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The melting of quasi-long-range superconductivity in two spatial dimensions occurs through the proliferation
and unbinding of vortex-antivortex pairs, a phenomenon known as the Berezinskii-Kosterlitz-Thouless (BKT)
transition. Although signatures of this transition have been observed in bulk measurements, these experiments are
often complicated, ambiguous, and unable to resolve the rich physics of the vortex unbinding transition. Here we
show that local noise magnetometry is a sensitive, noninvasive probe that can provide direct information about
the scale-dependent vortex dynamics. In particular, by resolving the distance and temperature dependence of the
magnetic noise, it may be possible to experimentally study the renormalization group flow equations of the vortex
gas and track the onset of vortex unbinding in situ. Specifically, we predict (i) a nonmonotonic dependence of
the noise on temperature and (ii) the local noise is almost independent of the sample-probe distance at the BKT
transition. We also show that noise magnetometry can distinguish Gaussian superconducting order-parameter
fluctuations from topological vortex fluctuations and can detect the emergence of unbound vortices. The weak
distance dependence at the BKT transition can also be used to distinguish it from quasiparticle background noise.
Our predictions may be within experimental reach for a number of unconventional superconductors.
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I. INTRODUCTION

The study of critical phenomena in low-dimensional sys-
tems is rich and complex, in part due to the increased
importance of fluctuations in these systems. This is perhaps
most clearly manifested in the Mermin-Wagner-Hohenberg
theorem [1–3], which shows that spontaneous breaking of a
continuous symmetry group is impossible in dimensions two
and lower due to long-wavelength fluctuations of the order
parameter. In particular, long-range superfluid order, which
is characterized by the spontaneous breaking of a U(1) sym-
metry, is therefore impossible in two dimensions as a matter
of principle. However, in a series of ground-breaking works
by Berezinskii [4] and Kosterlitz and Thouless [5,6], it was
shown that the situation is more nuanced.

In particular, while true long-range superfluid order is
indeed impossible in two dimensions, a “quasi-long-range
ordered” (QLRO) phase is possible, and this is sufficient to
enable superfluid transport and macroscopic quantum coher-
ence effects [7]. The key distinction between the QLRO phase
and disordered phase is whether vortices, topological defects
in the order parameter which possess quantized angular mo-
mentum, are bound or free. At low temperatures, vortices and
antivortices experience an attractive force and form tightly
bound inert pairs. In contrast, at high-temperatures these pairs
disassociate due to thermal agitation and become unbound
and free to wander, leading to dissipation and phase slips
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which ruin superfluidity. The transition between these two
phases, known as the Berezinskii-Kosterlitz-Thouless (BKT)
transition, is therefore characterized by the nature of the
vortex-antivortex interaction and has no local order param-
eter, circumventing the Mermin-Wagner-Hohenberg theorem
[1–3] and leading to its classification as a “topological phase
transition.”

There are a number of striking predictions for the nature
of this transition, including a universal jump in the renormal-
ized superfluid density ρ∗

2D(T ) which jumps from zero for
T > TBKT to ρ∗

2D(T −
BKT) = 2

π
TBKT upon crossing the transition

[8]. Another notable prediction is the divergence of the cor-
relation length ξ+(T ) upon approaching the transition from
above, which exhibits an essential singularity as ξ+(T ) ∼
exp[b(T/TBKT − 1)−1/2] (with b a constant) diverging faster
than any power law [9]. A number of these predictions have
been verified in a wide range of realizations, including ultra-
cold quantum gases [10,11], establishing the validity of the
topological BKT transition [6] across a variety of physical
realizations.

Although originally formulated in the context of neutral
superfluids [5], it was quickly shown that the BKT transition
is also relevant for two-dimensional superconductors [12–14],
provided the sample dimensions are sufficiently small com-
pared to the Pearl length [15]. In this case the BKT transition
directly manifests in the bulk electrical transport properties
[13], which has enabled confirmation of the BKT theory in a
number of samples, including recently to a very high degree
of accuracy in NbN [16]. Owing to the charged nature of the
condensate, vortices not only carry angular momentum but
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FIG. 1. Schematic overview of the proposal. A two-dimensional
superconductor hosts vortices which exhibit a BKT phase transi-
tion. This results in a characteristic scale-dependent magnetic noise,
which can be studied via local magnetometry, both via 1/T1- and
1/T2-like measurements.

also magnetic flux, and therefore directly affect the magne-
todynamic response of superconductors. As such, the BKT
transition can also manifest in global flux noise experiments
[17–23], which detect the thermal motion of magnetic vortices
and allow one to make inferences about vortex interactions.

To date, however, existing experimental probes of BKT
physics in materials have been limited to probing bulk long-
wavelength properties. As such, these approaches can only
indirectly infer physics on the length scale of individual vor-
tices, which is at the heart of the BKT theory. In addition,
it can be challenging to unambiguously identify the BKT
transition from global properties alone, as it can easily be ob-
scured by long-wavelength disorder, material inhomogeneity
[24–26], and heating effects [16]. Background contributions
to the conductivity from both fermionic quasiparticles [27]
and Gaussian superconducting fluctuations [28] can also fur-
ther obscure BKT physics.

Meanwhile, it has become increasingly more important to
understand how BKT physics manifests in two-dimensional
superconductors due to recent advances in the discovery and
design of atomically thin van der Waals superconductors. This
includes a large number of unconventional superconductors
such as BSCCO [29], FeSe [30], WTe2 [31,32], as well as
a number of graphene allotropes [33–36], including putative
fluctuating triplet superconductivity [37]. Understanding the
details of the BKT transition in these atomically thin and
highly tunable structures might shed some light onto the
microscopic processes that drive superconductivity in these
materials.

In this work, we show that local noise magnetometry can
in principle give access to the full scale-dependent vortex
dynamics across the BKT transition in a noninvasive way
(see Fig. 1). Most notably, we find a maximum in the local
magnetic noise at the BKT transition as a function of tem-
perature. This local noise maximum is nearly independent of
sample-probe distance at sufficiently low frequencies. At zero
frequency this scale invariance will persist up to distances
which become comparable to either the sample size, Pearl
length [15], or other macroscopic cutoff scale.1 We will show

1At finite frequency there is an additional cutoff scale at �ω ∼√
D/ω above which the frequency dependence of vortex diffusion

becomes relevant.

later that this scale invariance is crucial, as it enables the
disentangling of vortex and quasiparticle effects.

Above, but close to, the transition temperature, we predict
signatures of finite-size crossover effects, which can be stud-
ied locally and in situ; at even higher temperatures further
from the transition, an additional contribution to the mag-
netic noise from unbound free vortices can be discerned and
used to study the vortex proliferation. We also show that the
magnetic noise dependence on the sample-probe distance can
be used to distinguish Gaussian superconducting fluctuations
from vortex effects, further demonstrating the power of local
noise magnetometry for studying the BKT transition.

This work is motivated in part by recent progress in the
development of atomlike solid-state defects, nitrogen-vacancy
(NV) centers in diamond [38,39] in particular, that can sense
weak magnetic fields at the nanoscale. To date, NV noise
magnetometry has been experimentally employed to study a
variety of many-body systems, including magnons in ferro-
magnetic insulators [40], magnon hydrodynamics in a van
der Waals material [41], Johnson-Nyquist noise of electrons
in a metal [42], the electron-phonon Cherenkov effect in a
driven graphene [43], and fluctuations in antiferromagnetic
topological insulator MnBi2Te4 [44]. On the theory side,
NVs have been argued to be a useful probe for a far wider
array of phenomena including the study of quasiparticles
[45,46] and stripes [47] in atomically thin superconductors,
two-dimensional electronic Wigner crystals [48], one- and
two-dimensional quantum phases [49,50], critical magnetic
fluctuations [51], semimetals [52], and correlated magnetic
insulators [53,54]. Additionally, it has even been proposed
that multiple NV centers could be used to cooperatively probe
materials via entangled qubit states [55]. For a comprehensive
overview of the capabilities of NV sensing see, e.g., Ref. [39].

The remainder of this paper is structured as follows. In
Sec. II we show how the local magnetic noise can be used to
directly map out the frequency and momentum dependence of
the vortex-antivortex interactions. Then in Sec. III we present
a detailed analysis of this dependence and identify a number
of key predictions. In Sec. IV we compare these predictions
against those based on a Gaussian model of Aslamazov-
Larkin–type fluctuations. In Sec. V we survey a number of
relevant materials which may be promising for detecting BKT
physics and discuss possible complications due to quasipar-
ticles. Finally, in Sec. VI we conclude with a discussion of
future directions and challenges.

II. VORTEX INTERACTIONS AND MAGNETIC NOISE

In this section, we relate the magnetic field noise at a dis-
tance z away from the superconducting sample (see Fig. 1) to
the vortex correlation functions. To obtain the noise spectrum
we assume the superconductivity is truly two-dimensional,
i.e., (i) the sample thickness is much smaller than the pene-
tration depth and (ii) the BKT transition temperature TBKT is
much less than the pairing temperature TBCS, corresponding
to the London limit and allowing us to neglect effects due
to quasiparticles [45,46] (for a more precise discussion see
Sec. V A). Assumption (i) is already realized in a number
of conventional and unconventional superconductors and is
especially relevant for van der Waals materials such as FeSe,
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graphene, and NbSe2 as well as thin films of NbN and high-Tc

cuprates. While it is unclear whether assumption (ii) can be
truly realized, predictions of our theory should still be relevant
in any situation where there is a significant separation between
TBKT and the three-dimensional transition temperature, as dis-
cussed in Sec. V.

The magnetic noise spectrum at a distance z above the
sample and at a frequency ω which satisfies the magnetostatic
condition ω � c/z can be directly related to the equilibrium
fluctuations of the transverse current (see Appendix A):

Nzz(ω, z) =
∫

dt eiωt 〈Bz(z, t )Bz(z, 0)〉

= (μ0/2)2
∫

q
e−2zqS⊥(ω, q), (1)

with μ0 the vacuum permeability. For vortex fluctuations in
the superconductor, the correlation function S⊥(q, ω) can be
related to the vortex structure factor

χ (ω, q) =
∫

dt eiωt 〈n(t, q)n(0,−q)〉 (2)

via

S⊥(ω, q) = (2e)2(2πρ2D)2 χ (ω, q)

q2
. (3)

Here ρ2D is the bare two-dimensional superfluid density at low
temperatures, and

n(t, q) =
∑

j

n j exp[iq · R j (t )] (4)

is the two-dimensional vortex density, with nj = ±1 and the
overall “neutrality” constraint

∑
j n j = 0 (in analogy with

the Coulomb plasma model). Therefore, by characterizing the
local magnetic noise spectrum we can directly read out the
vortex dynamic structure factor as we tune through the BKT
phase transition.

It is convenient to express the noise in terms of the
vortex dielectric function εv (ω, q), which characterizes the
dynamically screened vortex-vortex interactions. We empha-
size that εv (ω, q) is the dielectric function for the effective
vortex-vortex Coulomb interaction and is not to be confused
with the physical dielectric function, which is not relevant
for the transverse current fluctuations and will not be dis-
cussed in this paper. As per the standard relations between
charge susceptibility and dielectric function, and employing
the fluctuation-dissipation relation [17,18], we can write

χ (ω, q) = −2T

ω

1

v(q)
Im

[
1

εv (ω, q)

]
, (5)

where v(q) = 4π2ρ2D/q2 is the bare interaction between vor-
tex charges. The current noise spectrum is then given by

S⊥(ω, q) = 2(2e)2T ρ2DIm

[ −1

ωεv (ω, q)

]
, (6)

and the corresponding magnetic noise spectrum reads as

Nzz(ω, z) = 2N (μ0e/π )2T T (0)
BKT

×
∫ ∞

0
dq q e−2zq Im

[ −1

ωεv (ω, q)

]
. (7)

Here we have introduced T (0)
BKT = π

2 ρ2D, which is the BKT
transition temperature obtained by assuming that the universal

superfluid density jump [8] is applicable to the bare superfluid
density ρ2D, obtained say at zero temperature. We have also
included the prefactor N , which corresponds to considering
a stack of N equally spaced, uncoupled layers separated by
a distance a � z; having several such layers makes the noise
larger and, thus, more feasible experimentally (see Sec. V).
It should also be noted that this simple scaling with N is
only valid for uncoupled layers. Even in weakly coupled lay-
ered systems, such as cuprates, it is not so clear how this
scaling should be modified, presumably depending on the
elastic parameters of a flux tube [56]. We therefore will restrict
ourselves to only single layers for the remainder of this paper,
leaving the question of weakly coupled layered materials to
future works. We therefore drop the parameter N from our
analysis (i.e., N = 1) henceforth.

We will further focus on the experimentally most relevant
case of classical diffusive motion of vortices following the
Bardeen-Stephens model [13,57], with the vortex mobility
μ and diffusion constant D = μT . More elaborate forms of
vortex motion as well as quantum effects are left to future
work. We evaluate the vortex dielectric function εv (ω, q) for
this model in the following section.

