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We propose to use local electromagnetic noise spectroscopy as a versatile and noninvasive tool
to study Wigner crystal phases of strongly-interacting two-dimensional electronic systems. In-plane
imaging of the local noise is predicted to enable single-site resolution of the electron crystal when the
sample-probe distance is less than the inter-electron separation. At larger sample-probe distances,
noise spectroscopy encodes information about the low-energy Wigner crystal phonons, including the
dispersion of the transverse shear mode, the pinning resonance due to disorder, and optical modes
emerging, for instance, in bilayer crystals. We discuss the potential utility of local noise probes in
analyzing the rich set of phenomena expected to occur in the vicinity of the melting transition.

Wigner crystal (WC) phases of the electron gas have
been a subject of active research since their initial concep-
tion by Wigner many years ago [1]. Recently, a new gen-
eration of experiments providing compelling evidence of
WC phases across a number of two-dimensional electron
gas (2DEG) systems [2–6] have reinvigorated interest in
the field for a number of reasons: i) The experiments are
carried out at low temperatures in the degenerate regime
T ≪ EF (EF is the Fermi energy) and at zero perpen-
dicular magnetic field, ii) observation of unexpected and
potentially exotic magnetism in the vicinity of the WC
melting transition [4–6], iii) in the case of WCs in transi-
tion metal dichalcogenide (TMD) systems, optical spec-
troscopy enabled direct measurement of the WC ordering
wave vector [2], and iv) TMD bilayer WCs appear stable
up to anomalously high electron densities and tempera-
tures [3].

Despite both novel and improved experimental capa-
bilities for clarifying the onset of crystallization, there
remain few probes for characterizing salient properties of
the WC phase [7]. These include the nano- and meso-
scale structure of the electron crystal, as well as prop-
erties of the low-energy WC phonons [8]. The necessity
of experimental proposals is especially pressing in the
TMD systems, for which many conventional measure-
ments, such as transport, are not possible due to noto-
rious challenges associated with large contact resistances
[9, 10].

In the present paper we propose local electromagnetic
noise spectroscopy as a probe of WC states, and con-
sider the conditions under which such measurements are
within current experimental reach. We demonstrate that,
owing to the large emergent length scale associated with
the WC lattice constant, magnetic noise spectroscopy can
be used to both map local charge properties at the WC
lattice scale, as well as long-wavelength properties of the
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WC phonons. We demonstrate that magnetic noise sens-
ing is especially well-suited to probe a defining feature of
the WC solid – the transverse shear mode. Other reso-
nances unique to the crystal phase can also be observed,
such as pinning of the WC by disorder and optical modes
in more complex crystals, such as bilayer WCs. Our pro-
posal is in part inspired by developments in the field of
“qubit” sensors, in which quantum impurities of vari-
ous sorts are used to probe local electromagnetic fields
and their associated fluctuations. Notable probes include
nitrogen-vacancy (NV) and silicon-vacancy (SiV) centers
in diamond [11–26], hBN defects [27–32], and SNOM de-
tectors [33, 34], which can sense magnetic and/or electric
fields [35–40].
We consider an atomic scale qubit probe that is

brought near a 2D sample of interest and is used to sense
local magnetic fields. Fluctuating currents in the sam-
ple generate stray magnetic fields, which then affect the
relaxation properties of the qubit [41]. These relaxation
properties are directly related to the magnetic noise ten-
sor:

NB
αβ(rq, ω) =

1

2

∫
dt eiωt⟨{Bα(rq, t), Bβ(rq, 0)}⟩T , (1)

where {., .} is the anticommutator, ⟨. . .⟩T denotes the
thermal expectation value, rq = (r, zq) is the position
of the noise probe, and Greek indices α, β, etc., de-
note Cartesian components. The Biot-Savart law fur-
ther relates the magnetic field to currents via Bα(q, z) =
(2π/qc)e−q|z|ϵαβγ(iqβ − qδβz)jγ(q) ≡ Kαγ(q, z)jγ(q),
with jα(q) being the 2D current density in the sample.
Here q is the in-plane wave vector, c is the speed of light,
and ϵαβγ is the Levi-Civita tensor [42]. Experimentally,
one usually accesses NB

αβ via 1/T1 relaxometry and/or

1/T2 spin-echo-like measurements, which are related to
the noise via Fermi’s golden rule. The dependence of the
magnetic noise tensor on various physical parameters –
such as temperature, frequency, qubit’s position, electron
density, etc. – allows one to characterize intrinsic corre-
lations of the 2D material [17, 43–49].
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FIG. 1. Single-site resolution (SSR) of the WC with local magnetic noise spectroscopy. (a) Spatial dependence of the 1/T1

relaxation rate of the qubit probe showing that the magnetic noise is strongly enhanced when the qubit is placed on top of an
electron site. Here we fixed zq = 0.25a, the qubit quantization axis is aligned with ẑ, and we used the phonon Green’s function
of the clean WC – see Appendix B. Panels (b) and (c) represent cuts of NB

xx and NB
zz along one of the edges in the triangular

WC, showing that i) the local magnetic noise is strongly anisotropic and ii) when the probe is further away from the sample,
the noise it senses appears more homogeneous. This is further illustrated in panels (d) and (e), where the broad distribution of
1/T1 at zq = 0.25a (d) becomes notably narrower at zq = 0.5a (e). Various quantities are normalized by their spatial averages,
⟨. . .⟩, to highlight the magnitude of spatial fluctuations in the SSR regime.

The key idea of our work is based on the observation
that the WC lattice constant, which is tuned by varying
the electron density, can be made much larger than the
underlying microscopic lattice scale of the 2D material.
For instance, in TMDs the WC lattice constant varies in
the range a ≃ 10-30 nm [2, 3]. This opens the possibil-
ity that a qubit probe can be brought closer to the 2D
sample than the inter-electron distance, allowing for spa-
tial resolution of magnetic noise produced by individual
electrons in the WC. As will be elaborated upon below,
magnetic noise in a WC is sourced primarily by charges
oscillating about their equilibrium lattice sites, that is,
by local phonon fluctuations. In the regime zq ≲ a, the
noise sensor effectively probes the local phonon density of
states g(ω), with the noise directly on top of an electron
being approximately given by (c.f. Eq. (4))

NB(ω) ∼ Tne2

c2m
g(ω)

(∑

G

e−zqG
)2

, (2)

where G are reciprocal lattice vectors of the WC and m
is the effective electron mass. In TMD systems specif-
ically, the noise will receive an enhancement owing to
the relatively large melting temperatures (on the order
of tens of K) and the relatively high electron densities
(n ∼ 1011-1012 cm−2). The magnitude of the density of
states contribution depends on the ratio of the probe fre-
quency to the plasma frequency, ω2

p = 2πne2/ma, which
is the characteristic phonon frequency scale in a WC. For
WCs realized in TMD systems, ωp is on the order of a
few THz. Typical resonant frequencies of atom-like solid-
state defects, however, are in the GHz range, so we ex-

pect ω ≪ ωp. The density of states then comes primarily
from low-frequency transverse phonons, g(ω) ≈ ω/2πv2s ,
where vs is the sound speed. In this regime, we estimate
the noise will be within the sensitivity of current sen-
sors (roughly NB ≳ 1 pT2 × Hz−1) for a sample-probe
distance on the order of a few nm. For probes with op-
erating frequencies in the THz, such as tin-vacancy sen-
sors [50] and SNOM detectors [51], the density of states
contribution would be larger and the sample-probe dis-
tance could be tens of nm. Additionally, nonlinear optics
methods may be used to push the qubit operating regime
to higher frequency [52, 53]. Our estimates indicate that
while single-site resolution (SSR) of the WC using noise
spectroscopy is challenging, it nevertheless, can be within
experimental reach. In what follows, we develop the gen-
eral microscopic theory for electromagnetic noise from a
WC. In addition to the SSR regime, we will also show
that the noise allows one to study long-wavelength WC
phonons when zq ≳ a.

Deep in the WC phase, current fluctuations are gen-
erated by the time-varying polarization from fluctuat-
ing WC phonons, which are the primary low-energy
degrees of freedom in the system. The phonon spec-
trum is described by the elastic potential energy Uel =
1
2

∑
q

∑
λ mω2

λ(q)|uλ(q)|2. Here λ is the phonon mode

index, which includes the transverse (shear) and longitu-
dinal (compression) modes, as well as optical modes in
crystals with more than one electron per unit cell (such
as in the bilayer WC); uλ(q) are the associated phonon
displacements with in-plane wave vector q; and the mode
frequencies are ωλ(q). These mode frequencies take into
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account both the Coulomb forces between electrons, as
well as the effects of weak disorder – a point we will elab-
orate upon below. The response properties of the WC
are encoded in the phonon Green’s function:

Dαβ(q, ω) = −i

∫ ∞

0

dt eiωt⟨[uα(q, t), uβ(−q, 0)]⟩T . (3)

In terms of more familiar quantities, the phonon Green’s

function can be directly related to the non-local optical
conductivity of the WC [54] – see Appendix A.

