig. 2a, b for ω= 10). With the increase of u− 2λ, N(π) gradually
vanishes as charge degrees of freedom are frozen with a substantial
energy penalty for double occupations. In the other limit where
EPCs dominate (λ≫ u), the charge structure factor N(π) prevails
over the spin structure factor S(π). This reflects the onset of a CDW
state, although a more rigorous identification requires either scaling
to larger system sizes or excited-state analysis. Physically, the CDW
is stabilized by the energy gain through a lattice distortion, forming
an alternating pattern of holons and doublons. We summarize the
dependence of both spin and charge structure factors on the two
interaction parameters in Fig. 2c and d. The trends of these two
observables reflect the two dominant phases qualitatively consistent
with physical intuition. Due to the underlying finite-size system,
the two phases are separated by a crossover instead of a sharp phase
boundary. Recent studies have shown the presence of an inter-
mediate Luther-Emery liquid phase for u ≈ 2λ, whose width is
controlled by the phonon frequency60. The discussion of this phase
requires finite-size scaling and is beyond the scope of this paper.

To determine the quantitative accuracy of our hybrid quantum
algorithm, we compare the converged ground state for each set of
model parameters against the NGSED solutions. The accuracy of
the latter has been benchmarked by ED and DQMC45,46,77. As
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shown in Fig. 2e, the infidelity map suggests that even the largest
error is in the single-digit percentage range, at most 0.03. These
errors do not change significantly with increasing system size, as
outlined in the “Scaling in circuit depth and system size”
subsection. Interestingly, the most accurate solutions (with
infidelity of order 10−5) are obtained near the boundary of the
CDW and AFM phases, i.e., along the diagonal u ≈ 2λ. In this
regime, the finite-system solution is more metallic, due to the
delicate balance between the electronic repulsion and phonon-
mediated attraction. Therefore, the true ground state of systems
near the phase boundary can be efficiently captured with a Slater
determinant prepared by Givens rotations73–76. In contrast, the
infidelity increases when the system evolves into CDW or AFM
states, although the NGS-VQE algorithm yields quantitatively
accurate results throughout the phase diagram. This observation
is contrasting the intuition that the AFM or CDW states are
more classical. Instead, these states are cat states in these small
and low-dimensional systems. An accurate representation of
these highly-entangled states with long-range correlations,
therefore, requires deeper quantum circuits and, accordingly,
more gates. The dependence on circuit depth will be discussed
in the “Scaling in circuit depth and system size” subsection.
This sensitivity of the simulation accuracy to the model
parameters is also reflected by the error of the ground-state
energy, as shown in Fig. 2f.

Up to now, the benchmark has been conducted with relatively
large phonon frequencies ω= 10, where the competition between
CDW and AFM states is primarily controlled by the effective local
interaction ueff= u− 2λ after integrating phonon fields. How-
ever, phonon frequencies in typical correlated materials are
usually comparable to the electronic bandwidth, if not even
reaching the adiabatic limit (ω→ 0). The dependence of charge
and structure factors on different phonon frequencies is discussed
in Supplementary Note 2. In the thermodynamic limit, smaller
phonon frequencies usually lead to a steeper crossover between

the two phases54–57, with both S(π) and N(π) dropping more
rapidly when approaching the phase boundary. Note, however,
that this intermediate phase cannot be resolved in a small cluster.

Phonon-mediated interactions in the Hubbard-extended-Holstein
model. The wavefunction ansatz in Eq. (2) allows to extract the
effective model Heff in the polaronic basis while solving for the
ground state. This approach has been used to quantify the
recently discovered nearest-neighbor electronic attraction ~V in
cuprate chains50. Here, we evaluate ~V for different systems using
the NGS-VQE algorithm both to provide intuition about phonon-
mediated interactions in different limits and to benchmark the
validity of the method under different conditions.

We first examine the Hubbard-Holstein model without g 0.
Figure 3a, c and b, d shows the simulated local and nearest-
neighbor attractive interaction in the polaronic basis. Since this
interaction was discovered in cuprates with strong electron
correlations, we restrict ourselves to the AFM regime (u≫ λ)
and set λ= 1. In the anti-adiabatic limit, the local interaction ~Vii
asymptotically approaches −λ=−1 and all nonlocal interac-
tions ~Vi≠j vanish (see Fig. 3c, d). This is consistent with the
integration of phonons in field theory. With the decrease of ω
and proximity to u, Coulomb interactions start to influence the
distribution of ~Vij. Such an influence is more obvious for large u,
where the electronic correlations are strong and renormalize the
phonon self-energy. This effect can be captured by the
wavefunction ansatz of Eq. (8). The electron-dressing effect for
the phonon self-energy is described by Ωeff in ref. 45. Simulta-
neously, the retardation effect of finite-frequency phonons
mediates the effective interaction at finite distance. Therefore,
the effective nearest-neighbor attraction ~Vi;iþ1 increases for
lower phonon frequencies (see Fig. 3b, d).