For future reference, we turn to discuss relevant dimension-
ful parameters that determine the magnetic noise properties
as well as experimental feasibility of our proposal, which
we further examine in Sec. V. We first note that the typical
frequency associated with the vortex dynamics is expected to
scale as ω ∼ Dq2 so that the integration measure q dq/ω ∼
1/D. The reference diffusion constant D(T ) is referenced at
the BKT transition temperature (the vortex mobility is roughly
temperature independent):

D(TBKT) ≡ D0 = μTBKT. (8)

The noise scale is then referenced with respect to the overall
scale

N0 = 2(μ0e/π )2 (TBKT)2

D0
= 2(μ0e/π )2 TBKT

μ
. (9)

Normalizing by N0, we rewrite Eq. (7) as

Nzz(ω, z)

N0
= D

T (0)
BKT

TBKT

∫ ∞

0
dq q e−2zq Im

[ −1

ωεv (ω, q)

]
. (10)

Within the theoretical model used here the ratio T (0)
BKT/TBKT =

ρ2D/ρ∗
2D = εc where εc is the value of the vortex dielectric

constant at zero frequency and momentum just below the tran-
sition temperature; that is, εc = limω,q→0 limT →T −

BKT
εv (ω, q).

We can therefore rewrite this as
Nzz(ω, z)

N0
= D

∫ ∞

0
dq q e−2zq Im

[ −εc

ωεv (ω, q)

]
. (11)

We have also ignored any reduction of the superfluid density
due to quasiparticle excitations. Length scales are referenced
with respect to the coherence length ξc which physically
corresponds to the size of the vortex core and serves as an
ultraviolet cutoff on the validity of the London theory for
vortex motion. In our treatment this is taken as an input to
the model which will be approximated by the value of the
coherence length in the ab plane at low temperatures. Using
ξc we can introduce the reference frequency

ω0 = D0ξ
−2
c = μTBKTξ−2

c . (12)
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Since the vortex coherence length ξc is the smallest length
scale in the problem, ω0 will be the largest frequency scale
in the problem.

III. RESULTS AND DISCUSSION

The key question of interest is the behavior of the effective
dielectric function εv (ω, q). The behavior of this in certain
limits is well known, and in general should behave similar
to a real (charge) dielectric with a corresponding mapping
from vortex parameters to charge parameters. That is, at low
temperatures, εv (ω, q) should resemble the dielectric function
of a “vortex dielectric,” while at high temperatures εv will
behave as that of a “vortex plasma.”

This behavior is quantitatively described by the solu-
tion of the Kosterlitz renormalization group (RG) equa-
tions [9,58,59], which yield the effective vortex interaction
ε−1
v and fugacity y at a particular length scale �. In the limit of

small fugacity y � 1, these read as
dεv (�)

d log �
= 4π3y2(�), (13a)

dy(�)

d log �
= 2

(
1 − T (0)

BKT

T

1

εv (�)

)
y(�). (13b)

In addition, we specify the microscopic value of these pa-
rameters, with εv (ξc) = 1 and y(ξc) = y0 = c exp(−T (0)

BKT/T )
with c = 0.1 used here. Note the exact behavior of the results
here are somewhat dependent on the model used for the bare
vortex fugacity. Due to screening of vortex interactions the
actual transition temperature is slightly shifted from the bare
value T (0)

BKT to TBKT ≈ 0.8117T (0)
BKT (see Appendix B). This

corresponds to a value of εc = 1.2320.
In Fig. 2 we present the solutions to the RG equations for

(a) the vortex fugacity and (b) the static vortex dielectric
constant as a function of length scale � for different values
of the temperature T . At low temperatures (T < TBKT) the
vortex fugacity is irrelevant and thus upon increasing � we
see y → 0 while, simultaneously the vortex dielectric constant
ε−1
v tends to a finite value reflecting the finite renormalized

phase stiffness ρ∗
2D = ρ2Dε−1

v (� = ∞) > 0.
At high temperatures (T > TBKT) the vortex fugacity in-

stead becomes a relevant perturbation and thus increases with
increasing � until it reaches the nonperturbative regime of
y � 1. At this point, the RG equations fail, and we interpret
the scale � = ξ+ at which this happens as the typical intervor-
tex separation in the free vortex gas, with areal density n f =
1/(πξ 2

+). As it is a plasma, the vortex-vortex interactions
become screened, and the vortex dielectric constant ε−1

v → 0
captures this. Since this is related to the renormalized phase
stiffness by ρ∗

2D = ρ2Dε−1
v = 0, this is seen to be a normal

nonsuperconducting phase. The length scale ξ+(T ) is shown
in Fig. 3, along with the corresponding free vortex density n f ,
referenced in terms of the coherence length ξc. We can see that
both exhibit essential singularities at T = TBKT, as expected.

From knowledge of the scale-dependent vortex dielec-
tric constant εv (�), it is possible to compute the dynamical
dielectric function by essentially integrating the dynamical re-
sponse from pairs over all length scales. Previous studies have
computed the long-wavelength dielectric function εv (ω, q =
0) using this procedure [60–62]. However, using NV

FIG. 2. (a) Vortex fugacity y flow as a function of length scale
� for different temperatures. At low temperatures the fugacity flows
to zero, while at high temperatures it diverges to the nonperturbative
regime of y > 1 (shaded area). (b) Static inverse vortex dielectric
constant ε−1

v flow as as function of �. Below the transition ε−1
v

remains finite as � → ∞, while at high temperatures this exhibits
a crossover before converging to ε−1

v = 0.

relaxometry we are now in a position to probe the full spa-
tial profile of the dielectric response function εv (ω, q). In
Appendix C we generalize previous long-wavelength results
to obtain the finite-momentum and finite-frequency vortex
dielectric function εv (ω, q). We can write the result succinctly
as

εv (ω, q) = 1 +
∫ ξ+

ξc

d�
dεv (�)

d�

F (q�/2)

1 − i ω�2

14D︸ ︷︷ ︸
≡εb(ω,q) (bound vortices)

+ 4π2ρ2Dn f μ

Dq2 − iω︸ ︷︷ ︸
≡ε f (ω,q) (free vortices)

,

(14)

where the filter function F (x) = 2J1(x)/x is approximately
one for � � q−1 and decays for � 
 q−1, isolating the
dominant contribution as arising from pairs with separation
less than the wavelength being probed by q. For numerical
evaluation, this filter function will be replaced by a Gaus-
sian F̃ (x) = exp(−x2/8) to remove the negative oscillations
of F (x) which can cause issues in the numerical integrals.
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FIG. 3. Left axis: length scale at which vortices become un-
bound, ξ+(T )/ξc. This diverges such that log ξ+ ∼ 1/

√
T − TBKT,

which grows very rapidly upon approaching the transition from
above. Right axis: density of free vortices above TBKT obtained as
nf = ξ−2

+ /π .

See Appendix C for more information. One can interpret
the dynamical factor (1 − i ω�2

14D )−1 as encoding the diffusive
relaxation rate of pairs at length scale � to perturbations at
frequency ω, while the factor dεv

d�
encodes the polarizability of

the pairs at that length scale. The factor of 14 is known to arise
from the more careful solution of the dynamics of a bound
vortex pair in a logarithmic potential, as found in Ref. [61].

Upon approaching T = T +
BKT the cutoff length scale di-

verges as ξ+ → ∞ (and is not defined for T < TBKT). In this
case, the Drude weight of free vortices vanishes as n f = 0
and the vortex dielectric function is purely due to bound
pairs. However, for T > TBKT the cutoff ξ+ becomes finite,
as does the finite density of free pairs with density n f ∼ ξ−2

+ .
These pairs then contribute as a Drude-type response which,
at small momenta and low frequencies, will become singular
and dominant over the bound contribution. In general, even
above the transition, there will also be a contribution from the
bound pairs at length scales less than ξ+, which may be large
and thus it is important to include contributions from both
the free vortex contribution as well as the bound pairs. Using
the result of Eq. (14) we arrive at the computed NV qubit
noise spectrum Nzz as a function of temperature for different
frequency and length scales. The central result is encapsulated
in Fig. 4, which presents the low-frequency ω → 0 limit of
the magnetic noise spectrum Nzz for different NV-sample
distances z as a function of temperature T . In Fig. 4 the true
transition temperature TBKT is indicated by the vertical dashed
line.

A. Temperature dependence

We now comment on the important features of Fig. 4.
Below the transition we see that the magnetic noise varies
essentially as a power law in distance z with a temperature-
dependent exponent that vanishes at TBKT. Right at the
transition the magnetic noise is essentially scale invariant,
and independent of qubit distance z (up to logarithmic cor-
rections), as might be expected near a phase transition. A

FIG. 4. Local magnetic noise as a function of temperature for
various qubit-sample distances z near the BKT transition in the limit
of ω → 0. The true transition is shown by the dashed line.

more complete discussion of the magnetic noise dependence
on distance can be found in Sec. III B, but the key result,
the scale invariance of the noise at TBKT, can be heuristically
understood based on dimensional analysis.

The conductivity due to vortex motion, obtained in Ap-
pendix D, is σ⊥

v (ω, q) = ρ2D

−iωεv (ω,q) . As the BKT transition
is an equilibrium phase transition, we are interested in the
static vortex correlations. One way in which this will manifest
is in the long-time (i.e., low-frequency) limit of the noise.
Intuitively, if the vortices are all bound to antivortices, then
at long times they will remain correlated with the location
of their “partner” vortex even as ω → 0, whereas if they are
free to roam then they will lose a memory of their initial
conditions.

As ω → 0 we see that the noise can only scale with z,
which corresponds to probing the q dependence of the noise.
The scaling with q has two contributions; the first can be
understood by noting that for diffusive motion of vortices
we have frequency scaling with momentum as ω ∼ Dq2. On
dimensional grounds we therefore expect that the noise, which
goes as limω→0 Im − 1/[ωεv (ω, q)], should have a scaling
with 1/ω ∼ q−2. However, this discounts the fact that below
TBKT the vortex dielectric function εv (q) can itself exhibit an
anomalous scaling dimension. However, exactly at the BKT
transition we expect at most a logarithmic dependence of
εv (�) as dεv/d log � ∼ const since at this point the vortices
are marginal operators. Therefore, at the transition, the low-
frequency noise is expected to scale as

Nzz ∼
∫ ∞

0
dq qe−2zq 1

Dq2
∼

∫ ∞

qmin

dq

q
e−2zq ∼ log zqmin. (15)

At the transition, the magnetic noise exhibits an infrared
divergence and must be cut off at a minimal wave vector qmin,
yielding a very slow logarithmic dependence of the magnetic
noise on qubit distance z. The nature of the infrared cutoff
�max = 1/qmin depends on the system at hand and should be
interpreted as the smallest length scale where the static BKT
description breaks down.
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A few relevant cutoff length scales are (i) the linear sys-
tem size L, (ii) the Pearl length 
P [15] beyond which
distance vortices begin to interact via stray magnetic fields,
or (iii) the diffusion length �ω ∼ √

D/ω which reflects the
fact that at finite frequencies the BKT transition is obscured
by time-energy uncertainty relations and is only a crossover,
with crossover length scale �ω. One may estimate these very
loosely to get a sense of the scales at which these each become
relevant. A typical sample of, e.g., monolayer cuprate may
have lateral extent of order of 10’s of µm [29]. The Pearl
length, on the other hand, is estimated from knowledge of
the sample thickness d and bulk London penetration depth
λL as 
P ∼ 2λ2

L/d . For a similar type of monolayer cuprate
sample, the thickness is of order d ∼ 2 nm [29]; the c-axis
penetration depth of a bulk BSCCO sample may be of order
250 nm [63]. This would lead to a Pearl length of order 60
µm, which is also quite large. The diffusive length �ω is in
turn harder to estimate due to poor knowledge of the vortex
diffusion constant. If we use the Bardeen-Stephens model
then we expect near the transition �ω ∼ √

D(TBKT)/ω ∼
2ξc

√
(RN/RK )(TBKT/ω). For a transition temperature of 80 K

and a frequency scale of 10 MHz (which depends on the
spectroscopic technique used), and a normal-state resistance
of order the resistance quantum (see Table I), we have the ratio√

(RN/RK )(TBKT/ω) ∼ 400, giving a diffusive length of order
800ξc ∼ 800 × 3 nm which corresponds to 2.4 µm, such that
in practice, this will probably be the shortest infrared cutoff
governing the distance dependence of the noise. It is also
possible that other length scales, particularly those related to
correlation lengths of long-range disorder or weak interlayer
couplings may also play a role here, but that is left for future
analysis.

Returning to Fig. 4 we see that above the transition temper-
ature we see a more complicated dependence, and in particular
we see that the magnetic noise is nonmonotonic with temper-
ature at fixed distance z, with the noise maximum occurring at
the BKT transition. As the temperature continues to increase
above TBKT the magnetic noise then decreases, sharply at first,
before reaching a pseudoplateau occurring at a z-dependent
temperature.

The emergence of the pseudoplateau is relatively easy to
understand; it signals the qubit distance z is large enough
to probe the magnetic noise due to the free vortices, which
will onset at lower temperatures for larger z. The residual
temperature dependence in this regime is mostly due to the
temperature dependence of the free vortex density n f (T ).

To understand the intermediate regime, it is important to
note that, while for any temperature T > TBKT there will be
a finite density of free vortices at length scales � > ξ+, just
above the transition this scale is still extremely large (see
Fig. 3). For qubit distances z � ξ+, actually the dominant
contribution still arises from the bound-pair contribution to
Eq. (7). We note that Imεv (ω, q) ∼ ω as ω → 0 and therefore

lim
ω→0

− 1

ω
Imε−1

v (ω, q)

= 1

ε2
v (q)

∫ ξ+

ξc

d�

�

�2

14D

(
dεv

d log �

)
F (q�/2). (16)

FIG. 5. Inverse bound-vortex dielectric function ε−1
b (q). For T >

TBKT the ε−1
b (q) exhibits a crossover in q, vanishing at q = 0 and

approaching unity as q → ξ−1
c .