The fluctuation-dissipation theorem, together with the
Bio-Savart law, relates the magnetic noise tensor to the
current-current response function of the electron system.
The latter can be expressed using the phonon Green’s
function to yield:

NB
αβ(r, ω) ≈ 2Tne2ω Im

[ ∑

G1,G2

eir·(G1−G2)

∫

1BZ

d2q

(2π)2
Kαγ(q +G1, zq)Kβδ(−q −G2, zq)Dγδ(q, ω)

]
. (4)

Here the q-integration is over the first Brillouin (1BZ)
of the WC lattice, e is the electron charge, and we have
assumed T ≫ ℏω. The exponential z-dependence of the
Biot-Savart kernel Kαβ implies that the qubit probe ef-
fectively averages over a spatial region with a size de-
termined by zq and, thus, one should distinguish two
regimes: zq ≲ a and zq ≳ a.

In the limit zq ≲ a (SSR regime), the contribution of
non-zero G’s, which determine the intra-unit cell struc-
ture, is important. In this case, the largest contribution
to the noise comes from positions r near the WC lattice
sites, where the oscillating phase factors in Eq. (4) go to
one. In Fig. 1 we demonstrate the spatial dependence of
the qubit 1/T1 (which is simply related to particular com-
ponents of the magnetic noise tensor – see Appendix B).
Figure 1 illustrates the important characteristics of the
noise in the SSR regime: i) strong spatial inhomogeneity,
ii) anisotropy of the noise tensor, and iii) broad distri-
bution of qubit relaxation rates from different points in
the plane. These characteristic features become weaker
upon increasing the qubit-sample distance zq, as seen in
Fig. 1c,e. The anisotropy of the noise near an electron
site can be understood from the fact that an oscillating
dipole in the plane would emit primarily in the direction
perpendicular to the plane.

In the opposite limit zq ≳ a, the noise (4) is well ap-
proximated by keeping only the G = 0 terms and simpli-
fies to

NB
zz(ω) ≈

πTne2ω

c2z2q

∫ ∞

0

dxx e−x Im
[
DT

( x

2zq
, ω

)]
. (5)

Notably, in this limit the noise becomes independent of
the in-plane position r. In obtaining this result we have
utilized that for qa ≪ 1 and (ωzq/c)

2 ≪ 1, one can ap-
proximate NB

αβ(ω) ≈ diag(NB
zz(ω)/2,NB

zz(ω)/2,NB
zz(ω)),

that is, there is only one independent component of the
noise tensor (see Appendix C). We also used the fact that,
at long-wavelengths qa ≪ 1, the phonon Green’s function
may be decomposed into transverse (T) and longitudinal
(L) parts [55]. We observe that NB

zz(ω) is determined
by the transverse phonon Green’s function, DT, which
encodes the transverse sound mode in the system. The

FIG. 2. Hierarchy of the relevant length scales for a weakly
disordered WC, as described in the main text. Beyond the
length scale Rd ≫ Rc, topological defects become important.

existence of this mode captures the hallmark feature of
the crystal phase – its rigidity to shear. In the limit
of a clean WC, the dispersion of the transverse mode is
ωT(q) ≈ vsq for qa ≪ 1.
Any realistic 2DEG system is affected by inhomo-

geneities of the sample. Here we have implicitly assumed
such disorder effects are not strong enough to completely
destroy the local crystalline order of the WC. (In this re-
gard, the SSR method would allow one to image the dis-
torted lattice giving access to the average displacements
due to disorder and long-range crystalline correlations.)
While leaving the crystal intact, weak disorder never-
theless has important effects on the phonon spectrum at
larger length scales, relevant when zq ≫ a. The most sig-
nificant effect is the “pinning” of the crystal, which opens
a (pseudo) gap in the phonon spectrum: ωλ(q) → ω0 as
q → 0 [56]. This has important physical consequences:
the pinned WC is an insulator (in the absence of pinning
the WC could conduct by sliding) and there emerges a
finite frequency “pinning” resonance, ωpin, in the absorp-
tion spectrum [57–61]. In the absence of an applied mag-
netic field, ωpin = ω0, whereas in a large out-of-plane
magnetic field, ωpin = ω2

0/ωc, where ωc = eB/mc is the
cyclotron frequency [62].

The pinning frequency defines an important charac-
teristic length scale according to ω0 ∼ vs/Rc, where Rc

is known as the “Larkin length” [63, 64]. The Larkin
length, assumed to satisfy Rc ≫ a, is the length scale at
which electrons “feel” the stochastic aspects of the dis-
order potential and metastability can manifest. Specifi-
cally, it is the length scale at which relative phonon dis-
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FIG. 3. Collective behavior in the WC. Magnetic noise as a
function of frequency ω for various probe heights zq shows an
enhancement upon crossing the transverse phonon frequency
ω = ωT(q∗) at q∗ = 1/2zq. Inset: tracking the maxima of
NB

zz(ω) for various zq enables reconstructing the dispersion
curve ωT(q).

placements become of the order of a relevant microp-
scopic length, ξ0, which may correspond to the width of
the electronic wave function localized to the WC lattice
sites, the correlation length of the disorder potential, or
the magnetic length in cases with a large perpendicular
magnetic field. The various important length scales are
summarized in Fig. 2.

Additionally, weak disorder also gives rise to broaden-
ing of the otherwise long-lived phonon modes. The fore-
going discussion motivates the following simple parame-
terization of the phonon Green’s function in the regime
qa ≪ 1:

DT(q, ω) = − 1

m

1

ω2 + 2iγω − (v2sq
2 + ω2

0)
, (6)

where γ ∼ ω0 is the damping rate. Here we have as-
sumed that the length scales being probed are sufficiently
long that the relevant observables are self-averaging, and
translation invariance is effectively restored, implying in-
plane momentum q is a good quantum number [65].
This phenomenological form of the Green’s function is
in agreement with the results of more detailed calcula-
tions – see, for instance, Appendix F, where we treat the
disorder using the replica trick and Gaussian variational
method (GVM) developed in Refs. [60, 61, 66–68].

Utilizing the form of the Green’s function (6), Eq. (5)
for the noise becomes

NB
zz(ω) =

[
NB

zz

]
Liq

1

τω0

∫ ∞

0

dx x e−x

× 2γ̂ω̂2

{ω̂2 − [ω̂2
T(x/2zq) + 1]}2 + 4γ̂2ω̂2

,

(7)

where ω̂ = ω/ω0 and γ̂ = γ/ω0. For the reference
noise, we used the Johnson–Nyquist noise in the metallic
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FIG. 4. Conductivity in the bilayer WC exhibits an additional
peak at the optical phonon frequency, which couples to the
noise sensor due to the presence of a weak disorder.

phase [NB
zz]Liq = πTσ0/(c

2z2q), where σ0 = ne2τ/m is the
Drude conductivity and τ is the scattering time. While
the liquid state noise [NB

zz]Liq is essentially featureless as
a function of ω and zq, the noise in the WC phase ex-
hibits a much richer structure. An immediate conclusion
from Eq. (7) is that the low-frequency magnetic noise in
the WC phase is significantly suppressed relative to that
of the liquid: NB

zz ∼ [NB
zz]Liq × (ω/ω0)

2 as ω → 0, yield-
ing a crude signature of the transition from the metallic
to insulating phase [69]. For an estimate of the liquid-
state noise near the WC transition, we consider a TMD
system at T ∼ 10 K, zq ∼ 10 nm, and n ∼ 1011 cm−2,
and use the mobilities reported in Ref. [70]. This yields
[NB

zz]Liq ∼ 5 pT2×Hz−1, which is within the sensitivity
of current qubit sensors [14, 19]. For bilayer WCs, ob-
served to be stable up to significantly higher densities
and temperatures [3], the noise will be further enhanced
(see Appendix B). We thus expect detection of the WC
transition with noise sensing, via both 1/T1- and 1/T2-
measurements, is within experimental reach.

More refined information may be extracted by con-
sidering how the noise varies with the probe frequency ω
and height zq. As shown in Fig. 3, there is a resonant en-

hancement of the magnetic noise when ω ≈
√
v2sq

2∗ + ω2
0 ,

where the wave-vector is determined by the probe height,
q∗ = 1/2zq. The peak position moves closer to the
phonon dispersion as the phonons become sharper, i.e.,
as the disorder effects become weaker. Thus, for a suffi-
ciently clean WC corresponding to ω0 ≪ ωp, mapping of
the magnetic noise in the (zq, ω)-space allows for direct
extraction of the transverse phonon dispersion curve. Im-
portantly, even if stronger disorder precludes a straight-
forward mapping of the dispersion curve, at large enough
probe heights (small enough wave-vectors) the noise still
exhibits a resonant enhancement at ω0. Similarly, we
anticipate that other q = 0 resonances unique to WC
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phases can be studied with the noise measurements. One
notable example is the optical phonon present in bilayer
WCs, corresponding to out-of-phase charge oscillations
between the layers. Without disorder, the qubit probe
separated farther than the interlayer spacing simply av-
erages over the layers and is insensitive to the optical
mode. With disorder, however, differences in pinning be-
tween the layers will couple the optical mode into the
layer-averaged response, as we illustrate in Fig. 4 (see
also Appendix F). We note that other interesting opti-
cal modes have also been recently predicted for WCs in
multi-valley 2DEGs [71].