With further decreasing phonon frequencies, the impact of
phonons becomes a mean-field-like deformation potential instead
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of a virtual process. Such a deformation potential contributes as
an overall chemical potential instead of media of a two-particle
interaction. Therefore, the simulated ~Vij becomes extremely
nonlocal and evolves into an all-to-all interaction, which is
equivalent to a chemical potential shift in a canonical ensemble
with fixed particle number. In the ω→ 0 limit, phonon-mediated
interactions are insensitive to the Hubbard u, because the mean-
field phonon distortion is determined only by the average local
electron density, which is approximately fixed in the AFM phase
(see Fig. 3a, b). This insensitivity is similar to the anti-adiabatic
limit but has a different origin.

We now move on to discuss the impact of nearest-neighbor
EPC g 0 on the complexity and accuracy of the hybrid quantum
algorithm. We fix the ratio g 0=g ¼ 1=

ffiffiffi
5

p
to reflect the geometric

relation of apical oxygens in a 1D transition-metal oxide50. With
electrons coupled to their nearest-neighbor phonons directly, the
mediation of ~Vi;iþ1 can be generated without retardation effect.
Therefore, the asymptotic ~Vi;iþ1 in the anti-adiabatic limit is no
longer zero but acquires a finite value (see Fig. 3h). This
asymptotic interaction strength can be analytically calculated as
�2gg 0=ω, which is more evident than the additional interactions
caused by retardation effects (the latter is three orders of
magnitude smaller than the former). At the same time, the
phonon-mediated local interaction ~Vii is further strengthened by
this nonlocal g 0 coupling. The anti-adiabatic value of ~Vii

approaches �g2=ω� 2g 0
2
=ω (see Fig. 3g). Due to the geometric

distance controlling g 0=g, the strength of ~Vii is still comparable to
that of the Hubbard-Holstein model (g 0 ¼ 0). In the adiabatic
limit, the effective interactions are similar to those obtained from
the Hubbard-Holstein model, asymptotically approaching an
extremely delocalized ~Vij. Compared to the g 0 ¼ 0 case (Fig. 3a,
b), the only difference is the asymptotic value when ω approaches
zero. Using the fact that, in the long-wavelength limit (q= 0), ~V
is proportional to g2q=ω and gq ¼ g þ 2g 0 cos q, we can estimate

the ratio between these two asymptotic ~Vij values (for g
0 ¼ g=

ffiffiffi
5

p

and g 0 ¼ 0) to be ð1þ 2=
ffiffiffi
5

p Þ2 � 3:59. This ratio agrees with the
simulated results in Fig. 3a, b, e, and f.

Scaling in circuit depth and system size. The results presented in
Fig. 3 demonstrate that our hybrid quantum algorithm is able to
produce quantitatively accurate results across the full phonon
spectrum (see Supplementary Note 2 for a comparison to NGSED
results). To further analyze the accuracy of our algorithm, we
investigate the influence of different system sizes L. The depth of
the quantum circuit controls the expressibility of the variational
state, potentially allowing for a more accurate approximation of
the electronic ground state by increasing n. However, an efficient
encoding on quantum computing platforms is only possible if the
depth of the employed quantum circuit does not scale exponen-
tially with the system size L. As shown in Fig. 4a, the ground
states for small-u systems can be efficiently expressed by a Slater
determinant. Thus, only a few layers are needed to reach ground
state energy errors below 1 × 10−6 when compared to ED. Larger
u, however, requires deeper circuits, reaching a plateau of errors
of the order 10−4 to 10−5 in the ground state energy. In order to
investigate the scaling of necessary n with the system size L, we
consider a fixed error in the electron ground state energy of
∣ENGS-VQE− EED∣/L= 0.1t. The circuit depth required to achieve
this performance as a function of L is shown in Fig. 4b, high-
lighting a moderate increase in depth for small and large u.
Intermediate values for u, however, require significantly deeper
circuits, as quantum fluctuations are larger around the crossover
between metallic and AFM phase.