This can be integrated over q to obtain the magnetic noise at
low frequency which is

lim
ω→0

Nzz(ω, z)/N0

= 1

14

∫ ∞

0
dq qe−2zq εc

ε2
v (q)

∫ ξ+

ξc

d� �

(
dεv

d log �

)
F (q�/2).

(17)

Although it depends on the particular details of the function F ,
if we use the Gaussian approximation (see Appendix C), one
can show that within this approximation the static dielectric
function obeys

16

q

dε−1
v (q)

dq
= 1

ε2
v (q)

∫ ξ+

ξc

d� �
dεv

d log �
F (q�/2). (18)

We can therefore show that2

lim
ω→0

Nzz(ω, z)/N0 ≈ 16

14
εc

∫ ∞

0
dq e−2zq dε−1

v (q)

dq
. (19)

The integral is dominated by q � 1/(2z) due to the ex-
ponential kernel, and therefore we can qualitatively expect

it to behave as
∫ ∞

0 dq e−2zq dε−1
b

dq ∼ ∫ 1/(2z)
0 dq dε−1

b
dq = ε−1

b [q =
1/(2z)] − ε−1

b (0). For T � TBKT we have ε−1
b (0) = 0 and

therefore the magnetic noise will essentially follow the same
crossover behavior as ε−1

b (q). This is shown as a function
of momentum q for different temperatures T in Fig. 5, and
closely parallels the behavior of ε−1

v (�) in Fig. 2(b). Con-
versely, at fixed z (and hence q ∼ z−1) it is easy to see that as
T increases, the crossover length scale shrinks and ultimately
becomes smaller than 2z at which point the noise rapidly drops
to zero (in the presence of quasiparticles this will drop to a

2It is again commented that this is not an exact relation due to
the approximation used for F (x), though we expect it to be a rather
good approximation. In particular, it is unlikely that the numerical
prefactor of 16

14 is exact or universal.
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FIG. 6. (a) Magnetic noise as ω → 0 for temperatures below the transition (T < TBKT). We see the dependence is essentially a power
law which continuously varies with temperature, becoming progressively less sensitive to qubit distance z upon approaching the transition.
(b) Magnetic noise at low frequency as ω → 0 for temperatures above the transition (T > TBKT). We see the dependence is more complicated,
with at least two distinct regimes depending on whether the qubit distance z is larger than the temperature-dependent intervortex distance
ξ+(T ).

finite background). In Fig. 4 this rapid drop is observed for
temperatures right above TBKT, but below the pseudoplateau
temperature set by ξ+(T ).

Physically, this local maximum in the noise can also be
understood as a tradeoff between the dissipative and reac-
tive parts of the vortex motion; at low temperatures the
noise vanishes as the dissipation becomes frozen out in the
superconducting phase. At high temperatures, the magnetic
noise also eventually drops since it originates from Johnson-
Nyquist current fluctuations and therefore is proportional to
the electrical conductance which decreases as superfluidity is
destroyed.

This shows that by studying the dependence of the
low-frequency noise on the qubit-sample distance and tem-
perature, one can probe the finite-size scaling behavior of the
BKT transition directly. We now examine this in more detail
below.

B. Distance dependence

We now study how the noise behaves in more detail as a
function of the qubit-sample distance z. This is presented as a
function of z in Figs. 6(a) and 6(b) for different temperatures
below, and above the transition temperature, respectively.
Both are shown in the zero-frequency limit (we take ω =
10−25ω0 in our numerical calculations).

Below the BKT transition, the low-frequency scaling be-
havior seen in Fig. 6(a) is relatively simple and exhibits a
continuously varying power-law behavior. This is expected
and is consistent with known results [60] since for T <

TBKT the system is generally characterized by algebraic
correlations.

For T > TBKT we see the behavior, however, is more com-
plicated and is not a simple power law even as ω → 0. To
better understand this regime we focus on the contribution
to the noise due to the free vortices (i.e., the vortex Drude
weight). This is expected to dominate for z 
 ξ+ and low

frequencies. If we neglect the frequency and momentum
dependence of εb(q, ω) we can write

εv (ω, q) = εb

[
1 + ξ−2

D

q2 − i�−2
ω

]
, (20)

where εb = εb(q = 0, ω = 0) is the static renormalized di-
electric contribution due only to the bound pairs, and

ξ−2
D = 4π2 ρ2D

εb

n f

T
(21)

is related to the Debye-Huckel screening length, while �−2
ω =

ω/D characterizes the diffusion length for the vortices.
In this regime one can find the zero-frequency limit of the

magnetic noise is

Nzz(0, z)/N0 = εc

14εb

∫ ∞

0
dq qe−2zq ξ−2

D

(q2 + ξ−2
D )2

. (22)

In particular, this will exhibit the asymptotic behavior for z 

ξD of

Nzz(0, z)/N0 ∼ εc

14εb

1

(2z/ξD)2
. (23)

This is what one would expect from local, scale-independent
Johnson-Nyquist noise as predicted in Ref. [13], and this is
reflected in the z−2 power-law tail in Fig 4(b) at large z.

We have seen that there are interesting and detailed sig-
natures of the BKT transition in the magnetic noise, which
manifest in the distance dependence of the magnetic noise.
However, in general the frequencies probed by spin-qubit
noise magnetometry are not negligibly low, and this may in-
troduce additional complications into the predictions, as well
as potentially offer novel insights. It is therefore important to
understand the dependence of the noise also as a function of
frequency in order to get a more complete picture.
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FIG. 7. Magnetic noise at z = 1000ξc as a function of ω for
different T < TBKT. We see two regimes. At very low frequencies the
noise is essentially white noise and independent of frequency. Then,
at higher frequencies we see a crossover to power-law behavior with
a varying exponent.

C. Frequency dependence

We now study the full frequency dependence of the mag-
netic noise for different temperatures and probe depths. We
start by analyzing the magnetic noise at low temperatures,
below and at the effective BKT transition as a function of
frequency. This is shown in Fig. 7 for a variety of temper-
atures below TBKT for z = 1000ξc, essentially probing the
long-wavelength magnetic noise.

Looking more closely we see that there are two clear noise
regimes. At very low frequencies, the noise is approximately
white noise with no strong frequency dependence, thereby
justifying our zero-frequency analysis of Eq. (19). This per-
sists up until a z-dependent frequency ωz, above which the
noise character changes to a power law in frequency with
an exponent that continuously varies with temperature. This
again is similar to our observations in Fig. 6(a) and es-
sentially recovers the results of previously performed bulk
flux-noise measurements [17–23,27]. In Fig. 8 we clearly see
this crossover behavior and confirm the scaling of ωz ∼ z−2

as expected based on diffusion.
For frequencies ω 
 ωz (i.e. much larger than the

crossover scale identified) we can analytically understand the
power-law behavior in frequency. In this case, the noise can
be written as

lim
z→∞Nzz(ω, z)/N0 ≈ −π

4

Dεc

ω(2z)2

dε−1
v (�)

d log �

∣∣∣∣
�=√

14D/ω

. (24)

This exhibits a leading dependence on distance as z−2, as one
would expect based on magnetostatics from local fluctuations
of the sheet-current density. The fact that this also exhibits a
power law in frequency (at fixed z) is less trivial and originates
from the anomalous scaling behavior of the vortex dielectric
function ε−1

v (�). This behavior has been previously studied in
Ref. [60] in the q → 0 limit and can be related to the scaling
exponent x(T ) which describes the power-law correlations in

FIG. 8. Magnetic noise at T = 0.95TBKT as a function of ω for
different z values. Dashed vertical lines are guides to the eye showing
where the crossover frequency ωz to power-law behavior occurs.
Increasing z by a factor of 10 reduces the crossover frequency by
a factor of 100, confirming the scaling exponent of ωz ∼ z−2.

the QLRO phase. Specifically, we expect

Nzz(ω, z)/N0 ∼ z−2ωx(T )/2−1. (25)

The exponent x(T ) continuously varies with temperature and
near TBKT goes as

x(T )/2 ∝
√

1 − T/TBKT, (26)

with a nonuniversal constant as the prefactor [60]. Since this
vanishes as T → TBKT we see that the noise tends to 1/ω be-
havior over a large range of frequency close to the transition,
also reproducing previously known results [19].

Finally, at very high frequencies with ω � ω0 the continu-
ally varying power-law behavior gives way to a 1/ω2 behavior
(this is not shown in the figures for brevity). This is seen by
performing a high-frequency expansion of Eq. (14).

We now turn out attention to understanding the behav-
ior as T varies through the BKT transition. This is seen in
Fig. 9. We first point out that at low frequencies the magnetic
noise is nonmonotonic with temperature, initially increasing
as the transition is approached from below before dropping
again once the temperature surpasses TBKT, as seen also in
Fig. 4, which is essentially the ω → 0 extrapolation of this
dependence.

We also see that for T > TBKT a new frequency scale
emerges which again reflects the appearance of the vortex
Drude weight (this is only visible provided T is sufficiently
large that ξ+ is comparable to the relevant length scale z). The
free vortex contribution to ε is modeled in Eq. (20); rewriting
in terms of frequency scale we have

εv (ω, q) = εb + γ

ωq − iω
, (27)

where ωq = Dq2 and

γ = 4π2ρ2Dn f μ (28)
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FIG. 9. Magnetic noise at z = 1000ξc as a function of ω for
different T ∼ TBKT. At low temperatures we see the crossover from
white noise to a power law, but passing through the transition we
note a number of new features including the emergence of a second
plateau in the noise and nonmonotonic temperature dependence.

is the Drude weight of the free vortices. Note γ /ω0 =
8εc(ξ+/ξc)−2, and thus γ may be many orders of magnitude
smaller than ω0 due to the strong dependence of ξ+ on tem-
perature. Below this frequency the magnetic noise is well
reproduced by Eq. (22).

For frequencies above γ there is then another apparent
plateau which emerges in the magnetic noise, clearly seen on
the highest temperature curves in Fig. 9. In this regime the
free vortices are no longer resolved for ω 
 γ , and instead we
see the remnant of the magnetic noise due to the bound-pair
contribution to εv which are still important even for T > TBKT.
This then persists up until a second crossover scale before
the noise again drops at higher frequencies, and ultimately
recovers the 1/ω2 behavior for ω ∼ ω0.

We now focus on understanding the ω and z dependence of
the magnetic noise in the high-temperature regime, which is
summarized in Figs. 10(a)–10(c) for temperatures T/TBKT =
1.02, 1.04, 1.07, respectively. For temperatures close to
the transition, the dependence still closely resembles the

T < TBKT dependence at the relevant frequency and length
scales, although there is convergence of the curves for low
frequencies as a function of z owing to the proximity to the
scaling collapse which is expected at the transition itself.

Progressively increasing the temperature causes the mag-
netic noise to grow and flatten out at low frequencies as the
crossover scale in the bound-pair contribution grows larger.
For the longest length scales, signatures of the vortex Drude
weight also become visible, as seen in the z = 3000ξc curve
in Fig. 10(b), though the contribution is hardly visible.

Finally, at even higher temperatures we see the emergence
of the vortex Drude weight, indicated by the dashed line which
is a visual guide, roughly corresponding to frequency ω = γ .
Below this frequency, the dominant noise sources are the free
vortices and their diffusion, while above this frequency, the
bound pairs are the main source of noise. We clearly can see
here that this crossover frequency is not dependent on distance
z but only on temperature T , which heralds the intrinsic length
scale ξ+(T ) appearing in the problem.

The magnitude of the drop in noise at this frequency is,
however, z dependent, with larger length scales exhibiting a
more dramatic difference between the free and bound pairs.
This is simply understood as the fact that at larger length
scales the bound pairs become even less important and the
contribution to magnetic noise from these bound pairs drops
more rapidly as z → ∞ than the contribution from free vor-
tices does, which only drops as z−2.

This in-depth analysis shows that the joint frequency, dis-
tance, and temperature dependence of the magnetic noise can
be used to disentangle and understand the behavior of both the
bound and free vortices and their dynamics above as well as
below the BKT transition. All of this very elegantly follows
from the analysis of the superconducting phase fluctuations
in the London limit, which assumes that the amplitude of
the superconducting order is frozen and the only fluctuations
are those of the phase (except possibly at the vortex core).
However, given the practical nature of the BKT transition
in superconductors, which are actually formed from Cooper
pairs that are extended objects formed from paired fermions,
it is worthwhile to compare these results to those that might
be expected based on a simpler analysis of Gaussian super-
conducting fluctuations. We therefore briefly investigate this
aspect in the next section.

FIG. 10. (a) Magnetic noise at T = 1.02TBKT for different z as a function of ω. (b) Magnetic noise at T = 1.04TBKT for different z as
a function of ω. We see the emergence of white noise for ω < γ , which grows out from low frequencies while also flattening out in ω.
(c) Magnetic noise at T = 1.07TBKT for different z as a function of ω. The white-noise regime is clearly defined and extends up to higher
frequencies. We also see the emergence of the Drude weight for frequencies below the z-independent dashed line.
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IV. ASLAMAZOV-LARKIN FLUCTUATIONS

Up to this point, all of our calculations have been within
the framework of the London limit, which realizes the XY
model for length scales beyond the coherence length ξc, and
is built upon the assumption that amplitude fluctuations of the
pair condensate, as well as electronic quasiparticle excitations
have been frozen out at low temperatures. This is, however,
not realistic for many cases where TBKT ∼ TBCS, the critical
temperature within the BCS framework and, more generally,
the temperature at which pairing sets in.