Experimental feasibility of mapping the phonon spec-
trum requires an estimate of the pinning frequency ω0.
This frequency is determined by the disorder of the sam-
ple, making a direct evaluation from microscopic consid-
erations challenging. However, if we assume the disorder
effects are relatively weak, as evidenced by the apprecia-
ble WC correlation length inferred from experiments [2],
then it is reasonable to assume ω0 ≲ ωp. To be within
the operating regime of NV or SiV centers, one requires
ω0 ≲ 50GHz; see also Fig. 3. This operating regime can
potentially be extended to higher frequencies via nonlin-
ear frequency mixing methods [52, 53]. Finite tempera-
ture effects should also help push ω0 into the experimen-
tally accessible range, as phonon frequencies are generally
expected to soften upon approaching the thermal melting
transition. Fabrication of cleaner TMD samples will also
both increase the overall noise and decrease ω0. Applica-
tion of a large perpendicular magnetic field will parame-
terically shift the pinning resonance to a lower frequency
as well as make it narrower [58–60]. All of these should
increase the feasibility of our proposal. We analyse the
noise for the case of systems without time-reversal sym-
metry, such as those in a magnetic field, in Appendices C
and D.

To summarize, the measurements we propose could
be used to characterize properties of the WC at both
short distances and long distances and low energies. In
the short distance SSR regime, in addition to the direct

imaging of the WC lattice one could potentially extract
a number of important properties relating to the nano-
and meso-scale properties of the system. This would be
particularly useful to study the physics near quantum
melting of the WC, where there have been proposals of
intermediate phases involving meso-scale inhomogeneity
and other forms of symmetry breaking such as nematicity
[72, 73]. In the regime of a far-separated sensor, monitor-
ing the evolution of the phonon spectrum upon increas-
ing electron density would shed light on quantum effects
in the WC. Some interesting questions in this regard in-
clude the extent to which magnetic tendencies of the WC
are encoded in the elastic coefficients of the crystal and
the role of phonon softening for melting. Reasonable es-
timates suggest local noise spectroscopy of the sort we
propose is feasible for characterizing properties of the re-
cently discovered WCs in TMD systems. Although we
haven’t explored it in detail here, the spin properties of
the WC, which are expected to be particularly rich near
melting [74, 75], can also be probed via magnetic noise
sensing. Beyond WCs, we also expect the techniques
described here to be useful in studying moiré systems,
which have a similarly large emergent length scale asso-
ciated with the moiré unit cell.
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terlis, D. Sels, R. J. Stöhr, C. Du, D. Fernandez, J. F.
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Appendix A: Relating the long-wavelength optical conductivity and the phonon Green’s function

In this Appendix, we derive the relationship between the non-local long-wavelength optical conductivity and the
phonon Green’s function. We do this in the general case of a lattice with a basis relevant for bilayer WC systems,
as well in the absence of time-reversal symmetry so that the Hall conductivity σH can be nonzero. Our discussion
follows closely that given in Ref. [55] for the dielectric susceptibility of a WC.

Because the WC is an insulator, it is convenient to work with the polarization density (as opposed to the current
density). Phonon displacements are related to the microscopic polarization according to

pαi (R) = −euα
i (R), (A1)

where R labels a lattice site, α is the Cartesian component of the displacement, i labels the basis element within a
unit cell, and e > 0 is the magnitude of the electron charge. The 2D polarization density is related to the microscopic
polarization according to

Pα(r, t) =
∑

R,i

pαi (R, t)δ(r −R− δi), (A2)

where δi denotes the i-th basis vector within a unit cell. Consider now a harmonic dependence of the dipole field:

pαi (R, t) = pαi (q, ω)e
i[q·(R+δi)−ωt], (A3)

so that

Pα(r, ω) =
∑

i

pαi (q, ω)e
iq·r ∑

R

δ(r −R− δi) =
∑

i

pαi (q, ω)e
iq·r 1

Ac

∑

G

eiG·(r−δi), (A4)

where Ac is the unit cell area. The macroscopic (long-wavelength) polarization is the contribution from the G = 0
term:

Pα(q, ω) =
1

Ac

∑

i

pαi (q, ω) (macro), (A5)

that is, the macroscopic polarization is just the average of the microscopic polarization within the unit cell. In Ap-
pendix B, we analyse the properties within a single unit cell, where the contribution from G ̸= 0 becomes appreciable.
The 2D current density jα is related to Pα via jα(q, ω) = −iωPα(q, ω), implying that the conductivity may be
defined through:

Pα(q, ω) =
σαβ(q, ω)

−iω
Eβ(q, ω), (A6)

with Eβ(q, ω) being the electric field. Here and below we also adopt the summation convention over repeated indices,
and we do not distinguish between upper and lower indices.

To relate the conductivity to the phonon Green’s function, we consider the response of the system to an external
electric field Eα

ext(r, t). The phonon Hamiltonian is modified by the addition of a term corresponding to the interaction
energy of a dipole with this external electric field:

Hext = −
∑

R,i

pαi (R)Eα
ext(R+ δi, t) ≈ −

∑

R,i

pαi (R)Eα
ext(R, t), (A7)

where in the approximation we have assumed Eext does not vary appreciably within a unit cell. Within linear response,
the polarization induced by the external field is given by:

pαi (q, ω) =
∑

j

e2Dαβ
ij (q, ω)Eβ

ext(q, ω), (A8)

where the phonon Green’s function is defined as

Dαβ
ij (q, ω) = −i

∫ ∞

0

dt e−iωt θ(t)⟨[uα
i (q, t), u

β
j (−q, 0)]⟩. (A9)
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The left-hand side of Eq. (A8) is related to the macroscopic polarization in the system via Eq. (A5):

Pα(q, ω) =
e2

Ac

∑

ij

Dαβ
ij (q, ω)Eβ

ext(q, ω). (A10)

In the regime of linear screening, the total and external electric fields are related to each other by the dielectric tensor:

Eα
ext(q, ω) = εαβ(q, ω)E

β(q, ω), (A11)

while the polarization density is related to the electric field by the conductivity, cf. Eq. (A6). This yields

σαβ(q, ω) = − ie2ω

Ac

∑

ij

Dαγ
ij (q, ω)εγβ(q, ω). (A12)

The dielectric function is expressed in terms of the conductivity as

εαβ(q, ω) = δαβ +
2πiq

ω

qαqγ
q2

σγβ(q, ω), (A13)

where the projector qαqγ/q
2 describes the screening of longitudinal electric fields. Utilizing this relation, we get:

σ−1
αβ (q, ω) = − Ac

ie2ω

[
D−1

αβ (q, ω)−
2πe2

Ac

qαqβ
q

]
, (A14)

where Dαβ =
∑

ij D
αβ
ij . The result in Eq. (A14) is the general relationship between the optical conductivity and

phonon Green’s function.
We now mention some particular important cases. Firstly, for q = 0, the screening terms vanish and we have the

following simple relationship:

σαβ(q = 0, ω) = − ie2ω

Ac
Dαβ(q = 0, ω), (A15)

which is a standard result [58, 60, 77]. Secondly, in a time-reversal symmetric system, where the Hall components
vanish, Eq. (A14) reduces to (recall n = 1/Ac for a lattice with a single electron per unit cell):

σT(q, ω) = −ine2ωDT(q, ω),
σL(q, ω)

ε(q, ω)
= −ine2ωDL(q, ω). (A16)

Finally, in Appendix C we demonstrate that the magnetic noise tensor in the presence of a perpendicular magnetic
field (and hence nonzero σH) is expressed in terms of the combination σ̃T = σT + σ2

H/σL, Eq. (C21), which is then
related to the phonon Green’s function utilizing Eq. (A14):

σ̃T(q, ω) = − ie2ω

Ac

[
DT(q, ω) +

D2
H(q, ω)

DL(q, ω)

]
. (A17)

The analysis in this Appendix is valid for wave vectors q much smaller than the reciprocal lattice vectors. In the
following Appendix, we consider the case where large wave vectors become important.