So far, we have considered the influence of finite-depth
quantum circuits on the electronic part of the many-body ground
state. The hybrid NGS-VQE algorithm combines the electron
solver with a variational NGS solver for the phonon and non-
Gaussian components. That being said, errors in the VQE
solutions do not necessarily accumulate, but can actually be
mitigated by the phonon solver. Considering again a fixed error
in the electron ground-state energy of ∣ENGS-VQE− EED∣/L= 0.1t
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and corresponding circuit depth n, we investigate the accuracy of
the hybrid quantum algorithm in different regions of the phase
diagram. Specifically, we consider the relative error in the ground-
state energy of the converged extended-Hubbard Hamiltonian
[see Eq. (9)], containing the phonon dressing of kinetic hopping
and long-range interactions. Figure 4c, d indicates that the NGS-
VQE simulation errors are usually at least an order of magnitude
smaller than those of the electronic solvers. The largest errors are
obtained for small phonon frequencies (Fig. 4d, ω= 1), where the
absence of quantum fluctuations hinders the phonon solver to
escape local minima during the self-consistent iteration45. Warm-
up iterations with larger phonon frequencies can help to alleviate
this issue45. Moreover, the relative errors do not increase for
systems larger than L= 4, indicating quantitatively accurate results
across different system sizes and phases. The only exception
appears in the CDW phase at small phonon frequencies such
as ω= 1, where the relative error oscillates with L, likely due to the
degeneracy of ground states. The ability to mitigate errors of the
quantum solver also provides a promising path to experimental
realizations. Hardware implementations, irrespective of the specific
platform, suffer from decoherence78, making noise resilient
algorithms of key importance. Our hybrid quantum algorithm is
able to improve VQE results over a wide range of phonon
frequencies, phase regions, and noise levels, suggesting efficient
hardware realizations (see Supplementary Note 3).

Conclusions
Our NGS-VQE method provides a general framework for per-
forming accurate and efficient quantum simulations of electron-
phonon systems with arbitrary interaction strengths. Using this
method, we have studied the Hubbard-Holstein and HEH models
as examples, reproduced the CDW-AFM crossover with high
precision, and extracted the phonon-mediated interactions in a
wide range of phonon frequencies. While we focused on para-
digmatic (and experimentally relevant) cases, this method can be
generally applied to any model with electronic Coulomb corre-
lations and Fröhlich-type electron-phonon couplings. The com-
mutation between the NGS transformation [eiS with S defined in
the form of Eq. (7) of the “Methods”] guarantees a closed-form
effective Hamiltonian similar to Eq. (9). This hybrid algorithm
can be extended to other types of electron-boson interactions
(like the Su-Schrieffer-Heeger phonon and cavity QED) through

the generalization of the non-Gaussian transformation UNGS and
its optimization strategy. Anharmonic potentials can be tackled at

the price of replacing ψph

���
E

by more complicated many-body

wavefunctions similar to the electronic ones. Both generalizations
are accompanied by the increase of computational complexity
and should be designed based on the requirements of specific
models. Moreover, as demonstrated in ref. 46, this framework can
be extended to non-equilibrium dynamics, which requires a
reliable quantum solver for the long-time propagation of ψe

�� �
.

The Fourier transform of non-equilibrium dynamics with two- or
multi-time correlation functions further paves the way to excited-
state spectra79–81.

Our work shows that the phonon solver can mitigate potential
errors of the quantum hardware, facilitating a future experimental
implementation. The success of an experimental realization, how-
ever, relies on an efficient implementation of the required quantum
circuits, respecting the connectivity of a given device. This is
especially the case for nonlocal gates, like the P gates of our ansatz
representing electron-electron interactions. Trapped ion and cold
atom-based platforms offer high qubit-connectivities82, reducing
potential swap-overheads when implementing entangling gate-
layers such as the P and H gates in our ansatz. Superconducting
systems, on the other hand, have a more limited qubit-connectivity
but operate at much faster rates, making them favorable for two-
level NGS-VQE iterative schemes. Therefore, practical imple-
mentations of the algorithm proposed in this study call for devel-
oping higher-connectivity superconducting hardware or error
mitigation schemes to compensate for potential swap-overheads.

Methods
NGS-VQE method and effective Hamiltonian. As mentioned in
the main text, the variational electron-phonon wavefunction in
the NGS-VQE method is given as

Ψj i ¼ UNGSðff qgÞ ψph

���
E
� ψe

�� �
; ð6Þ

with the non-Gaussian transformation UNGS ¼ eiS . As bench-
marked by ED and DQMC on small clusters45,46, it is sufficient to
truncate the S operator to the lowest-order terms

Sðff qgÞ ¼ � 1ffiffiffi
L

p ∑
qiσ

f qe
iqxi ðaq � ay�qÞni;σ ; ð7Þ
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where we use the momentum-space electron density ρq ¼
∑i;σni;σe

�iqxi , and the phonon momentum operator pq ¼
i∑iðayi � aiÞe�iqxi=

ffiffiffi
L

p
.