In this case, in addition to vortex fluctuations, Gaussian
fluctuations of the order parameter ψ (r, t ) are also important
and may also contribute to the transverse electromagnetic
noise that decoheres the spin qubit. Here we will briefly com-
pare these fluctuations to the non-Gaussian vortex fluctuations
considered in the primary part of this paper and argue that they
may be distinguished from each other based on the behavior
of the qubit noise. In particular, we identify a qualitative
difference in the magnetic noise as a function of distance z
which allows one to discriminate between these two models
of superconducting fluctuations.

We specifically consider order-parameter fluctuations
within a time-dependent Ginzburg-Landau framework, simi-
lar to Refs. [7,13] and found in great detail in, e.g., Ref. [28].
In order to capture the dynamical noise we use a Langevin
model for the order-parameter dynamics of the form

�−1∂tψ (x) = − δF
δψ∗(x)

+ η(x), (29)

where �−1 = νF τGL is the kinetic coefficient for relaxation,
η(x) is a complex noise field which satisfies a fluctuation-
dissipation relation, and the free energy is given (near TBCS)
by

F = νF

∫
d2r

[
ξ̃ 2

BCS|∇ψ |2 + r|ψ |2 + 1

2
u|ψ |4

]
, (30)

where ξ̃BCS is a length scale roughly corresponding to the BCS
coherence length at low temperatures, νF is the density of
states at the Fermi level, and r = (T − TBCS)/TBCS. u > 0 is
a parameter which reflects the nonlinearity of the condensate.
In this work we will focus on the thermal current fluctuation
spectrum at low frequencies as a function of momentum q for
T > TBCS. In this case, we will drop the nonlinear term u|ψ |4
and restrict to T not too close to Tc, though in principle this
can be relaxed using a self-consistent Gaussian approximation
(e.g., as done in Ref. [37] for the case of a spinful order pa-
rameter). We also neglect other contributions which may arise
from the order-parameter fluctuations, including the so-called
“density-of-states” and “Maki-Thompson” contributions [28],
leaving these to future works.

First, we compute the sheet current density. This has contri-
butions from the diamagnetic response of the pairs as well as
the paramagnetic response. In the absence of an applied field,
to quadratic order the diamagnetic term does not contribute,
and furthermore is nondissipative and will not show up in the
noise response. Therefore, we can focus on the paramagnetic

response only which, in momentum space is given by

j�(q, t ) = 2(2e)νF ξ̃ 2
BCS

∫
p

pψp+q/2(t )ψp−q/2(t ). (31)

From this we can compute the current noise spectral function
S⊥(q, ω) which is the object of importance. For details we
refer the reader to Appendix E. Then, the current fluctuations

Sab(q, ω) =
∫

dt eiωt 〈 ja
�(q, t ) jb

�(−q, 0)〉 (32)

can be computed by taking advantage of the fact that the
fluctuations are Gaussian.

At ω = 0 we find the magnetic noise from Gaussian pair
fluctuations is

Nzz/NAL
0

= (1 + r)2
∫ ∞

0
dx

e−4xz/ξ̃BCS

x

∫ ∞

0
du u

×
[

(x2 + u2 + r) −
√

[(u + x)2 + r][(u − x)2 + r]

(u2 + x2 + r)2

]
.

(33)

The normalization constant is NAL
0 =

(eμ0/π )2T 2
BCSτGL/ξ̃ 2

BCS, and we have expressed this as a
function of r > 0.

The magnetic noise is depicted in Fig. 11 for temperatures
above, but near, the transition Tc (note here we indicate the
temperature that superconductivity sets in as Tc since it is not
a BKT transition in this case, but it should be regarded as
equivalent). In Fig. 11(a) we present this as a function of tem-
perature (technically r) for different qubit-sample distances z,
which is to be compared to Fig. 4 (though note the different
x-axis scales and ranges). In Fig. 11(b) we present the same
data but as a function of distance z for different temperatures
T , which is to be compared to Fig. 6(b).

From the analytic formula, evaluated at r = 0 ⇒ T =
TBCS, we find that the low-frequency magnetic noise also
varies as log(z/�max) at the transition point, with an infrared
cutoff �max = min(L,

√
D/ω) which is taken to be the mini-

mum of the sample size L or the diffusive length �ω = √
D/ω.

Explicitly, we find

lim
ω→0,T →TBCS

Nzz/NAL
0 = log (2) × Ei1(4z/�max). (34)

Here Ei1(u) = ∫ ∞
u e−s/s ds is the exponential integral func-

tion, which diverges as z → 0 like log(z). However, we will
emphasize that this logarithmic dependence is only expected
to manifest very close to the critical point, where we anyways
expect our noninteracting Gaussian approximation used here
to break down. Further from the critical point it can be seen
that the overall scaling of the noise at a distance z is dom-
inated at large z by magnetostatic scaling from the standard
Aslamazov-Larkin paraconductivity as

Nzz/NAL
0 ∼ z−2/(T − Tc). (35)

This is the power law we are able to see in Fig. 11, which
again is only expected to hold for T not too close to Tc.

In order to distinguish between the Aslamazov-Larkin
Gaussian fluctuations and the BKT fluctuations, we turn to
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FIG. 11. (a) Local magnetic noise at ω = 0 as a function of r = T/TBCS − 1 > 0 for different distances z due to Aslamazov-Larkin
Gaussian superconducting fluctuations. (b) Local magnetic noise at ω = 0 as a function of distance z for different r > 0.

studying the distance dependence for T > TBKT. In this case
there is a clear feature in the distance dependence in Fig. 6(b)
which can be resolved due to the vortex Drude weight and
associated density n f , in addition to the crossover scale that is
due to the bound pairs. In contrast, the distance dependence
in Fig. 11(b) only has a single crossover scale, governed
by the correlation length of the superconducting fluctuations.
The qualitative difference in the distance dependence and in
particular the contribution of bound pairs for smaller probe
distances in the case of the BKT physics is a key signature
by which one may discriminate between the Gaussian fluctua-
tions and the vortex unbinding fluctuations. While we leave
a more detailed study to future works, we can already see
that the ability to probe the magnetic noise as a function of
depth in the vicinity of the transition may be extremely helpful
in disentangling the Gaussian Aslamazov-Larkin fluctuations
from the topological vortex fluctuations which characterize
the BKT transition.

Armed with this knowledge, we will now turn to a survey
of potential materials which may realize the BKT transition
in suitable parameter regimes and outline the strengths and
constraints of various candidate systems.

V. EXPERIMENTAL CONSIDERATIONS

In the preceding sections we have theoretically identified
a number of signatures of the BKT transition which are
expected to manifest in the local magnetic noise spectrum.
Before providing experimental estimates, it is important to
reiterate some of the physical assumptions of our calculations.
In particular, we have assumed (i) that fermionic quasiparti-
cles are sufficiently gapped out and do not contribute to the
magnetic noise; this will be briefly revisited later in Sec. V A.
We have also assumed (ii) that the superfluid density and
coherence length do not exhibit appreciable temperature de-
pendence and can be treated as constants within our model.
Finally, we have assumed (iii) a particular model for the
bare vortex fugacity of y0(T ) = 0.1 exp(−T (0)

BKT/T ), which
may also lead to some model dependence of our quantita-
tive results. Nevertheless, it is worthwhile to consider a few

possible material systems which may realize our theoretical
predictions.

First, to assess the potential viability of NV noise magne-
tometry for measuring the phenomena described in this work,
we estimate the relevant fundamental scales which set the
parameters of the problem. These are the coherence length
ξc, the frequency ω0 = 2πν0 = D0ξ

−2
c (which in turn is set

by the vortex mobility), and the magnetic noise scale N0

[Eq. (9)]. The following expression is used to estimate the
vortex mobility, applicable to dirty superconductors, follow-
ing the Bardeen-Stephens model [13,57]

μ = 4ξ 2
c

R�
RK

, (36)

where R� is the normal-state resistance per square and RK =
h/e2 ∼ 25.8 k� is the resistance quantum, and h̄ = kB = 1.

Our estimates, listed in Table I, are made using the mea-
sured TBKT. Coherence lengths in the literature reported for
these materials are determined based on the upper critical
field (see references in Table I). In the case of MoS2 and
FeSe on SrTiO3, the coherence length was determined on a
different sample from the one where superfluid density was
measured. For 1 UC Bi2Sr2CaCu2O8+δ , a representative co-
herence length was obtained from measurements on the bulk
material [64].

Additionally, it is useful to compare the BKT transition
temperature TBKT and the mean-field superconducting tran-
sition temperature (TBCS) where it is known. The separation
between TBKT and TBCS determines the range of temperatures
where the present theory applies.

Many of the superconductors listed in Table I are pre-
dicted to exhibit magnetic noise intensities, N0, that are
within the sensitivity of state-of-the-art T1 relaxometry ex-
periments. For example, magnetic field noise intensities of
10’s of pT2/Hz have been detected using T1 relaxometry
[43]. In practice the NV-sample distance can be realistically
varied in such an experiment between 10 nm to 100’s of
nm [42]. For the 2D superconductors listed in Table I, such
a distance-dependent relaxometry experiment would cover
a broad range of length scales relevant to vortex diffusion
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TABLE I. Estimate of scales relevant to two-dimensional superconductors. The frequency scale ν0 = ω0/(2π ) is typically many orders of
magnitude larger than the relevant experimental frequencies of the qubit probe (see Sec. III C). Magnetic noise is presented in both pT2/Hz and
an equivalent NV relaxation rate in Hz, which is estimated by multiplying the magnetic noise by the NV center’s gyromagnetic ratio squared
(0.028 Hz/pT)2. The asterisk denotes the representative coherence length obtained from the bulk material.

Material TBKT (K) TBCS (K) ξc (nm) R� (�) ν0 (GHz) N0 (pT2/Hz) N0 (Hz)

1 UC FeSe on SrTiO3 [65,66] 20.3 2–3 500–600 33–40 4000–11000 3–9
1 UC Bi2Sr2CaCu2O8+δ [29,64] 84.2 3.1∗ 1000 270 10000 8
gated MoS2 film [67,68] 9.5 8 750 23 220 0.2
3.5 nm NbN film [16] 4.5 5.75 6.7 4100 100 45 0.04
MATTG [33] 2.3 12.5 3000 22 5.4 0.0042

(Fig. 6) from distances on the order of ξc up to an order of
magnitude larger. The frequency bandwidth of T1 relaxom-
etry is set by the NV level splitting, which for the |0〉 →
| − 1〉 transition, can be tuned continuously from 2.87 to
0 GHz by varying an external magnetic field from 0–100 mT
along the NV axis. Thus, exploration of frequency scaling
of the magnetic noise (Figs. 7–10) would also be possible
using T1 relaxometry as long as these relatively small applied
fields do not significantly affect BKT vortex dynamics. For
a two-dimensional spin-singlet superconductor this is a rela-
tively safe requirement. For sufficiently thin films the in-plane
fields are limited by the Clogston-Chandrasekhar limit of
Hc/TBCS = 1.8 T K−1 [69,70] and thus for all systems consid-
ered here we are well below the critical field since Tc � 1 K.

For many of the superconductors considered in Table I,
the proposed experiment would be challenging but viable.
Monolayer high-temperature superconductors are perhaps the
most promising in terms of absolute magnetic noise intensity.
However, it is unclear to what degree cuprates actually exhibit
BKT physics, with clear signatures still not observed even
in monolayer systems [29]. While it would be interesting to
investigate this physics using the technique described here,
in hopes it may shed light on this puzzle, it might also be
important to consider other systems wherein the BKT tran-
sition has been more clearly observed such as, for instance,
NbN [71]. In this case, NbN has the advantage of having a
known separation between the mean-field and BKT transition
temperatures, as well as ease of fabrication. In this case, the
signal could be amplified by layering NbN films with a thin
insulator between them.

We now briefly assess the background magnetic noise due
to Bogoliubov quasiparticles, which is expected to be one
of the largest sources of background noises that needs to be
overcome in order to observe the BKT physics successfully.

A. Quasiparticle effects

Here we briefly discuss the impact of residual Bogoliubov–
de Gennes (BdG) quasiparticles and their contribution to the
magnetic noise near TBKT. A detailed analysis of this has
already been carried out and can be found in Refs. [45,46],
however, we will discuss this here for completeness.

In particular, the principal result of Fig. 4 is presented
assuming there are no residual BdG quasiparticles. In cases
where the BKT transition is clearly visible this assumption
is likely valid since if TBKT � TBCS there should already be
an appreciable spectral gap. However, especially in the case

of strong disorder or nodal pairings this assumption can be
called into question.

In order to address this, we will consider the impact on the
transverse conductivity, the real part of which is responsible
for magnetic noise. In Appendix D we show that the vortex
contribution to the frequency and momentum-dependent con-
ductivity is

σ⊥
v (ω, q) = − ρ2D

iωεv (ω, q)
. (37)

If we take the quasiparticle conductivity to contribute as
a momentum-independent background (assumed valid for
length scales longer than the quasiparticle mean-free path) we
can model the total conductivity σ⊥ = σ⊥

v + σ⊥
qp as

σ⊥(ω, q) = − ρ2D

iωεv (ω, q)
+ σqp(ω). (38)

Here σqp is the frequency-dependent normal fluid conductivity
due to residual quasiparticles. In the case of a dirty s-wave
conventional superconductor this is found from the standard
Mattis-Bardeen result [72].