Appendix B: Single-site resolution with local noise spectroscopy

We expect that a qubit probe can be brought to the 2D sample closer than the WC lattice constant, zq ≲ a. In this
SSR regime, local electromagnetic noise is strongly sensitive to the in-plane position r of the probe, as fluctuations near
an electron site are expected to be enhanced compared to the ones near the middle of a triangle. In this Appendix, we
provide the details of our analysis of the magnetic noise in this SSR regime. The opposite regime zq ≳ a is considered
below in Appendices C and D.
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1. Local magnetic noise from a fluctuating WC

We write the magnetic noise as:

NB
αβ(r, zq, ω) =

1

2
⟨{Bα(r, zq, ω), Bβ(r, zq,−ω)}⟩T , (B1)

where we explicitly separated the in-plane position of the probe r from its height zq, i.e., rq = (r, zq). To simplify
the presentation, below we occasionally suppress the explicit dependence on zq. The magnetic field Bα(r, ω) at the
position of the qubit probe is related to the charge current inside the sample through the Biot-Savart kernel:

Bα(r, ω) =

∫
d2r′ Kαβ(r − r′) jβ(r

′, ω), (B2)

where (in SI units)

Kαβ(r − r′) = −µ0

4π

α̂ · ((rq − r′)× β̂)

|rq − r′|3 ⇔ Kαβ(q) =
µ0

2q
e−qzq




0 q iqy
−q 0 −iqx
−iqy iqx 0


 . (B3)

The current density in the monolayer WC is expressed as (see Appendix A):

jα(r, ω) = −iωPα(r, ω) = −iω
∑

R

pα(R)δ(r −R) = ieω
∑

R

uα(R)δ(r −R). (B4)

This, together with the fluctuation-dissipation theorem, yields:

NB
αβ(r, ω) ≈ 2Tne2ω Im

[ ∑

R1,R2

Kαγ(r −R1)Kβδ(r −R2)Dγδ(R1 −R2, ω)
]

= 2Tne2ω Im
[ ∑

G1,G2

eir·(G1−G2)

∫

1BZ

d2q

(2π)2
Kαγ(q +G1)Kβδ(−q −G2)Dγδ(q, ω)

]
, (B5)

which is Eq. (4) of the main text.

2. Efficient numerical evaluation of Eq. (B5)

The sum over G1 and G2 in Eq. (B5) converges slowly and is inefficient for numerical evaluation of the noise. To
overcome this, we follow the approach outlined in Ref. [78] for bilayer WCs and use the Ewald summation technique
that turns Eq. (B5) into a rapidly convergent sum. We begin by expressing the vector potential through the in-plane
currents localized at the 2D WC lattice sites R:

Aα(r, z) =
1

c

∑

R

1√
(r −R)2 + z2

jα(R). (B6)

Here z is the height above the 2D crystal and we have used the Coulomb gauge ∇ ·A = 0. This expression is then
Fourier transformed

Aα(r, z) =
1

c

1√
N

∑

q∈1BZ

a(r, z; q)jα(q), (B7)

where N is the number of WC lattice sites and

a(r, z; q) ≡ e−iq·r ∑

R

eiq·(r−R)

√
(r −R)2 + z2

. (B8)

Efficient evaluation of the sum in Eq. (B8) was worked out in Ref. [78] (see Eqs. (9) and (13) there), and here we
quote the final result:

a(r, z; q) =
√
n
∑

G

e−i(q+G)·rΨ
( (q +G)2

4πn
, πnz2

)
+
√
n
∑

R

e−iq·RΦ
(
πn[(r −R)2 + z2]

)
, (B9)
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where n is the 2D charge density and

Φ(u) =

√
π

u
erfc(

√
u), Ψ(u, v) =

1

2

√
π

u

[
e
√
4uv erfc(

√
u+

√
v) + e−

√
4uv erfc(

√
u−√

v)
]
. (B10)

A detailed derivation of these expressions may be found in Appendix A of Ref. [78].
The magnetic field, given by B = ∇×A, may be written as

Bα(r, z) =
1

c

1√
N

∑

q∈1BZ

bαγ(r, z; q)jγ(q), bαγ(r, z; q) ≡ ϵαβγ∂βa(r, z; q). (B11)

Using Eq. (B9), we find for the in-plane components α = (x, y):

bαγ(r, z; q) = ϵαγ(2πzn
3/2)

[∑

G

e−i(q+G)·r∂vΨ
( (q +G)2

4πn
, πnz2

)
+
∑

R

e−iq·RΦ′
(
πn[(r −R)2 + z2]

)]
, (B12)

where ϵαγ ≡ ϵαzγ . For the α = z component, we obtain

bzγ(r, z; q) = ϵγβ

[√
n
∑

G

[−i(qβ +Gβ)]e
−i(q+G)·rΨ

( (q +G)2

4πn
, πnz2

)

+
√
n
∑

R

[2πn(rβ −Rβ)]e
−iq·RΦ

(
πn[(r −R)2 + z2]

)]
. (B13)

The noise is then expressed as

NB
αβ(r, z, ω) = 2Te2ω

∫

1BZ

d2q

(2π)2
bαα′(r, z; q) Im[Dα′β′(q, ω)] bββ′(r, z;−q), (B14)

which was the form used for calculating the results displayed in Fig. 1 of the main text. There we also used the exact
Green’s function for a clean WC [55]. This is justified as effects of weak disorder manifest themselves mostly at small
wave vectors, while in the SSR regime the noise averages over the entire Brillouin zone.

3. Local 1/T1-measurements of the WC

We now briefly comment on how one accesses the magnetic noise tensor in practice using 1/T1 relaxometry. To this
end, we first write the Hamiltonian that governs the dynamics of the local qubit probe:

Ĥq =
ℏωq

2
σ̂ · n̂q +

gµB

2
σ̂ · B̂(rq, t), (B15)

where g is the g-factor of the probe and ℏωq is its splitting along the quantization axis n̂q. In 1/T1-experiments, one
studies the decay rate of the qubit initially polarized along n̂q. Using Fermi’s golden rule, one finds [41]:

1

T1
=

(gµB

2

)2

NB
−+(ωq), (B16)

where B̂± = B̂x′±iB̂y′ (here (x′, y′, z′ = n̂q) form a mutually orthogonal triad). Strictly speaking, Eq. (B16) is correct
only for time-reversal symmetric situations; if this symmetry is broken (spontaneously or via an applied magnetic
field), Eq. (B16) is valid only up to the leading order in (ωqzq/c)

2 ≪ 1, assumed throughout the paper – see also
Appendix C. In Fig. 1 of the main text, where we discuss the SSR regime, we primarily consider the quantization axis
n̂q to be aligned along ẑ.

4. Local 1/T2-measurements of the WC

In 1/T2-experiments, one performs an analog of a spin-echo or Ramsey pulse sequence on the qubit [79]. During
such a pulse sequence, the qubit initially aligned in the plane perpendicular to n̂q precesses under the magnetic field
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component along n̂q. For a noisy magnetic field, on average the qubit will display dephasing. Similarly to the 1/T1-
rate, the dephasing rate can be related to the magnetic noise coming from the sample [49]. Specifically, this rate is
encoded in the time decay of P(τ) = exp(−2⟨φ2(τ)⟩), where

⟨φ2(τ)⟩ =
∫ ∞

−∞

dω

2π
Wτ (ω) n̂q,αNB

αβ(ω)n̂q,β . (B17)

Here Wτ (ω) is the filtering function, which encodes the pulse-sequence used in the experiment. For the traditional
spin-echo sequence, we have [49]

Wτ (ω) = (2gµB)
2 sin

4(τω/4)

ω2
. (B18)

If the noise is frequency independent, such as in the liquid state, we get:

[ 1

T2

]
Liq

= (gµB)
2n̂q,α[NB

αβ ]Liqn̂q,β . (B19)

Crudely, the 1/T2-rate is expected to be of the same order as the 1/T1-rate, Eq. (B16). The crucial difference between
the two manifests when the noise depends on frequency, such as in the WC state. In this case, the 1/T1-rate is
determined by the qubit splitting ωq (for NVs, ωq ≃ 2.7GHz), whereas the 1/T2-rate essentially senses the magnetic
noise at frequencies related to the pulse sequence (typically in the sub-MHz range).

5. Estimates of the magnetic noise in the liquid phase for TMDs

The feasibility of both types of experiments, 1/T1 relaxometery and 1/T2 spin-echo-like measurements, is directly
encoded in the magnetic noise strength.