The goal of the NGS-VQE solver is to minimize the total
energy in Eq. (3) in the variational parameter space spanned by
{fq}, jψphi, and jψei. Without considering anharmonicity, the
phonon state to the right of UNGS should be weakly entangled and
can be efficiently captured by variational Gaussian states

jψphi ¼ e�
1
2R

T
0 σyΔR e

�i14∑q
Ry
qξqRq

0j i ¼ UGS 0j i: ð8Þ

Here, ΔR, ξq are variational parameters and Rq ¼ ðxq; pqÞT denotes
the bosonic quadrature notation with canonical position xq and
momentum pq, where we adopt the reciprocal representation for
the phonon displacement xq ¼ ∑jðaj þ ayj Þe�iqrj=

ffiffiffi
L

p
. For conve-

nience, we parameterize the phonon state using the linearization of
UGS named Sq, which satisfies Uy

GSðxq; pqÞTUGS ¼ Sqðxq; pqÞT . The
NGS-VQE method minimizes the total energy by updating ψe

�� �
and

��ψph

�
iteratively.

With fixed UNGS and
��ψph

�
, the electronic problem that the

quantum machine has to solve is the ground state of an effective
Hamiltonian

Heff ¼ �~t ∑
hi;ji;σ

cyi;σcj;σ þ h:c:
� �

þ U ∑
i
ni;"ni;#

þ∑
i;j

∑
σ;σ 0

~Vijni;σnj;σ 0 þ ~Eph ;
ð9Þ

where ~Eph ¼ 1
4ω∑q

�
Tr½SqSyq� � 2

	
. The phonon-dressed hopping

becomes

~t ¼ te
�∑

q
f 2qð1�cos qÞeT2 SqSyqe2=L

; ð10Þ
and the effective interaction is

~Vij ¼
1
L
∑
q

2ω0f
2
q � 4gqf q

h i
eiqðri�rjÞ: ð11Þ

The VQE solution of the effective Hamiltonian in Eq. (9) gives
ψe

�� �
in Eq. (6). The iterative optimization of UNGS and

��ψph

�
, for

fixed ψe

�� �
, follows the imaginary time evolution in ref. 45. It is

worth noting that the charge density correlation functions
hρqρ�qi / ∑ij∑σσ 0ni;σnj;σ 0 necessary for the imaginary time

evolution of
��ψph

�
appear in Heff as well. They are therefore

already measured with the energy expectation value during VQE
and result in no additional computational cost.

Quantum circuit and ansatz. To represent the effective Hamil-
tonian in Eq. (9) on a quantum computer, we rely on the Jordan-
Wigner transformation: each electron with given spin orientation
is mapped to one qubit. Specifically, it reads

Sþi;σ ¼ cyi;σe
iπ∑

l<i
nl;σ

; ð12Þ

S�i;σ ¼ ci;σe
�iπ∑

l<i
nl;σ

; ð13Þ
where the phase factors retain the fermionic anti-commutation in
the spin operators S. Transforming the effective model described
by Eq. (9) with L sites then yields 2L spin operators. Conse-
quently, a quantum ansatz for the electronic ground state con-
tains 2L qubits, which represent occupied 1j i ¼ cy 0j i or
unoccupied 0j i fermionic states. As the effective Hamiltonian
preserves occupation number and total spin, we can restrict the
electron occupation to half-filling and total spin to zero. Corre-
spondingly, we arrange the qubits representing the two spin

orientations separately (see Fig. 1a), and require that gates con-
necting the two spin sectors cannot change their respective
occupation.

As outlined in the main text, the employed quantum circuit is
based on the Hamiltonian variational ansatz72. To encode the
non-interacting (U= 0, Vij= 0) electronic model, a sequence of
Givens rotations G(θ), parametrized by θ, is applied to adjacent
qubits73–76. In the basis 00j i; 01j i; 10j i; 11j i, the gate is defined as

GðθÞ ¼

1 0 0 0

0 cos θ2 � sin θ
2 0

0 sin θ
2 cos θ2 0

0 0 0 1

0
BBB@

1
CCCA: ð14Þ

The ground state of the full effective model is then obtained by an
adiabatic evolution with the Hubbard-like Hamiltonian15,17. It
can be decomposed into kinetic hopping terms,

HðθÞ ¼ e�iðcyi ciþ1þcyiþ1ciÞθ ¼ e�iðXiXiþ1þYiYiþ1Þθ=2; ð15Þ
in the basis 00j i; 01j i; 10j i; 11j i represented as

HðθÞ ¼

1 0 0 0

0 cos θ2 �i sin θ
2 0

0 �i sin θ
2 cos θ2 0

0 0 0 1

0
BBB@

1
CCCA; ð16Þ

and on-site interactions

PðθÞ ¼ e�ininjθ ¼ e�i 11j i 11h jijθ; ð17Þ
described by

PðθÞ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ

0
BBB@

1
CCCA: ð18Þ

The alternating sequence of phase gates (P) and hopping gates
(H) is then repeated for a number of repetitions n, controlling the
expressibility of the variational ansatz.
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