It is easiest to distinguish the effects of vortices at low
frequencies. We therefore aim to understand the behavior of
σqp at low frequency. For T > TBCS we will use σqp(ω) = σn,
where σn is the normal-state conductivity, assuming frequency
dependence is captured effectively by ω → 0 limit in this
regime. For T < TBCS we must keep the frequency depen-
dence. From Ref. [72] we find that

Re[σqp(ω)/σn]

= 2
∫ ∞

�

dE

ω
[ f (E ) − f (E + ω)]

×
[

E (E + ω) + �2

√
E2 − �2

√
(E + ω)2 − �2

]

− θ (ω > 2�)
∫ ω

�

dE

ω
tanh

(
E

2T

)

×
[

E (E − ω) + �2

√
E2 − �2

√
(E − ω)2 − �2

]
. (39)

In this expression, there is also a temperature dependence of
�(T ) which we capture using a BCS interpolation formula

�(T )/TBCS = 1.76 tanh(1.74
√

TBCS/T − 1). (40)
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Using this conductivity we can compute the magnetic flux
noise including both the vortex and quasiparticle channels as

N tot
zz = 1

2
T μ2

0

∫
q

e−2zqRe

[
− ρ2D

iωεv (ω, q)
+ σqp(ω)

]
. (41)

This involves the vortex-generated magnetic noise derived
in Eq. (7), as well as a background term N qp

zz which, when
normalized by N0 gives

N qp
zz /N0 = π2

4

T

TBKT
μ

∫
q

e−2zqRe[σqp(ω)]. (42)

We recall that, within the Bardeen-Stephens model, μ =
4ξ 2

c /σn using σn = 1/R� in natural units. Crucially, we expect
that the quasiparticle conductivity will largely be local for the
relevant length scales pertinent to vortex dynamics. Therefore,
we expect a quasiparticle background contribution to the noise
(normalized to the same scale as the vortex signal), which
scales as z−2 for all temperatures as

N qp
zz /N0 = π

2

T

TBKT

ξ 2
c

4z2
Re[σqp(ω)/σn]. (43)

In order to make a direct connection with the vortex noise,
we need an estimate for the ratio of TBCS to TBKT, which con-
trols the quasiparticle gap onset relative to the vortex ordering
temperature. In principle these can be completely unrelated,
so for our purposes here we will consider the “worst case sce-
nario” of TBCS ≈ TBKT.3 This corresponds to the case where
the two temperature scales are not well separated, and the
quasiparticle coherence peak in the noise can easily be con-
fused with the noise maximum due to vortex motion. We also
comment that since the superfluid density necessarily drops to
zero upon approach TBCS and the physical BKT transition tem-
perature is determined by the relation ρ∗

2D(TBKT) = 2TBKT/π ,
it will always be the case that TBKT � TBCS.

We also must in principle compare the characteristic vortex
noise scale ω0 to the relevant quasiparticle frequency scale,
which within the Mattis-Bardeen model is referenced with
respect to TBCS [or alternatively the zero-temperature gap
�BCS(0)]. For the sake of simplicity, we will assume that
ω � ω0 such that we can use the low-frequency vortex noise
result. However, it is known that within the Mattis-Bardeen
model Re[σqp(ω)] ∼ log ω at low frequencies and therefore
we cannot take the ω → 0 limit in the background. For the
superconductors we are focused on, we can expect TBCS to
correspond to frequencies of order 1 THz (1 THz ∼ 50 K), and
therefore frequencies of order 10−5TBCS correspond to 10’s of
MHz, which is within the frequency range we are interested
in probing. Therefore, we will evaluate the background at
frequencies of order 10−5TBCS.

In Fig. 12 we present the total magnetic noise including
both the vortex noise and the quasiparticle background (using
the parameters stated above). We see that even in this case,
which was not particularly favorable in terms of TBCS/T (0)

BKT,

3Specifically, we will take TBCS = T (0)
BCS which in our model cor-

responds to TBKT = 0.8117TBCS, though our model does not treat
the temperature dependence of T (0)

BKT and therefore this should be
regarded as only a model-dependent example.

FIG. 12. Total magnetic noise at low frequencies including both
the vortex and quasiparticle background as a function of temperature
for different distances z. The dashed gray line is the modeled BKT
transition temperature whereas the dotted purple line is the modeled
BCS temperature TBCS, which we also take to coincide with the
unrenormalized BKT temperature T (0)

BKT.

there are still clear signatures of the BKT transition in the
magnetic noise for all but the closest distances or lowest
temperatures.

This can be understood as due to two fortuitous facts. The
first is that the temperature dependence of the quasiparticle
background conductivity is slowly varying on the scale of the
relevant temperature range where BKT physics is important,
so that it is essentially just a constant. The second is that on
the length scales relevant to vortex physics, the quasiparticle
response is expected to be local (and therefore momentum in-
dependent). The quasiparticle noise will therefore fall off with
distance much faster than the vortex noise which becomes
scale invariant at the transition. We conclude by remarking
that in the case of cleaner superconductors, especially such
as van der Waals systems or other low-density clean two-
dimensional superconductors, the quasiparticle background
noise is not described by the Mattis-Bardeen model, and may
potentially be further suppressed.

VI. CONCLUSION

We have shown that local spin-qubit magnetometry may
be a promising probe for detecting the BKT transition in
thin films and two-dimensional superconductors. In particular,
the local magnetic noise gives access to the vortex-antivortex
dielectric function εv (ω, q), resolved in both frequency and
momentum, thereby enabling one to directly study the tran-
sition in terms of the dynamic and scale-dependent vortex
interactions. By analyzing this magnetic noise as a function
of temperature, probe frequency, and qubit-sample distance
we can identify a number of distinct features of the BKT
transition.

Specifically, we observe that the low-frequency magnetic
noise is nonmonotonic as a function of temperature. The noise
maximum at TBKT exhibits a scaling collapse as a function of
the sample-probe distance z. While the magnetic noise obeys
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a power-law behavior in z below TBKT, above the transition
temperature we find a more complicated dependence. This
culminates in a plateau structure in the magnetic noise which
allows for probing the finite-size crossover effects directly in
situ. Finally, above the transition it is possible to additionally
probe the Drude weight of the free vortices in parallel to the
noise from bound pairs.

The level of detail offered by noise magnetometry can also
help address fundamental challenges in identification of BKT
physics. By probing at short length scales of the order of
10–100 nm, it seems possible to (i) disentangle long-range
disorder effects and (ii) use the lateral scanning capability of
qubit sensors to study how such disorder affects both the local
and global transition properties [25,26]. For instance, it is
known that spatially correlated disorder is important and can
qualitatively change the behavior of the BKT transition [73].
Typically, these correlations form through a process of “emer-
gent granularity” whereby the combination of inhomogeneity
and long-range Coulomb interactions cause the formation of
a strongly inhomogeneous superconducting state, as would be
realized in a granular material. These regions of emergent in-
homogeneity may be quite large, order 100’s of nm [74]. This
large emergent length scale is visible in scanning type probes
such as STM and it is therefore interesting to consider whether
the local variations in vortex motion can also be resolved in
laterally scanning noise spectroscopy measurements.

We have also explicitly computed the magnetic noise due
to Gaussian Aslamazov-Larkin superconducting fluctuations,
and shown that there is a clear qualitative and quantitative
difference between these fluctuations and fluctuations due to
vortex unbinding. While both types of fluctuations manifest
similarly in transport quantities and lead to broadening of the
superconducting transition, we have shown they contribute
differently to the scaling of the magnetic noise with dis-
tance. As a result it may be possible to disentangle these two
sources of fluctuations using noise magnetometry. In addition
to the candidate systems listed in Sec. V, recently the pos-
sibility of some two-dimensional materials exhibiting triplet
superconductivity has been suggested, in which case the com-
bination of intertwined spin and charge fluctuations [37,75]
may exhibit signatures in the local noise magnetometry
spectrum.

We also modeled a potential source of background noise
due to quasiparticles within the dirty limit using the Mattis-
Bardeen model. Even though this background can potentially
be sizable if TBCS ∼ TBKT (i.e., the BKT and pairing tempera-
tures are not well separated), we have shown that it should still
be possible to clearly observe vortex noise. This is because the
quasiparticle background has a slower-varying temperature
dependence and more rapid falloff with distance (as 1/z2) than
the vortex noise does. This points to another key capability,
the ability to probe across different distances, that spin qubits
such as NV centers offer.

More broadly, while our results are only relevant for super-
conducting BKT physics, it may also be possible to identify
BKT physics in two-dimensional magnetic systems. In this
case, the relation between the magnetic noise and the corre-
sponding vortex dielectric function may be different; however,
it still stands that the increased detail and sensitivity may
enable further study of BKT physics in a variety of platforms.

Recently, a number of two-dimensional magnets have been
shown to exhibit BKT-like phase transitions [76–82] which
may be amenable to study by noise magnetometry in a similar
fashion. Interesting features have also recently been seen in
the high-symmetry two-dimensional magnetic material CrCl3

using NV noise magnetometry [41].
Finally, it would be interesting to study the quantum

corrections to vortex motion and how they manifest in
the local magnetic noise. In particular, in the presence of
strong Coulomb interaction effects the ground state of a two-
dimensional superconducting system should undergo a phase
transition between a Mott insulator of Cooper pairs and a
superconducting condensate of Cooper pairs. This transition
can also be described in terms a “dual” picture based on
superconducting vortices, such that a superfluid of vortices
corresponds to a Mott insulator of pairs and vice versa, in a
conjecture known as the “particle-vortex duality” [56,83,84].
As we have shown here, it is possible to directly probe the
motion of vortices using noise magnetometry; this raises the
interesting possibility of directly probing the nature of the
particle-vortex duality using spin qubits.
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APPENDIX A: MAGNETOSTATICS

In this Appendix, we derive the relation between the mag-
netic field noise at a distance z from the superconducting
sample in terms of the vortex correlation functions. We as-
sume the superconductivity is truly two dimensional, i.e., the
sample thickness is much smaller than the penetration depth.

In this case, and in the magnetostatic limit (valid for
frequencies ω � c/z which is manifestly realized here), Am-
pere’s law relates the magnetic field B to the current-density j
via

∇ × B = μ0j. (A1)

We have assumed the sample to be modeled as an infinite sheet
in the z = 0 plane. In this case, we can characterize the current
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in terms of a sheet current density via

j = δ(z)j�. (A2)

We perform a Fourier transform on the in-plane coordinates,
writing in terms of the two-dimensional in-plane momentum
q. We can use Gauss’ law of magnetism and take the curl of
this to derive the equation for the z component of the magnetic
field which obeys[−∂2

z + q2
]
Bz(q, t ) = μ0δ(z)ez · iq × j�(q, t ). (A3)

This is solved in terms of exponentially decaying solutions as

Bz(z, q, t ) = Bz(0, q, t )e−q|z|. (A4)

Integrating the singularity across z = 0 we obtain

Bz(z, q, t ) = μ0
e−q|z|

2q
ez · iq × j�(q, t ). (A5)

The local magnetic noise in all components can be recon-
structed from knowledge of Bz in conjunction with Maxwell’s
equations which yields the full vector field as

B(z, q, t ) =
[

ez − iq
q

]
Bz(z, q, t ). (A6)

From this we can compute the magnetic noise tensor at z > 0
as

N (z, ω) =
∫

q

∫
dt eiωt (ez − iq̂) ⊗ (ez + iq̂)

× 〈Bz(z, q, t )Bz(z,−q, 0)〉, (A7)

with q̂ = q/q. This gives, in terms of the current-current cor-
relation function,

N (z, ω) = μ2
0

4

∫
q

(−iq̂ + ez ) ⊗ (iq̂ + ez )e−2zqS⊥(q, ω),

(A8)

where

S⊥(q, ω) = 〈| j⊥�(q, ω)|2〉 (A9)

is the noise spectral density for the fluctuations of j⊥�(q, ω),
the transverse part of the current fluctuations. In particular, we
will focus on the zz component which is

Nzz(z, ω) = μ2
0

4

∫
q

e−2zqS⊥(q, ω). (A10)

In order to proceed further we now specifically consider
the case of vortex fluctuations. In the London limit, in two
dimensions the supercurrent must be a purely longitudinal
response, except in the presence of vortices which introduce
topological defects in the phase of the supercurrent. In the
presence of these vortices, we may express this curl as

(∇ × js)z = (2e)2πρ2Dδ(z)n(r, t ), (A11)

where 2e is the Cooper pair electric charge, ρ2D is the bare
two-dimensional superfluid density, and

n(r, t ) =
∑

j

n jδ
2[r − R j (t )] (A12)

is the two-dimensional vortex density, with n j = ±1 and the
overall “neutrality” constraint

∑
j n j = 0 (in analogy with the

Coulomb plasma model). We therefore find

S⊥
BKT(q, ω) = (2e)2(2πρ2D)2 χ (q, ω)

q2
, (A13)

given directly in terms of the vorticity-charge correlation
function

χ (q, ω) =
∫

dt eiωt 〈n(q, t )n(−q, 0)〉. (A14)

This yields

Nzz(z, ω) = (2πρ2Deμ0)2
∫

q
e−2zq χ (q, ω)

q2
. (A15)

We now also consider the possibility of a set of N inde-
pendent 2D superconductor layers equally spaced a distance
a apart. Provided that the coupling between the layers is
sufficiently weak (so that it can be ignored over the length
scale Na), and that the total thickness is still less than the
penetration depth, we will see that stacking the layers like this
effectively boosts the size of the noise signal, while leaving
the other critical physics intact. To see this, we simply appeal
to the linearity of Maxwell’s equations, and superpose the
single-layer results to get the total result of

Bz(z, q, t ) =
N−1∑
j=0

e−q|z+ ja|

2
μ0 j⊥�(z = − ja, q, t ). (A16)

Here we have used coordinates such that the first layer is
located at z = 0 and then the remaining ones are at z =
−a,−2a, . . . ,−(N − 1)a, with layer j having a fluctuating
vorticity density of nj (q, t ). Our assumption is that the cou-
pling between the layers is sufficiently weak that these are
essentially independently fluctuating quantities. We then find
the total noise spectrum simply adds in quadrature to give

Nzz(z, ω) = (μ0/2)2
∫

q

N−1∑
j=0

e−2|z+ ja|qS⊥(q, ω). (A17)

This makes use of 〈 j⊥�, j (q, ω) j⊥�,k (−q,−ω)〉 ∝ δ jk . Now, let
us further approximate this sum by

N−1∑
j=0

e−2q ja = 1 − e−2qNa

1 − e−2qa
. (A18)

This will, in principle, smear out the clarity of the scaling
with z due to the fact that a number of depths ranging over
[z, z + Na] effectively contribute to the noise simultaneously.
While this is not necessarily detrimental, critical physics will
be more straightforwardly observable if the interval is small
compared to the overall scale being probed, so that Na � z.
In this case, we can approximate the summation by

1 − e−2qNa

1 − e−2qa
∼ N + O(a/z) (A19)

using q ∼ 1/z. This then establishes that in this regime of
parameters, we have a way of boosting the signal in principle,
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FIG. 13. Plot of 1/ log2(ξ+/ξc ) versus temperature T/T (0)
BKT.