For the reference magnetic noise, we use that of the liquid state, which we write in the following convenient form:

[NB
zz]Liq ≈ 3.4 pT2 ×Hz−1 ×

(
σ0

σQ

)(
T

10K

)(
10 nm

zq

)2

, (B20)

where σQ = 2e2/h is the quantum of conductance, and we have taken T = 10K and zq = 10nm as the reference
temperature and probe height, respectively. The estimate of the magnetic noise reduces to estimating σ0, which is
related to the mobility µ as:

σ0

σQ
=

enµ

σQ
≈ 1.5×

( n

5× 1011 cm−2

)( µ

1500 cm2/(V s)

)
, (B21)

where we have used 1500 cm2/(V s) as the reference mobility – this value is close to the one reported in Ref. [70] for
monolayer and bilayer MoSe2. The relevant electron densities in monolayer TMD samples are n ≃ 5 × 1011 cm−2.
For monolayer TMDs, we, therefore, get [NB

zz]Liq ≃ 5 pT2 × Hz−1, which is within the sensitivity of current qubit
sensors [19]. Let us remark that the TMD value σ0/σQ ≃ 1 appears to be rather small, i.e., the TMD samples are
rather dirty. Indeed, for more traditional semiconductors that also exhibit signatures of the WC phase, this ratio can
be several orders of magnitude larger [80]. We anticipate that fabrication of cleaner TMD samples will emerge in the
foreseeable future, which will then increase the feasibility of our proposal.

In bilayer TMD samples, there are two aspects that make the magnetic noise much stronger [3]: i) bilayer WCs
in TMDs are stable up to anomalously high electron densities (about an order of magnitude larger than the typical
monolayer density where putative WCs are present) so that one can easily get [NB

zz]Liq ≃ 50 pT2×Hz−1; and ii) further
enhancement can come from the fact that the melting temperature in bilayer WCs is Tc ≈ 40K. From Eq. (B20) it
then follows that, even without taking into account the proliferation of fluctuations near the melting transition, the
noise can be further enhanced by another factor of four [NB

zz]Liq(40K) ≃ 200 pT2 ×Hz−1. We also remark that if the
qubit-sample distance zq is larger than the interlayer separation, the noise from a bilayer will be amplified by roughly
a factor of two since the signal comes from two (as opposed to one) layers.

So far we have estimated the magnetic noise in the liquid state. Figure 3 of the main text shows that the (spatially
averaged) noise from the WC state is expected to be comparable to [NB

zz]Liq so long as ω is close to the pinning
resonance ω0. For ω ≪ ω0, we expect a suppression by (ω/ω0)

2. In the SSR, on the other hand, one can easily get an
order of magnitude enhancement near an electron site – see Fig. 1.
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Appendix C: Magnetic noise tensor from two-dimensional systems with nonzero Hall conductivity

In this Appendix, we relate the magnetic noise tensor in Eq. (1) to the electromagnetic correlation functions of
the two-dimensional sample. Our analysis closely follows that of Ref. [43], except here we consider the case, where
time-reversal symmetry can be (spontaneously or via applied magnetic field) broken, which leads, in particular, to
the development of the Hall conductivity σH(q, ω). We assume that the system is translationally- and rotationally-
invariant (for Wigner crystals, this assumption approximately holds only for the effective description in terms of
low-energy low-momenta phonons, i.e., for zq ≳ a), which allows one to write the conductivity tensor as [81]:

σαβ(q, ω) =
qαqβ
q2

σL(q, ω) +
(
δαβ − qαqβ

q2

)
σT(q, ω) + εαβσH(q, ω), (C1)

where εαβ is the two-dimensional anti-symmetric Levi-Civita tensor (εxy = −εyx = 1). The form in Eq. (C1) imposes
the magnetic noise tensor to acquire the following structure:

NB
αβ(ω) =




NB
xx(ω) NB

xy(ω) 0

−NB
xy(ω) NB

xx(ω) 0

0 0 NB
zz(ω)


 , (C2)

i.e., there are three independent noise components (NB
xx, NB

xy, and NB
zz), which we turn to compute below.

When evaluating the magnetic noise tensor, we employ the fluctuation-dissipation theorem which relates this tensor
to the respective response function (throughout the text, we set kB = 1):

NB
αβ(ω) = ℏ coth

(ℏω
2T

)
Im[χB

αβ(ω)], (C3)

where

χB
αβ(ω) ≡

∫
dt eiωtχB

αβ(t) and χB
αβ(t− t′) ≡ −iθ(t− t′)⟨[Bα(rq, t), Bβ(rq, t

′)]⟩T . (C4)

A possible way to compute χB
αβ(ω) is to place a magnetic dipole moment at the location of the probe, m0δ(r)δ(z −

zq)e
−iωt, and then evaluate the induced magnetic field B(rq, ω). For future reference, we write δ(r) =

∫
d2q

(2π)2
eiq·r,

which, instead of a point-like magnetic dipole moment, allows us to consider a two-dimensional sheet with magneti-
zation profile of the form m0e

iq·rδ(z − zq)e
−iωt – this representation is particularly useful as one can now employ

in-plane translational invariance, where the in-plane momentum q is a good conserving number.

1. Evaluation of NB
zz(ω)

We begin by evaluating NB
zz(ω). To do so, one aligns the magnetic dipole moment along the z-axis m0 = m0ẑ.

In this case, it is convenient to think about the magnetization sheet as if it gives rise to an external current density
of the form Jext = jextδ(z − zq)e

iq·r−iωt, where jext = iqm0q̂ × ẑ. This current density, in turn, enters Maxwell’s
equations as a source term:

∇×B =
1

c2
∂E

∂t
+ µ0(jδ(z) + Jext). (C5)

Here j is the two-dimensional current density flowing in the sample, and it can develop in response to the drive Jext.
Our task at hand is to evaluate the magnetic field B at z = zq, which we do by solving the Maxwell equations in
each of the three regions z < 0, 0 < z < zq, and zq < z, and then match the solutions using the Fresnel boundary
conditions at z = 0 and z = zq:

E+
z − E−

z =
ρ

ε0
, B+

z = B−
z , ẑ × (B+ −B−) = µ0j, E+

t = E−
t . (C6)

We turn to revisit Maxwell’s equations, as below we decompose vectors as:

E(z, q, ω) = E∥(z, q, ω)q̂ + E⊥(z, q, ω)q̂ × ẑ + Ez(z, q, ω)ẑ. (C7)
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For future reference, we note that a simple vector analysis gives:

∇× (E∥q̂) = −∂zE∥ q̂ × ẑ, ∇× (E⊥q̂ × ẑ) = ∂zE⊥q̂ − iqE⊥ẑ, ∇× (Ez ẑ) = iqEz q̂ × ẑ. (C8)

Substituting this into the Faraday law, we get:

B∥ =
∂zE⊥
iω

, B⊥ =
1

iω
(iqEz − ∂zE∥), Bz = − iqE⊥

iω
. (C9)

The remaining Maxwell equations then read:

iqE∥ + ∂zEz =
ρ

ε0
δ(z), (C10)

∂zB⊥ = − iω

c2
E∥ + µ0j∥δ(z), (C11)

iqBz − ∂zB∥ = − iω

c2
E⊥ + µ0(j⊥δ(z) + iqm0δ(z − zq)), (C12)

−iqB⊥ = − iω

c2
Ez, (C13)

where ρ is the two-dimensional charge density related to the current density via the continuity equation. We further
have j∥ = σLE∥ − σHE⊥ and j⊥ = σTE⊥ + σHE∥ – we note that the Hall conductivity mixes the longitudinal and
transverse sectors. Finally, we point out that the boundary condition involving the current density modifies to:

B+
⊥ −B−

⊥ = µ0j∥, B+
∥ −B−

∥ = −µ0j⊥. (C14)

With the above decomposition, the solution of Maxwell’s equations can be written as (the magnetization sheet can
only emit radiation away):

E∥(⊥)(z) =





E1,∥(⊥)e
iqz(z−zq) zq < z

α∥(⊥)e
−iqz(z−zq) + β∥(⊥)e

iqzz 0 < z < zq
E2,∥(⊥)e

−iqzz z < 0

, Ez(z) =
q

qz





−E1,∥e
iqz(z−zq) zq < z

α∥e−iqz(z−zq) − β∥eiqzz 0 < z < zq
E2,∥e−iqzz z < 0

. (C15)

Here E1,∥(⊥) (E2,∥(⊥)) represents the in-plane electric field at z = zq (z = 0). We have also defined:

qz ≡
{√

ω2/c2 − q2 ω ≥ qc

i
√

q2 − ω2/c2 ω < qc
. (C16)

The coefficients α∥, β∥ and α⊥, β⊥ are found through the continuity of the tangential component of the electric field:

α∥(⊥) =
E2,∥(⊥) − E1,∥(⊥)e

−iqzzq

eiqzzq − e−iqzzq
, β∥(⊥) =

E1,∥(⊥) − E2,∥(⊥)e
−iqzzq

eiqzzq − e−iqzzq
. (C17)

The boundary conditions at z = 0 give:

β∥ = −qzc
2

2ω
µ0j∥, β⊥ = − ω

2qz
µ0j⊥. (C18)

The boundary conditions at z = zq give:

α∥ = 0, α⊥ = − iµ0m0qω

2qz
. (C19)

Collecting all of the above results, we evaluate the magnetic field at the location of the qubit:

B(rq, ω) = ẑ

∫
d2q

(2π)2
iµ0m0q

2

2qz

[
1− e2iqzzq

1 + 2qz/(µ0ωσ̃T)

]
, σ̃T = σT +

σ2
H

σL

[
1 +

2ωε0
qzσL

]−1

. (C20)

From this, we obtain NBB
zz (ω):

NB
zz(ω) ≈

Tµ0

2πω

∫ ∞

0

dq q2 e−2qzq Im
[ −1

1 + 2iq/(µ0ωσ̃T(q, ω))

]
≈ Tµ2

0

16πz2q

∫ ∞

0

dxx e−x Re
[
σ̃T

( x

2zq
, ω

)]
, (C21)
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where in the first identity we approximated: i) ℏ coth(ℏω/2T ) ≈ 2T/ω (this substitution is often referred to as the
classical limit) since typically T is much larger than the relevant energy ℏω; and ii) qz ≈ iq, i.e., we neglected the
contribution from propagating waves, as their phase space is negligible compared to that of the evanescent waves. In
the second identity, we assumed that the frequency ω is small or, more rigorously, we expanded to the leading order
in the small parameter ωzq/c. We note that the Hall conductivity manifests only through the substitution σT → σ̃T

– other than that, Eq. (C21) reproduces the result of Ref. [43] derived for σH = 0. Within the same approximations
as in Eq. (C21), we further have:

σ̃T ≈ σT +
σ2
H

σL
. (C22)

2. Evaluation of the in-plane components of the magnetic tensor

To evaluateNB
xx(ω) andNB

xy(ω), one now alignsm0 along the xy-plane, which allows us to writem0 = m∥q̂+m⊥q̂×ẑ
– below, we consider these two contributions separately. For concreteness, we shall assume that m0 = m0x̂ so that
m∥ = m0 cosϑ and m⊥ = m0 sinϑ, where ϑ is the polar angle of q. All the analysis above, in particular the free-space
solution in Eq. (C15), is applicable here as well, except for the boundary conditions at z = zq, which we turn to derive
below.

Fresnel boundary conditions for m⊥—We note that the magnetization M = m0δ(z − zq)e
iq·r−iωt is such that

∇×M has a nonzero out-of-plane component, which makes the above picture of external currents no longer intuitive,
cf. Eq. (C5). Instead, we now will work with the free-field H (B = µ0(H +M)) and write the Maxwell equations
near z = zq as:

∇ ·E = 0, ∇ · (H +M) = 0, ∇×E = −µ0
∂

∂t
(H +M), ∇×H =

ε0
c

∂E

∂t
. (C23)

From these equations, we get the boundary conditions at z = zq:

E+
z = E−

z , B+
z = B−

z , E+
∥ − E−

∥ = −iωµ0m⊥, E+
⊥ = E−

⊥ , B+
t = B−

t . (C24)

Given these equations, we obtain a few useful relations that fix the parameters entering the ansatz in Eq. (C15) (note
that the tangential component of the electric field is no longer continuous at z = zq):

E1,⊥ = α⊥ + β⊥e
iqzzq , E2,⊥ = α⊥e

iqzzq + β⊥, E1,∥ = α∥ + β∥e
iqzzq − iωµ0m⊥, E2,∥ = α∥e

iqzzq + β∥. (C25)

Furthermore, the boundary conditions at z = 0 and z = zq give:

β∥ = −qzac
2

2ω
µ0j∥, β⊥ = − ω

2qz
µ0j⊥, α∥ =

1

2
iωµ0m⊥, α⊥ = 0. (C26)

Solving these equations, we obtain a few useful relations:

β⊥ = −σH

σT

E2,∥
1 + 2qz/(µ0ωσT)

, β∥ = − α∥eiqzzq

1 + 2ωε0/(qzσ̃L)
, σ̃L = σL +

σ2
H

σT

[
1 +

2qz
µ0ωσT

]−1

. (C27)

Fresnel boundary conditions for m∥—From Eq. (C23), we obtain the boundary conditions at z = zq:

E+
z = E−

z , B+
z −B−

z = −iqµ0m∥, E+
⊥ − E−

⊥ = iωµ0m∥, E+
∥ = E−

∥ , B+
t = B−

t . (C28)

Eq. (C25) then modifies to:

E1,⊥ = α⊥ + β⊥e
iqzzq + iωµ0m∥, E2,⊥ = α⊥e

iqzzq + β⊥, E1,∥ = α∥ + β∥e
iqzzq , E2,∥ = α∥e

iqzzq + β∥. (C29)

The boundary conditions at z = 0 and z = zq give:

β∥ = −qzc
2

2ω
µ0j∥, β⊥ = − ω

2qz
µ0j⊥, α∥ = 0, α⊥ = −1

2
iωµ0m∥. (C30)
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Solving the boundary conditions, we further obtain a few additional useful relations:

β∥ =
σH

σL

E2,⊥
1 + 2ωε0/(qzσL)

, β⊥ = − α⊥eiqzzq

1 + 2qz/(µ0ωσ̃T)
. (C31)

Evaluation of the in-plane magnetic noise tensor—Collecting all the above results, we compute the magnetic field
at the location of the probe at z = zq:

Bx(rq, ω) =

∫ ∞

0

qdq

2π

iµ0m0ω
2

4qzc2

[
1 +

e2iqzzq

1 + 2ωε0/(qzσ̃L)

]
+

∫ ∞

0

qdq

2π

iµ0m0qz
4

[
1 +

e2iqzzq

1 + 2qz/(µ0ωσ̃T)

]
(C32)

and

By(rq, ω) =−
∫ ∞

0

qdq

2π

σH

σT

iµ0m0qz
4

e2iqzzq

1 + 2qz/(µ0ωσT)

[
1− 1

1 + 2ωε0/(qzσ̃L)

]

−
∫ ∞

0

qdq

2π

σH

σL

iµ0m0ω
2

4qzc2
e2iqzzq

1 + 2ωε0/(qzσL)

[
1− 1

1 + 2qz/(µ0ωσ̃T)

]
. (C33)

From these expressions and within the same approximations as in Eq. (C21), we get the remaining components of the
magnetic noise tensor:

NB
xx(ω) ≈

∫ ∞

0

dq
Tµ0ω

4πc2
e−2qzq Im

[ 1

1 + 2ωε0/(iqσ̃L)

]
+

∫ ∞

0

dq
Tµ0q

2

4πω
e−2qzq Im

[ −1

1 + 2iq/(µ0ωσ̃T)

]

≈ Tµ2
0

32πz2q

∫ ∞

0

dxx e−x Re
[
σ̃T

( x

2zq
, ω

)]
≈ 1

2
NB

zz(ω), (C34)

NB
xy(ω) ≈ 0. (C35)

We, therefore, conclude that to the leading order in ωzq/c, the off-diagonal components of the magnetic noise tensor
vanish.

Appendix D: Electric noise tensor from two-dimensional systems with nonzero Hall conductivity

In the main text, we have primarily focused on the magnetic noise sensing of WCs. However, electrical noise
sensing is also possible via both electric noise qubits and SNOM detectors. For completeness, in this Appendix we
therefore evaluate the electric noise tensor following step-by-step the preceding Appendix C. Much of the discussion
above is applicable here as well, including the structure of the noise tensor in Eq. (C2) and the free-space solution
in Eq. (C15). The primary difference compared to the analysis above is that instead of a magnetic dipole moment
placed at the location of the qubit, we now consider an electric dipole moment and evaluate the induced electric field.
In particular, instead of a magnetization vector M = m0δ(z − zq)e

iq·r−iωt, we will work with a polarization vector
P = p0δ(z−zq)e

iq·r−iωt. This difference between the two calculations manifests only trough the boundary conditions
at z = zq.