We perform a linear fit based on points with temperature greater
than the dotted-dashed orange line, which has not yet saturated the
finite-size cutoff scale. From this we can extract the true transition
temperature TBKT (gray dashed line) as the extrapolated x intercept,
along with uncertainty estimates (gray dotted lines as 1σ interval).
We find TBKT = 0.8117T (0)

BKT, with uncertainty �TBKT = 0.006T (0)
BKT

with an excellent goodness of fit.

so that

Nzz(z, ω) = N (2πρ2Deμ0)2
∫

q
e−2zq χ (q, ω)

q2
. (A20)

APPENDIX B: EXTRACTION OF TRANSITION
TEMPERATURE

It is known that it is difficult to extract the exact BKT
transition temperature in the thermodynamic limit due to the
strong influence of finite-size effects. In order to isolate the
true transition we first numerically integrate the renormal-
ization group equations (13), terminating the flow once the
fugacity reaches unity. This defines the ξ+ length scale by

y(ξ+) = 1. (B1)

Near the BKT transition it is known that ξ+ exhibits a diver-
gence as

ξ+ = aξc exp

(
b√

T − TBKT

)
, (B2)

where a, b > 0 are nonuniversal constants and TBKT can be
interpreted as the true transition temperature. Numerically, we
always truncate our integral at a system-sized infrared cutoff
scale of �max ∼ 1012ξc, such that in fact the RG flow is trun-
cated at min(ξ+, �max) in practice. We then perform a linear
fit of 1/ log2(ξ+/ξc) versus temperature; the true transition
temperature can then be inferred from the x intercept of this
fit.

This is shown in Fig. 13, from which we extract the true
BKT transition temperature in the thermodynamic limit is
TBKT = 0.8117T (0)

BKT based on our model, along with an uncer-
tainty of �TBKT = 0.006T (0)

BKT. It can be seen by eye that the
linear fit is excellent in a large temperature regime provided

ξ+ � �max; specifically, the goodness of fit for this is over
0.9998, provided we omit the low-temperature points where
ξ+ � �max.

APPENDIX C: FINITE-MOMENTUM SCALE-DEPENDENT
DIELECTRIC

Here we derive the finite-momentum scale-dependent vor-
tex dielectric function εv (q). We consider first T < TBKT, and
compute the bound vorticity density induced by the applica-
tion of a scalar vorticity potential φ (here we will not subscript
with v to indicate vortex quantities and it will be understood).
In the weakly interacting regime, the vortices are described
well by an ensemble distribution function P(R, r) which gives
the probability density for a pair to have center of mass R and
radial separation r. In terms of the free energy this is

P ∝ exp

(
−F (R, r)

T

)
. (C1)

In addition to the interaction, which is characterized by a
running scale-dependent dielectric constant, we also have the
local potential, which couples via

Fpot = −eρ2D[φ(R + r/2) − φ(R − r/2)], (C2)

where we have introduced a fictitious charge e = 2π for the
vortices. We compute the induced charge density, which is
given by the divergence of the bound polarization density.
This is given, up to linear order in the perturbing potential,
by

P(R) = e2ρ2D

T

∫
d2r P0(R, r)r[φ(R + r/2) − φ(R − r/2)].

(C3)

We go to momentum space by writing φ(r) = ∑
q eiq·rφ(q).

This yields

P(R) =
∑

q

φ(q)eiq·R e2ρ2D

T

∫
d2r P0(R, r)r2i sin(q · r/2).

(C4)

If we assume the equilibrium distribution does not depend
on center-of-mass coordinate R we can then express this in
momentum space using P(R) = ∑

q eiq·RP(q) to get

P(q) = e2ρ2D

T

∫
d2r P0(r)r[2i sin(q · r/2)]φ(q). (C5)

The induced charge is in turn given by

ρb = −iq · P(q)

= 2
e2ρ2D

T

∫
d2r P0(r)r · q sin

(q · r
2

)
φ(q). (C6)

We can now obtain from this the full momentum-dependent
compressibility as κ = δρb/δφ, giving

κ (q) = 2
e2ρ2D

T

∫
d2r P0(r)r · q sin

(q · r
2

)
. (C7)

This in turn, through RPA, gives the dielectric constant via

ε(q) = 1 + κ (q)

q2
. (C8)
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FIG. 14. Comparison between true filter function F (x) =
2J1(x)/x (black curve) and approximation used here (dashed red
curve) of F̃ (x) = exp(−x2/8). The approximation is chosen to match
the true function up to third order in expansion around x = 0. How-
ever, the approximation does not exhibit oscillations which would
lead to numerical issues.

In the given expression, we actually have contributions
from pairs of all length scales r, and the ultimate result is
obtained by summing up all of these contributions. We break
the total result in to a differential contribution from the shell
of pairs between r ∼ � and r ∼ b�. This gives the differential
contribution to the dielectric of

dε(q) = 2
e2ρ2D

T
r dr

∫
dθ P0(r)

r · q
q2

sin
(q · r

2

)
. (C9)

Referencing the momentum from angle with q we find

dε(q) = 4π
e2ρ2D

T
r2dr

1

ξ 2
c

P0(r)
J1(qr/2)

qr
. (C10)

One factor of 1/ξ 2
c is simply the areal density available

for the center-of-mass distribution. We note the appearance
of the Bessel function J1(x) due to the angular integral∫

dθ cos θ sin(x cos θ ). Let us introduce the filter function

F (x) = 2J1(x)/x. (C11)

This function satisfies F (0) = 1 and decays sufficiently rapid
for x 
 2. However, this precise form of the blurring function
has issues since it is not positive semidefinite, which can lead
to problems when evaluating integrals involving this func-
tion numerically. We therefore will in practice use a similar
function which has the same asymptotic behaviors but is non-
negative, such as

F̃ (x) = exp(−x2/a), (C12)

which has the same behaviors at x = 0,∞, while remaining
positive and has a smooth maximum at x = 0. We will fix the
free constant a by matching the series expansions at x = 0 to
quadratic order. F (x) = 2J1(x)/x ∼ 1 − x2/8 so we set a =
8. The comparison between these two functions is shown in
Fig. 14.

In terms of this, we have

dε(q) = π
e2ρ2D

T
r2dr

1

ξ 2
c

P0(r)F̃ (qr/2). (C13)

We can therefore understand this as simply the same scaling
equation as the one for the homogeneous scale-dependent di-
electric original derived by Kosterlitz and Thouless, weighted
by the scale-dependent function F (q�/2) which determines
how much the momentum q ends up contributing. We there-
fore find the simple result

ε(q) = 1 +
∫ ∞

ξc

d�

(
dε

d�

)
F̃

( |q|�
2

)
. (C14)

Now, we must handle the possibility of free vortices above
TBKT. This, however, is essentially already known. Above
TBKT a new length scale ξ+ < ∞ emerges, which signifies
the length scale beyond which the fugacity y ∼ 1 and the
perturbative renormalization group fails. The standard ap-
proximation made at this point is to treat all longer length
scales as having a finite density of free vortices n f = 1/(πξ 2

+),
which are unbound and respond as free particles to the poten-
tial. This means that for T > TBKT we should have

ε(q) = 1 +
∫ ξ+

ξc

d�

(
dε

d�

)
F̃

( |q|�
2

)
+ 4π2ρ2D

q2

n f

T
. (C15)

We recognize this as simply the RPA approximation including
(i) the contribution from the bound pairs at length scales
less than ξ+ and (ii) the free vortices with compressibility
κ = n f /T which is expected for a classical Debye fluid.

In order to capture the dynamic response we will assume
that the standard formula involving ω holds for the bound
pairs so that below TBKT

ε(ω, q) = 1 +
∫ ∞

ξc

d�

(
dε

d�

)
F̃

( |q|�
2

)
14D�−2

14D�−2 − iω
,

(C16)

where D = μT is the vortex diffusion constant, in terms of
the mobility μ. Above TBKT we will also have to modify the
Drude response to take the form

ε(ω, q) = 1 +
∫ ξ+

ξc

d�

(
dε

d�

)
F̃

( |q|�
2

)
14D�−2

14D�−2 − iω

+ 4π2ρ2Dn f μ

Dq2 − iω
. (C17)

Here we have used that Dκ = μn f for the Debye fluid since
κ = n f /T and D = μT . We again recall the factor of 14,
which while strange, arises from a more precise solution to the
bound vortex-pair dynamics in a logarithmic potential [61].

APPENDIX D: RELATION TO CONDUCTIVITY

Here we relate the BKT vorticity correlation function to
the in-plane transverse conductivity and show how this re-
lates to the standard quantities which figure into the reflection
coefficients, which is an alternative formulation for the noise
spectrum. The current is given by (in units with 2e = 1)

Js = ρ2D(∇θ − A). (D1)

Let us define ∇θ = vs. The conductivity is found from

σ jk (ω, q) = ρ2D

iω

[
−δ jk + δvs(ω, q)

δA(ω, q)

]

= σ ‖(ω, q)
q jqk

q2
+ σ⊥(ω, q)

(
δ jk − q jqk

q2

)
.

(D2)
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We will focus on the transverse part of the conductivity
as this is what contributes to magnetic noise. For results on
the longitudinal conductivity see, e.g., Ref. [7]. To obtain the
transverse conductivity, we use the Kubo formula for linear
response to obtain

Reσ jk (ω, q) = 1

2T

 jk (ω, q) (D3)

with 
 jk (ω, q) the current-current correlation function


 jk (ω, q) = 〈J j
s (ω, q)Jk

s (−ω,−q)〉. (D4)

We can separate the current response into longitudinal and
transverse parts via

J j
s (ω, q) = iq jρ2Dθ (ω, q) + (iq × êz ) j

2πρ2D

q2
n(ω, q).

(D5)

We then find for the longitudinal and transverse correlations


‖(ω, q) = ρ2
2Dq2〈|θ (ω, q)|2〉 (D6)

and


⊥(ω, q) = 4π2ρ2
2D

〈|n(ω, q)|2〉
q2

, (D7)

and thus the conductivities

Reσ ‖(ω, q) = 1

2T
ρ2

2Dq2〈|θ (ω, q)|2〉, (D8a)

Reσ⊥(ω, q) = 1

2T
4π2ρ2

2D
〈|n(ω, q)|2〉

q2
. (D8b)

To obtain the transverse conductivity we relate the dielec-
tric constant to the vortex-charge response function via

1 − χv (ω, q)
4π2ρ2D

q2
= 1

εv (ω, q)
. (D9)

Using the fluctuation dissipation theorem for χv we finally
obtain

Reσ⊥(ω, q) = −ρ2D

ω
Im

1

εv (ω, q)
. (D10)

We analytically continue this to

σ⊥(ω, q) = −ρ2D

iω

1

εv (ω, q)
. (D11)

This can be understood by taking the zero-temperature result
for the transverse response, which is the bare kinetic in-
ductance of σ⊥ = −ρ2D/iω and renormalizing the superfluid
stiffness to

ρ∗
2D(ω, q) = ρ2D

εv (ω, q)
. (D12)

Below TBKT this can essentially be replaced by the static,
long-wavelength dielectric constant so that we simply find
the renormalized kinetic inductance of ρ∗

2D = ρ2D/ε̃v (T ), with
εv (0) = ε̃v (T ) obtained by solving the scaling equations.
Above TBKT, the dielectric constant obtains a singular contri-
bution from the Drude weight of the vortices, so that we can
approximate by εv (ω, q) ∼ ε̃v (T −

BKT) + iγ /ω at long wave-
lengths. As a result, σ⊥(ω) ∼ ρ2D/[iωεv (ω)] = ρ2D/[γ −
iωρ∗

2D(T −
BKT)] reflects the onset of a finite resistance in the

sample, with conductivity ρ2D/γ .

APPENDIX E: COMPARISON TO ASLAMAZOV-LARKIN
FLUCTUATIONS

Here we present the details of the calculation of the current
fluctuations due to the Azlamazov-Larkin superconducting
fluctuations. We require the correlation function

Sab(q, ω) =
∫

dt eiωt 〈 ja
�(q, t ) jb

�(−q, 0)〉, (E1)

where the sheet current densities are given by Eq. (31) in the
main text. This can be computed by taking advantage of the
fact that the fluctuations are Gaussian. We find via Wick’s
theorem

Sab(q, ω) =
∫

dt eiωt
∫

p

[
2(2e)νF ξ 2

c

]2
pa pb

× 〈ψp−q/2(t )ψp−q/2(0)〉〈ψp+q/2(t )ψp+q/2(0)〉.
(E2)

These correlation functions simply decay in time with the
rates

�k = νF �
[
ξ 2

c k2 + r
]
, (E3)

and thus we have

Sab(q, ω)=(2e)2
∫

p

2�p(q)

ω2 + �p(q)2

(
2νF ξ 2

c

)2
pa pbnp−q/2np+q/2,

(E4)

where we have defined the total rate

�p(q) = �p+q/2 + �p−q/2. (E5)

We can compute the equilibrium occupations nk = 〈|ψk(0)|2〉
using the equipartition result

nk = T �

�k
. (E6)

In particular, we find the low-frequency transverse fluctua-
tions depend on the probe momentum q via

S⊥(q) = (2e)2
∫

p

2T 2�2
(
2νF ξ 2

c

)2
p2 sin2 θ

�p+q/2�p−q/2[�p+q/2 + �p−q/2]
, (E7)

where θ is the angle of the momentum p as referenced from
the external momentum q. Explicitly, we find the result (using
� = ν−1

F τ−1
GL )

S⊥
AL(q) = (2e)2 4T 2τGL

2π

∫ 2π

0

dθ

2π
sin2 θ

∫ ∞

0
du u3

× 1

[u2 + x2 + r][(x2 + u2 + r)2 − (2xu cos θ )2]
,

(E8)

with x = qξc/2 the unitless probe momentum in terms of the
microscopic coherence length.

We are confronted with the integral

I (a, b) =
∫ 2π

0

dθ

2π

sin2 θ

a2 − b2 cos2 θ
, (E9)

where a = √
x2 + u2 + r and b = 2xu. We note that a2 −

b2 cos2 θ ∈ [(x − u)2 + r, (x + u)2 + r] and therefore will be
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nonzero for r > 0. This can be evaluated using the residue theorem; the result is

I (a, b) = 1

b2

[
1 −

√
a2 − b2

a

]
. (E10)

We then arrive at

S⊥
AL(q) = (2e)2 T 2τGL

2πx2

∫ ∞

0
du u

(x2 + u2 + r) −
√

[(u + x)2 + r][(u − x)2 + r]

(u2 + x2 + r)2
. (E11)

The magnetic noise at a distance z is then given by

Nzz(q) =
∫

q
e−2zq(eμ0)2 T 2τGL

2πx2

∫ ∞

0
du u

(x2 + u2 + r) −
√

[(u + x)2 + r][(u − x)2 + r]

(u2 + x2 + r)2
. (E12)

It will be convenient to normalize this by an overall noise scale of

NAL
0 = (eμ0/π )2T 2

c τGL
1

ξ 2
c

. (E13)

This gives

Nzz(q)/NAL
0 = (1 + r)2

∫ ∞

0
dx e−4z/ξcx 1

x

∫ ∞

0
du u

(x2 + u2 + r) −
√

[(u + x)2 + r][(u − x)2 + r]

(u2 + x2 + r)2
, (E14)

where we have used the definitions that x = qξc/2 and r = T/TBCS − 1.

[1] N. D. Mermin and H. Wagner, Absence of ferromagnetism
or antiferromagnetism in one- or two-dimensional isotropic
Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).

[2] P. C. Hohenberg, Existence of long-range order in one and two
dimensions, Phys. Rev. 158, 383 (1967).

[3] S. Coleman, There are no goldstone bosons in two dimensions,
Commun. Math. Phys. 31, 259 (1973).

[4] V. Berezinskii, Destruction of long-range order in one-
dimensional and two-dimensional systems having a continuous
symmetry group I. Classical systems, Zh. Eksp. Teor. Fiz. 59,
907 (1971) [Sov. Phys. JETP 32, 493 (1971)].

[5] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and
phase transitions in two-dimensional systems, J. Phys. C: Solid
State Phys. 6, 1181 (1973).

[6] J. M. Kosterlitz, Kosterlitz–Thouless physics: A review of key
issues, Rep. Prog. Phys. 79, 026001 (2016).

[7] H.-J. Mikeska and H. Schmidt, Phase transition without long-
range order in two dimensions, J. Low Temp. Phys. 2, 371
(1970).

[8] D. R. Nelson and J. M. Kosterlitz, Universal jump in the super-
fluid density of two-dimensional superfluids, Phys. Rev. Lett.
39, 1201 (1977).

[9] J. M. Kosterlitz, The critical properties of the two-dimensional
xy model, J. Phys. C: Solid State Phys. 7, 1046 (1974).

[10] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and
J. Dalibard, Berezinskii–Kosterlitz–Thouless crossover in a
trapped atomic gas, Nature (London) 441, 1118 (2006).

[11] Z. Hadzibabic and J. Dalibard, BKT physics with two-
dimensional atomic gases, in 40 Years of Berezinskii-
Kosterlitz-Thouless Theory (World Scientific, Singapore, 2013),
p. 297323.

[12] M. R. Beasley, J. E. Mooij, and T. P. Orlando, Possibility of
vortex-antivortex pair dissociation in two-dimensional super-
conductors, Phys. Rev. Lett. 42, 1165 (1979).

[13] B. I. Halperin and D. R. Nelson, Resistive transition in super-
conducting films, J. Low Temp. Phys. 36, 599 (1979).

[14] S. Doniach and B. A. Huberman, Topological excitations in
two-dimensional superconductors, Phys. Rev. Lett. 42, 1169
(1979).

[15] J. Pearl, Current distribution in superconducting films carrying
quantized fluxoids, Appl. Phys. Lett. 5, 65 (1964).

[16] A. Weitzel, L. Pfaffinger, I. Maccari, K. Kronfeldner, T. Huber,
L. Fuchs, J. Mallord, S. Linzen, E. Ilichev, N. Paradiso et al.,
Sharpness of the Berezinskii-Kosterlitz-Thouless transition in
disordered NbN films, Phys. Rev. Lett. 131, 186002 (2023).

[17] B. J. Kim and P. Minnhagen, Flux-noise spectra around the
Kosterlitz-Thouless transition for two-dimensional supercon-
ductors, Phys. Rev. B 60, 6834 (1999).

[18] J. Houlrik, A. Jonsson, and P. Minnhagen, Flux noise and vortex
dissipation for two-dimensional superconductors, Phys. Rev. B
50, 3953 (1994).

[19] S. E. Korshunov, Fluctuation-dissipation theorem and flux noise
in overdamped Josephson-junction arrays, Phys. Rev. B 66,
104513 (2002).

[20] T. J. Shaw, M. J. Ferrari, L. L. Sohn, D.-H. Lee, M. Tinkham,
and J. Clarke, Dynamic scaling of magnetic flux noise near
the Kosterlitz-Thouless-Berezinskii transition in overdamped
Josephson junction arrays, Phys. Rev. Lett. 76, 2551 (1996).

[21] Ö. Festin, P. Svedlindh, B. J. Kim, P. Minnhagen, R. Chakalov,
and Z. Ivanov, Vortex fluctuations in high-Tc Films: Flux noise
spectrum and complex impedance, Phys. Rev. Lett. 83, 5567
(1999).

[22] M. Björnander, J. Magnusson, P. Svedlindh, P. Nordblad,
D. Norton, and F. Wellhofer, Frequency dependence of the
AC-sheet conductivity in thin YBa2Cu3O7−δ films, Phys. C
(Amsterdam) 272, 326 (1996).

[23] C. T. Rogers, K. E. Myers, J. N. Eckstein, and I. Bozovic,
Brownian motion of vortex-antivortex excitations in very

144518-19

https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1007/BF01646487
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0034-4885/79/2/026001
https://doi.org/10.1007/BF00652508
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1038/nature04851
https://doi.org/10.1103/PhysRevLett.42.1165
https://doi.org/10.1007/BF00116988
https://doi.org/10.1103/PhysRevLett.42.1169
https://doi.org/10.1063/1.1754056
https://doi.org/10.1103/PhysRevLett.131.186002
https://doi.org/10.1103/PhysRevB.60.6834
https://doi.org/10.1103/PhysRevB.50.3953
https://doi.org/10.1103/PhysRevB.66.104513
https://doi.org/10.1103/PhysRevLett.76.2551
https://doi.org/10.1103/PhysRevLett.83.5567
https://doi.org/10.1016/S0921-4534(96)00624-7


JONATHAN B. CURTIS et al. PHYSICAL REVIEW B 110, 144518 (2024)

thin films of Bi2Sr2CaCu2O8, Phys. Rev. Lett. 69, 160
(1992).

[24] M. Mondal, S. Kumar, M. Chand, A. Kamlapure, G. Saraswat,
G. Seibold, L. Benfatto, and P. Raychaudhuri, Role of the
vortex-core energy on the Berezinskii-Kosterlitz-Thouless tran-
sition in thin films of NbN, Phys. Rev. Lett. 107, 217003
(2011).

[25] L. Benfatto, C. Castellani, and T. Giamarchi, Doping depen-
dence of the vortex-core energy in bilayer films of cuprates,
Phys. Rev. B 77, 100506(r) (2008).

[26] L. Benfatto, C. Castellani, and T. Giamarchi, Broadening of the
Berezinskii-Kosterlitz-Thouless superconducting transition by
inhomogeneity and finite-size effects, Phys. Rev. B 80, 214506
(2009).

[27] P. Minnhagen, The two-dimensional Coulomb gas, vortex un-
binding, and superfluid-superconducting films, Rev. Mod. Phys.
59, 1001 (1987).

[28] A. Larkin and A. Varlamov, Theory of Fluctuations in Super-
conductors (Oxford University Press, Oxford, 2005).

[29] Y. Yu, L. Ma, P. Cai, R. Zhong, C. Ye, J. Shen, G. D. Gu,
X. H. Chen, and Y. Zhang, High-temperature superconductiv-
ity in monolayer Bi2Sr2CaCu2O8+δ , Nature (London) 575, 156
(2019).

[30] B. D. Faeth, S.-L. Yang, J. K. Kawasaki, J. N. Nelson,
P. Mishra, C. T. Parzyck, C. Li, D. G. Schlom, and
K. M. Shen, Incoherent cooper pairing and Pseudogap be-
havior in single-layer FeSe/SrTiO3, Phys. Rev. X 11, 021054
(2021).

[31] V. Fatemi, S. Wu, Y. Cao, L. Bretheau, Q. D. Gibson, K.
Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Elec-
trically tunable low-density superconductivity in a monolayer
topological insulator, Science 362, 926 (2018).

[32] E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S.
Luescher, X. Xu, J. A. Folk, and D. H. Cobden, Gate-induced
superconductivity in a monolayer topological insulator, Science
362, 922 (2018).

[33] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Tunable strongly coupled superconductivity in
magic-angle twisted trilayer graphene, Nature (London) 590,
249 (2021).

[34] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[35] H. Zhou, T. Xie, T. Taniguchi, K. Watanabe, and A. F. Young,
Superconductivity in rhombohedral trilayer graphene, Nature
(London) 598, 434 (2021).

[36] Y. Zhang, R. Polski, A. Thomson, É. Lantagne-Hurtubise, C.
Lewandowski, H. Zhou, K. Watanabe, T. Taniguchi, J. Alicea,
and S. Nadj-Perge, Enhanced superconductivity in spinor-
bit proximitized bilayer graphene, Nature (London) 613, 268
(2023).

[37] J. B. Curtis, N. R. Poniatowski, Y. Xie, A. Yacoby, E. Demler,
and P. Narang, Stabilizing fluctuating spin-triplet superconduc-
tivity in graphene via induced spin-orbit coupling, Phys. Rev.
Lett. 130, 196001 (2023).

[38] F. Casola, T. V. D. Sar, and A. Yacoby, Probing con-
densed matter physics with magnetometry based on nitrogen-
vacancy centres in diamond, Nat. Rev. Mater. 3, 17088
(2018).

[39] J. Rovny, S. Gopalakrishnan, A. C. B. Jayich, P. Maletinsky,
E. Demler, and N. P. de Leon, New opportunities in
condensed matter physics for nanoscale quantum sensors,
arXiv:2403.13710.

[40] C. Du, T. v. d. Sar, T. X. Zhou, P. Upadhyaya, F. Casola,
H. Zhang, M. C. Onbasli, C. A. Ross, R. L. Walsworth, Y.
Tserkovnyak, and A. Yacoby, Control and local measurement
of the spin chemical potential in a magnetic insulator, Science
357, 195 (2017).

[41] R. Xue, N. Maksimovic, P. E. Dolgirev, L.-Q. Xia, R. Kitagawa,
A. Müller, F. Machado, D. R. Klein, D. MacNeill, K. Watanabe,
T. Taniguchi, P. Jarillo-Herrero, M. D. Lukin, E. Demler,
and A. Yacoby, Signatures of magnon hydrodynamics in an
atomically-thin ferromagnet, arXiv:2403.01057.

[42] S. Kolkowitz, A. Safira, A. A. High, R. C. Devlin, S. Choi, Q. P.
Unterreithmeier, D. Patterson, A. S. Zibrov, V. E. Manucharyan,
H. Park, and M. D. Lukin, Probing Johnson noise and ballistic
transport in normal metals with a single-spin qubit, Science 347,
1129 (2015).