1. Evaluation of the in-plane components of the electric tensor

In case p0 is aligned within the xy-plane (so that one can write p0 = p∥q̂+ p⊥q̂× ẑ), the polarization vector enters
the Maxwell equations through an external current density Jext = ∂tP , cf. Eq (C5). This implies that the boundary
conditions, at both z = 0 and z = zq, are given by Eq. (C6). Following similar algebra as above, we evaluate the
electric field at z = zq:

E∥(zq, q, ω) =
iµ0p∥c2qz

2

[
1− e2iqzzq

1 + 2ωε0/(qzσ̃L)

]
+

σH

σL

iµ0p⊥ω2

2qz

1

1 + 2ωε0/(qzσL)

e2iqzzq

1 + µ0ωσ̃T/(2qz)
, (D1)

E⊥(zq, q, ω) = −σH

σL

iµ0p∥c2qz
2

1

1 + 2qz/(µ0ωσT)

e2iqzzq

1 + qzσ̃L/(2ωε0)
+

iµ0p⊥ω2

2qz

[
1− e2iqzzq

1 + 2qz/(µ0ωσ̃T)

]
. (D2)
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From these expressions and within the same approximations as in Eq. (C21), we get:

NE
xx(ω) ≈

∫ ∞

0

dq
Tµ0c

2q2

4πω
e−2qzq Im

[ 1

1 + 2ωε0/(iqσ̃L)

]
+

∫ ∞

0

dq
Tµ0ω

4π
e−2qzq Im

[ −1

1 + iq/(µ0ωσ̃T)

]
(D3)

≈
∫ ∞

0

dq
Tµ0c

2q3

8πω2ε0
e−2qzq Re

[ σ̃L(q, ω)

ε(q, ω)

]
=

T

128πω2ε20z
4
q

∫ ∞

0

dxx3 e−x Re
[ σ̃L(x/(2zq), ω)

ε(x/(2zq), ω)

]
, (D4)

NE
xy(ω) ≈ 0. (D5)

where ε(q, ω) = 1 + iqσ̃L/(2ωε0) is the permittivity that captures Coulomb screening effects. As it was for the
magnetic noise tensor, here we also find that the off-diagonal components of the electric noise tensor are suppressed
in the leading order in ωzq/c. To this same order of approximation, we further have σ̃L = σL.

2. Evaluation of NE
zz(ω)

We now place the electric dipole moment along the z-axis p0 = p0ẑ, in which case the Maxwell equations near
z = zq read:

∇ ·D = 0, ∇ ·B = 0, ∇× (D − P ) + ε0∂tB = 0, ∇×B − µ0∂tD = 0, (D6)

where D = ε0E + P is the displacement field. From Eqs. (D6), we obtain the boundary conditions at z = zq:

E+
z = E−

z , B+
z = B−

z , E+
⊥ = E−

⊥ , E+
∥ − E−

∥ = −iqp0/ε0, B+
t = B−

t . (D7)

After similar algebra as above, we arrive at:

NE
zz(ω) ≈

T

64πω2ε20z
4
q

∫ ∞

0

dxx3 e−x Re
[ σ̃L(x/(2zq), ω)

ε(x/(2zq), ω)

]
≈ 2NE

xx(ω). (D8)

Finally, the non-local optical conductivity should be expressed in terms of the phonon Green’s function via the
equations provided in Appendix A.

3. 1/T2-measurements and the electric noise

An interesting aspect of spin-1 qubits (like NV centers) is that electric field fluctuations can also contribute to the
spin-echo signal [36]. In the WC phase, the electric noise is much stronger than the magnetic one. However, the
coupling of the electric field to the qubit is expected to be significantly weaker than the magnetic coupling [36]. The
net effect for NV centers is that the correction to T2 from electric field fluctuations is expected to be comparable to
the magnetic T2-time. The resulting T2-time, therefore, is expected to be appreciably shorter than the one considered
above in Appendix B, which should facilitate the feasibility of spin-echo-like measurements. Careful analysis of such
electric-field correction can be done using the framework developed in the present paper. We also remark that it is
conceivable that for other spin-1 detectors, the electric field coupling can be bigger so that the electric noise for WCs
might dominate the spin-echo-like signal.

Appendix E: Phonon dispersion of a weakly-coupled clean bilayer Wigner crystal

In this Appendix, we derive analytic expressions for the dispersion relation of a clean bilayer WC at small-q and in
the limit of weak interlayer coupling, relevant for the TMD bilayer WCs recently realized in Ref. [3]. The dispersion
relations of the clean crystal derived in this Appendix may then be used as input for calculations that treat disorder
effects – Appendix F.

The potential energy of a bilayer electron system is

U = U1 + U2 + U12, (E1)

where U1 and U2 are the potential energies of individual layers and U12 is the interlayer potential energy:

Ui =
1

2

∑

ri ̸=r′
i

e2

|ri − r′i|
(i = 1, 2), U12 =

∑

r1,r2

e2√
|r1 − r2|2 + d2

. (E2)
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Here r1 and r2 refer to coordinates of electrons in layers 1 and 2, respectively. The phonon spectrum is obtained by
writing ri = Ri + ui(Ri), where Ri label the equilibrium lattice sites in layer i, and expanding the potential energy
to the quadratic order in u. Carrying this out for U1,2 yields the phonon spectrum of individual layers:

δUi =
1

2

∑

q∈1BZ

[
mω2

L(q)uL,i(q)uL,i(−q) +mω2
T(q)uT,i(q)uT,i(−q)

]
, (i = 1, 2). (E3)

The frequency dispersion curves for the longitudinal (ωL) and transverse (ωT) branches have been calculated in
Ref. [55]. Here we record the long-wavelength behavior:

ω2
L(q) = ω2

p(qa)− ω2
pα0(qa)

2, ω2
T(q) = ω2

pβ0(qa)
2, (E4)

where a is the WC lattice constant, ω2
pa = 2πe2/(mAc) with Ac the unit-cell area, and the numerical coefficients are

α0 ≈ 0.181483 and β0 ≈ 0.0362967.
We now turn to the interlayer term. The quadratic change to the energy is

δU12 = −1

2

∑

R1,R2

ϕαβ(R1 −R2)[u
α
1 (R1)− uα

2 (R2)][u
β
1 (R1)− uβ

2 (R2)], ϕαβ(r) ≡ −∂α∂β
e2√

r2 + d2
. (E5)

In the case of two weakly coupled layers, the lowest energy structure corresponds to two staggered triangular lattices,
displaced relative to each other by a vector c [78]. With this in mind, we Fourier transform Eq. (E5):

δU12 =
∑

q∈1BZ

ϕ̃αβ(q)u
α
1 (q)u

β
2 (−q)− 1

2

∑

q∈BZ

ϕ̃αβ(q = 0)[uα
1 (q)u

β
1 (−q) + uα

2 (q)u
β
2 (−q)], (E6)

where

ϕ̃αβ(q) =
∑

R

e−iq·Rϕαβ(R− c). (E7)

Here the sum is taken over vectors R on the triangular lattice. Function ϕ̃αβ(q) may also be written as a sum over
reciprocal lattice vectors G:

ϕ̃αβ(q) =
2πe2

Ac

∑

G

e−i(q−G)·c(q −G)α(q −G)β
e−|q−G|d

|q −G|

=
2πe2

Ac
e−iq·c qαqβ

q
e−qd +

2πe2

Ac

∑

G̸=0

e−i(q−G)·c(q −G)α(q −G)β
e−|q−G|d

|q −G| . (E8)

In the limit of weak interlayer coupling (large spacing d), the second term is well approximated by setting q = 0 and
summing over the first shell of reciprocal lattice vectors only. This yields

ϕ̃αβ(q) ≈
2πe2

Ac
e−iq·c qαqβ

q
e−qd − 2πe2

Ac

1

a
2π

√
3e

− 4π√
3

d
a δαβ ≡ mω2

p(qa)e
−qd qαqβ

q2
− 1

2
mω2

optδαβ . (E9)

Equation (E6) then gives

δU12 ≈
∑

q∈BZ

{
mω2

pqae
−qduL,1(q)uL,2(−q)− 1

2
mω2

opt[uL,1(q)uL,2(−q) + uT,1(q)uT,2(−q)]

}

+
1

2

∑

q∈BZ

1

2
mω2

opt[uL,1(q)uL,1(−q) + uT,1(q)uT,1(−q) + uL,2(q)uL,2(−q) + uT,2(q)uT,2(−q)].

(E10)

Combining this with Eq. (E3), we obtain the dynamical matrix for the weakly coupled bilayer system:

δU =
1

2
m

∑

q∈BZ


(uL,1(q) uL,2(q)

)



ω2
L(q) +

1
2ω

2
opt ω2

p(qa)e
−qd − 1

2ω
2
opt

ω2
p(qa)e

−qd − 1
2ω

2
opt ω2

L(q) +
1
2ω

2
opt




(
uL,1(−q)
uL,2(−q)

)

+
(
uT,1(q) uT,2(q)

)



ω2
T(q) +

1
2ω

2
opt ω2

p(qa)e
−qd − 1

2ω
2
opt

ω2
p(qa)e

−qd − 1
2ω

2
opt ω2

T(q) +
1
2ω

2
opt




(
uT,1(−q)
uT,2(−q)

)
 .

(E11)
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FIG. 5. Dispersion curves for the bilayer WC for interlayer spacing d/a = 1, representative of the weak interlayer coupling limit.
Solid lines are the analytic small-q approximation from Eqs. (E12)-(E15). Open symbols are the exact numerical dispersion
curves computed as in Ref. [78].

Diagonalizing the system yields four phonon branches: longitudinal acoustic (LA), longitudinal optical (LO), trans-
verse acoustic (TA), and transverse optical (TO), with dispersions

ω2
LA(q) = ω2

p(1 + e−qd)(qa)− ω2
pα0(qa)

2, (E12)

ω2
LO(q) = ω2

opt + ω2
p(1− e−qd)(qa)− ω2

pα0(qa)
2, (E13)

ω2
TA(q) = ω2

pβ0(qa)
2, (E14)

ω2
TO(q) = ω2

opt + ω2
pβ0(qa)

2. (E15)

The optical phonon frequency is given by:

ω2
opt = ω2

p(4π
√
3) exp

{
− 4π√

3

d

a

}
. (E16)

Comparisons between the approximate small-q dispersion in Eqs. (E12)-(E15) and the exact numerical dispersion
curves, computed as in Ref. [78], are given in Fig. 5.

Appendix F: Gaussian variational treatment of disordered bilayer Wigner crystals

In this Appendix, we present the analysis of disordered bilayer Wigner crystals, which are treated using the replica
trick and the framework of the Gaussian variational approach developed in Refs. [58, 61, 66, 82]. We refer the reader
to those references for technical details and here only summarize the essential ingredients. Treating disorder via the
replica trick yields the following imaginary-time action:

S = S0 + Sdis, (F1)

where

S0 =
1

2

∑

n,q,λ,a

ua
λ(−q,−iωn)D−1

0,λ(q, iωn)u
a
λ(q, iωn), (F2)

and

Sdis = −ρ20
2

∑

l=1,2

∫ β

0

dτ

∫ β

0

dτ ′
∫

d2r
∑

a,b

∑

G

∆G cos{G · (ua
l (r, τ)− ub

l (r, τ
′))}. (F3)
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The imaginary-time action (F1) represents the bilayer generalization of Eq. (12) of Ref. [61]. Here a is the replica
index, ωn = 2πnT are the bosonic Matsubara frequencies, ∆G are the Fourier components of the disorder correlation
function, with G being the WC reciprocal lattice vectors. The bare phonon propagator is given by:

D0,λ(q, iωn) =
1

m

1

ω2
n + ω2

λ(q)
. (F4)

The index λ = {LA, LO, TA, TO} refers to the four eigenmodes of the elastic Hamiltonian of a bilayer WC: Label L
(T) stands for a longitudinal (transverse) mode, and A (O) denotes an acoustic (optical) mode. Provided there is no
time-reversal symmetry breaking (here we consider the case with no applied magnetic field), one can write:

uα,l(q, iωn) =
1√
2

[
uLA(q, iωn) + (−1)luLO(q, iωn)

]
q̂α +

1√
2

[
uTA(q, iωn) + (−1)luTO(q, iωn)

]
εαβ q̂β , (F5)

where l = 1, 2 is the layer index.

1. Gaussian variational method

The Gaussian variational method approximates the full nonlinear action with the best trial quadratic action:

Str[D] =
1

2

∑

n,q

∑

ab

∑

ll′

∑

αα′

ua
αl(−q,−iωn)(D

−1)ab
αl,α′l′

(q, iωn)u
b
α′l′

(q, iωn), (F6)

where the phonon propagator D is a variational quadratic form. The variational free energy is

Fvar = Ftr + T ⟨S − Str⟩tr. (F7)

The saddle-point equation, which determines D, then reads:

δFvar

δDab
αl,α′l′

(q, iωn)
= 0. (F8)

Explicit evaluation of this variational derivative gives the Dyson equation:

(D−1)abλ (q, iωn) = δabD−1
0,λ(q, iωn)−Πab(iωn), (F9)

where

Πab(iωn) =− δab
ρ0
2

∫ β

0

dτ
∑

G

∆GG2
(∑

c

e−
1
2G

2Bac(τ) − cos(ωnτ)e
− 1

2G
2Baa(τ)

)

+ (1− δab)
ρ0
2

∫ β

0

dτ
∑

G

∆GG2 cos(ωnτ)e
− 1

2G
2Bab(τ), (F10)

Bab(τ) =
1

4βN

∑

q,n,λ

(
Daa

λ (q, iωn) +Dbb
λ (q, iωn)− 2 cos(ωnτ)D

ab
λ (q, iωn)

)
. (F11)

Here N is the total number of lattice sites. Equations (F9)-(F11) are to be solved self-consistently in the limit where
the total number of replicas goes to zero, n → 0.

2. Generic structure of replica symmetry broken solutions

The n → 0 limit is understood within the standard algebra of replica matrices [60, 66, 83]: Diagonal matrix elements

are replaced according Daa → D̃ and off-diagonal components are parameterized by a continuous variable 0 < u < 1:
Da̸=b → D(u). The self-energy in Eq. (F10) is then written as:

Π̃(iωn) = −ρ0
2

∫ β

0

dτ
∑

G

∆GG2

(
[1− cos(ωnτ)]e

− 1
2G

2B̃(τ) −
∫ 1

0

du e−
1
2G

2B(τ,u)

)
, (F12)

Π(iωn, u) =
ρ0
2

∫ β

0

dτ
∑

G

∆GG2 cos(ωnτ)e
− 1

2G
2B(τ,u). (F13)
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The fact that we consider static disorder with no temporal correlations implies that off-diagonal matrix elements are
τ -independent, so that Π(iωn, u) = δn,0Π(u), where

Π(u) =
βρ0
2

∑

G

∆GG2e−
1
2G

2B(u). (F14)

Following Refs. [60, 66], a solution to the Dyson equation (F9) with replica symmetry breaking (RSB) has the
property:

[Π](u) = mω2
0 ×

{
f(u), 0 < u < uc

1, uc ≤ u < 1
, (F15)

where we have defined [A](u) ≡ uA(u) −
∫ u

0

dv A(v). Here f(u) is a dimensionless function with f(uc) = 1. At this

stage, the parameters f(u), uc, and ω0 are yet unknown and will be self-consistently determined below. By using the
form (F15) and the inversion formulas for replica matrices (see Appendix II of Ref. [83]), one can rewrite the Dyson
equation (F9) as:

D−1
c,λ(q, iωn) = D−1

0,λ(q, iωn) + P (iωn) + (1− δn,0)mω2
0 , (F16)

P (iωn) =
ρ0
2

∫ β

0

dτ
∑

G

∆GG2[1− cos(ωnτ)]
(
e−

1
2G

2B̃(τ) − e−
1
2G

2B(uc)
)
, (F17)

B(uc) =
1

2βN

∑

q,n̸=0,λ

Dc,λ(q, iωn) +
1

2βN

∑

q,λ

1

D−1
0,λ(q, iωn = 0) +mω2

0

, (F18)

B̃(τ) =
1

2βN

∑

q,n,λ

(1− cos(ωnτ))Dc,λ(q, iωn), (F19)

where Dc,λ(q, iωn) ≡ D̃λ(q, iωn)− ⟨Dλ(q, iωn)⟩ is the connected correlation function and ⟨A⟩ ≡
∫ 1

0

duA(u).

Equations (F16)-(F19) form a closed set of equations for the phonon Green’s function, in which ω0 enters as a
parameter. Furthermore, these equations are independent of the precise nature of the RSB (full, one-step, etc.) and
the functional form of Π[u]. Function Π[u] (and from it ω0) are determined separately in the next subsection.

3. One-step RSB

We limit ourselves to the so-called single-cosine approximation, where the summations over reciprocal lattice vectors
G are truncated to the first ‘momentum shell’ of six wave vectors with G = G1:

Π(u) ≈ βρ0
2

∆G2e−
1
2G

2B(u), (F20)

where ∆ = 6∆G1 . In two spatial dimensions, the one-step RSB solution has the following structure [60, 66]:

[Π](u) =

{
0, u < uc

mω2
0 , uc ≤ u

, Π(u) =

{
0, u < uc

mω2
0/uc, uc ≤ u

, B(u) =

{
∞, u < uc

Bc, uc ≤ u
. (F21)

At the moment, we have three unknowns: ω0, uc, and Bc. The value of Bc can be determined by (numerically) solving
Eqs. (F16)-(F19). The remaining equations are:

mω2
0 =

ucβρ0
2

∆G2e−
1
2G

2Bc (F22)

and

ρ0
8
∆G4e−

1
2G

2Bc × 1

N

∑

q,λ

1

(D−1
0,λ(q, iωn = 0) +mω2

0)
2
= 1. (F23)
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The first one directly follows from the above definitions, while the second one is a bit subtle. It could be derived, for
instance, by considering d = 2 + ε (in which case the function [Π](u) is continuous) and then taking the limit ε → 0.

In practice, we solve Eqs. (F16)-(F19), Eq. (F22), and Eq. (F23) numerically, both in real and imaginary times.
The former allows us to evaluate various experimentally relevant response functions but requires an additional step
of analytical continuation iωn → ω + i0, which is done by following step-by-step Appendix D of Ref. [66].

Finally, to obtain the optical conductivity shown in Fig. 4, we used a simplified phonon spectrum, consisting only
of two branches:

ω2
A = v2sq

2, ω2
O = v2sq

2 + ω2
opt. (F24)
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