[43] T. I. Andersen, B. L. Dwyer, J. D. Sanchez-Yamagishi, J. F.
Rodriguez-Nieva, K. Agarwal, K. Watanabe, T. Taniguchi, E. A.
Demler, P. Kim, H. Park, and M. D. Lukin, Electron-phonon in-
stability in graphene revealed by global and local noise probes,
Science 364, 154 (2019).

[44] N. J. McLaughlin, C. Hu, M. Huang, S. Zhang, H. Lu, G. Q.
Yan, H. Wang, Y. Tserkovnyak, N. Ni, and C. R. Du, Quantum
imaging of magnetic phase transitions and spin fluctuations in
intrinsic magnetic topological nanoflakes, Nano Lett. 22, 5810
(2022).

[45] P. E. Dolgirev, S. Chatterjee, I. Esterlis, A. A. Zibrov,
M. D. Lukin, N. Y. Yao, and E. Demler, Characterizing
two-dimensional superconductivity via nanoscale noise mag-
netometry with single-spin qubits, Phys. Rev. B 105, 024507
(2022).

[46] S. Chatterjee, P. E. Dolgirev, I. Esterlis, A. A. Zibrov, M. D.
Lukin, N. Y. Yao, and E. Demler, Single-spin qubit magnetic
spectroscopy of two-dimensional superconductivity, Phys. Rev.
Res. 4, L012001 (2022).

[47] E. J. König, P. Coleman, and A. M. Tsvelik, Spin magnetom-
etry as a probe of stripe superconductivity in twisted bilayer
graphene, Phys. Rev. B 102, 104514 (2020).

[48] P. E. Dolgirev, I. Esterlis, A. A. Zibrov, M. D. Lukin, T.
Giamarchi, and E. Demler, Local noise spectroscopy of Wigner
crystals in two-dimensional materials, arXiv:2308.16243.

[49] J. F. Rodriguez-Nieva, K. Agarwal, T. Giamarchi, B. I.
Halperin, M. D. Lukin, and E. Demler, Probing one-
dimensional systems via noise magnetometry with single spin
qubits, Phys. Rev. B 98, 195433 (2018).

[50] K. Agarwal, R. Schmidt, B. Halperin, V. Oganesyan, G. Zaránd,
M. D. Lukin, and E. Demler, Magnetic noise spectroscopy
as a probe of local electronic correlations in two-dimensional
systems, Phys. Rev. B 95, 155107 (2017).

[51] F. Machado, E. A. Demler, N. Y. Yao, and S. Chatterjee, Quan-
tum noise spectroscopy of dynamical critical phenomena, Phys.
Rev. Lett. 131, 070801 (2023).

[52] S. Zhang and Y. Tserkovnyak, Flavors of magnetic noise in
quantum materials, Phys. Rev. B 106, L081122 (2022).

[53] S. Chatterjee, J. F. Rodriguez-Nieva, and E. Demler, Diagnos-
ing phases of magnetic insulators via noise magnetometry with
spin qubits, Phys. Rev. B 99, 104425 (2019).

144518-20

https://doi.org/10.1103/PhysRevLett.69.160
https://doi.org/10.1103/PhysRevLett.107.217003
https://doi.org/10.1103/PhysRevB.77.100506
https://doi.org/10.1103/PhysRevB.80.214506
https://doi.org/10.1103/RevModPhys.59.1001
https://doi.org/10.1038/s41586-019-1718-x
https://doi.org/10.1103/PhysRevX.11.021054
https://doi.org/10.1126/science.aar4642
https://doi.org/10.1126/science.aar4426
https://doi.org/10.1038/s41586-021-03192-0
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41586-021-03926-0
https://doi.org/10.1038/s41586-022-05446-x
https://doi.org/10.1103/PhysRevLett.130.196001
https://doi.org/10.1038/natrevmats.2017.88
https://arxiv.org/abs/2403.13710
https://doi.org/10.1126/science.aak9611
https://arxiv.org/abs/2403.01057
https://doi.org/10.1126/science.aaa4298
https://doi.org/10.1126/science.aaw2104
https://doi.org/10.1021/acs.nanolett.2c01390
https://doi.org/10.1103/PhysRevB.105.024507
https://doi.org/10.1103/PhysRevResearch.4.L012001
https://doi.org/10.1103/PhysRevB.102.104514
https://arxiv.org/abs/2308.16243
https://doi.org/10.1103/PhysRevB.98.195433
https://doi.org/10.1103/PhysRevB.95.155107
https://doi.org/10.1103/PhysRevLett.131.070801
https://doi.org/10.1103/PhysRevB.106.L081122
https://doi.org/10.1103/PhysRevB.99.104425


PROBING THE BEREZINSKII-KOSTERLITZ-THOULESS … PHYSICAL REVIEW B 110, 144518 (2024)

[54] J. Y. Khoo, F. Pientka, P. A. Lee, and I. S. Villadiego, Probing
the quantum noise of the spinon Fermi surface with NV centers,
Phys. Rev. B 106, 115108 (2022).

[55] X. Li, J. Marino, D. E. Chang, and B. Flebus, A solid-state plat-
form for cooperative quantum dynamics driven by correlated
emission, arXiv:2309.08991.

[56] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Vortices in high-temperature superconduc-
tors, Rev. Mod. Phys. 66, 1125 (1994).

[57] J. Bardeen and M. J. Stephen, Theory of the motion of vortices
in superconductors, Phys. Rev. 140, A1197 (1965).

[58] A. P. Young and T. Bohr, Crossover in the two-dimensional
Coulomb gas, J. Phys. C: Solid State Phys. 14, 2713 (1981).

[59] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,
Renormalization, vortices, and symmetry-breaking perturba-
tions in the two-dimensional planar model, Phys. Rev. B 16,
1217 (1977).

[60] V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia,
Dissipation in two-dimensional superfluids, Phys. Rev. Lett. 40,
783 (1978).

[61] V. Ambegaokar and S. Teitel, Dynamics of vortex pairs in
superfluid films, Phys. Rev. B 19, 1667 (1979).

[62] V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia,
Dynamics of superfluid films, Phys. Rev. B 21, 1806 (1980).

[63] R. Prozorov, R. W. Giannetta, A. Carrington, P. Fournier, R. L.
Greene, P. Guptasarma, D. G. Hinks, and A. R. Banks, Measure-
ments of the absolute value of the penetration depth in high-Tc

superconductors using a low-Tc superconductive coating, Appl.
Phys. Lett. 77, 4202 (2000).

[64] M. J. Naughton, R. C. Yu, P. K. Davies, J. E. Fischer, R. V.
Chamberlin, Z. Z. Wang, T. W. Jing, N. P. Ong, and P. M.
Chaikin, Orientational anisotropy of the upper critical field in
single-crystal YBa2Cu3O7 and Bi2.2CaSr1.9Cu2O8+x , Phys. Rev.
B 38, 9280 (1988).

[65] W. Zhao, C.-Z. Chang, X. Xi, K. F. Mak, and J. S. Moodera,
Vortex phase transitions in monolayer FeSe film on SrTiO3, 2D
Mater. 3, 024006 (2016).

[66] P. K. Biswas, Z. Salman, Q. Song, R. Peng, J. Zhang, L. Shu,
D. L. Feng, T. Prokscha, and E. Morenzoni, Direct evidence of
superconductivity and determination of the superfluid density
in buried ultrathin FeSe grown on SrTiO3, Phys. Rev. B 97,
174509 (2018).

[67] A. Jarjour, G. Ferguson, B. T. Schaefer, M. Lee, Y. L. Loh,
N. Trivedi, and K. C. Nowack, Superfluid response of an
atomically thin gate-tuned van der Waals superconductor, Nat.
Commun. 14, 2055 (2023).

[68] Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. Ye, Y.
Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima
et al., Superconductivity protected by spin–valley locking in
ion-gated MoS2, Nat. Phys. 12, 144 (2016).

[69] A. M. Clogston, Upper limit for the critical field in hard super-
conductors, Phys. Rev. Lett. 9, 266 (1962).

[70] B. S. Chandrasekhar, A note on the maximum critical field of
high-field superconductors, Appl. Phys. Lett. 1, 7 (1962).

[71] A. Weitzel, L. Pfaffinger, I. Maccari, K. Kronfeldner, T. Huber,
L. Fuchs, S. Linzen, E. Il’ichev, N. Paradiso, and C. Strunk,
Sharpness of the Berezinskii-Kosterlitz-Thouless transition in
ultrathin NbN films, arXiv:2303.10639.

[72] D. C. Mattis and J. Bardeen, Theory of the anomalous skin
effect in normal and superconducting metals, Phys. Rev. 111,
412 (1958).

[73] I. Maccari, L. Benfatto, and C. Castellani, Broadening of the
Berezinskii-Kosterlitz-Thouless transition by correlated disor-
der, Phys. Rev. B 96, 060508(R) (2017).

[74] C. Carbillet, S. Caprara, M. Grilli, C. Brun, T. Cren, F.
Debontridder, B. Vignolle, W. Tabis, D. Demaille, L. Largeau,
K. Ilin, M. Siegel, D. Roditchev, and B. Leridon, Confinement
of superconducting fluctuations due to emergent electronic in-
homogeneities, Phys. Rev. B 93, 144509 (2016).

[75] S. B. Chung and S. K. Kim, Berezinskii-Kosterlitz-Thouless
transition transport in spin-triplet superconductor, SciPost Phys.
Core 5, 003 (2022).

[76] A. Bedoya-Pinto, J.-R. Ji, A. K. Pandeya, P. Gargiani, M.
Valvidares, P. Sessi, J. M. Taylor, F. Radu, K. Chang, and S. S. P.
Parkin, Intrinsic 2D-XY ferromagnetism in a van der Waals
monolayer, Science 374, 616 (2021).

[77] J. Klein, T. Pham, J. D. Thomsen, J. B. Curtis, M. Lorke,
M. Florian, A. Steinhoff, R. A. Wiscons, J. Luxa, Z. Sofer,
F. Jahnke, P. Narang, and F. M. Ross, Atomistic spin textures
on-demand in the van der Waals layered magnet CrSBr, Nat.
Commun. 13, 5420 (2022).

[78] J. Klein, Z. Song, B. Pingault, F. Dirnberger, H. Chi, J. B.
Curtis, R. Dana, R. Bushati, J. Quan, L. Dekanovsky, Z. Sofer,
A. Alù, V. M. Menon, J. S. Moodera, M. Lonar, P. Narang, and
F. M. Ross, Sensing the local magnetic environment through
optically active defects in a layered magnetic semiconductor,
ACS Nano 17, 288 (2023).

[79] J. Klein, B. Pingault, M. Florian, M.-C. Heißenbüttel, A.
Steinhoff, Z. Song, K. Torres, F. Dirnberger, J. B. Curtis, T.
Deilmann, R. Dana, R. Bushati, J. Quan, J. Luxa, Z. Sofer, A.
Alù, V. M. Menon, U. Wurstbauer, M. Rohlfing, P. Narang et al.,
The bulk van der Waals layered magnet CrSBr is a quasi-1D
quantum material, arXiv:2205.13456.

[80] M. Augustin, S. Jenkins, R. F. L. Evans, K. S. Novoselov, and
E. J. G. Santos, Properties and dynamics of meron topolog-
ical spin textures in the two-dimensional magnet CrCl3, Nat.
Commun. 12, 185 (2021).

[81] X. Lu, R. Fei, L. Zhu, and L. Yang, Meron-like topological spin
defects in monolayer CrCl3, Nat. Commun. 11, 4724 (2020).

[82] C. S. Zhu, B. Lei, Z. L. Sun, J. H. Cui, M. Z. Shi, W. Z.
Zhuo, X. G. Luo, and X. H. Chen, Evolution of transport
properties in FeSe thin flakes with thickness approaching the
two-dimensional limit, Phys. Rev. B 104, 024509 (2021).

[83] M. P. A. Fisher, Quantum phase transitions in disordered two-
dimensional superconductors, Phys. Rev. Lett. 65, 923 (1990).

[84] R. Fazio and H. V. D. Zant, Quantum phase transitions and
vortex dynamics in superconducting networks, Phys. Rep. 355,
235 (2001).

144518-21

https://doi.org/10.1103/PhysRevB.106.115108
https://arxiv.org/abs/2309.08991
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/PhysRev.140.A1197
https://doi.org/10.1088/0022-3719/14/20/010
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1103/PhysRevLett.40.783
https://doi.org/10.1103/PhysRevB.19.1667
https://doi.org/10.1103/PhysRevB.21.1806
https://doi.org/10.1063/1.1328362
https://doi.org/10.1103/PhysRevB.38.9280
https://doi.org/10.1088/2053-1583/3/2/024006
https://doi.org/10.1103/PhysRevB.97.174509
https://doi.org/10.1038/s41467-023-37210-8
https://doi.org/10.1038/nphys3580
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1063/1.1777362
https://arxiv.org/abs/2303.10639
https://doi.org/10.1103/PhysRev.111.412
https://doi.org/10.1103/PhysRevB.96.060508
https://doi.org/10.1103/PhysRevB.93.144509
https://doi.org/10.21468/SciPostPhysCore.5.1.003
https://doi.org/10.1126/science.abd5146
https://doi.org/10.1038/s41467-022-32737-8
https://doi.org/10.1021/acsnano.2c07655
https://arxiv.org/abs/2205.13456
https://doi.org/10.1038/s41467-020-20497-2
https://doi.org/10.1038/s41467-020-18573-8
https://doi.org/10.1103/PhysRevB.104.024509
https://doi.org/10.1103/PhysRevLett.65.923
https://doi.org/10.1016/S0370-1573(01)00022-9

