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Emergent strongly-correlated electronic phe-
nomena in atomically-thin transition metal
dichalcogenides are an exciting frontier in con-
densed matter physics, with examples ranging
from bilayer superconductivity [1] and electronic
Wigner crystals [2, 3] to the ongoing quest for
exciton condensation [4–6]. Here, we experimen-
tally investigate the properties of indirect exci-
tons in naturally-grown MoS2-homobilayer, inte-
grated in a dual-gate device structure allowing
independent control of the electron density and
out-of-plane electric field. Under conditions when
electron tunneling between the layers is negligi-
ble [7], upon electron doping the sample, we ob-
serve that the two excitons with opposing dipoles
hybridize, displaying unusual behavior distinct
from both conventional level crossing and anti-
crossing. We show that these observations can
be explained by static random coupling between
the excitons, which increases with electron den-
sity and decreases with temperature. We argue
that this phenomenon is indicative of a spatially
fluctuating order parameter in the form of inter-
layer electron coherence, a theoretically predicted
many-body state [8] that has yet to be unambigu-
ously established experimentally outside of the
quantum Hall regime [6, 9–14]. Implications of
our findings for future experiments and quantum
optics applications are discussed.

Transition metal dichalcogenides (TMDs) are direct-
gap semiconductors, which can host optically bright
excitons corresponding to Coulomb-bound electron-hole
pairs. Due to the two-dimensional (2D) nature of TMDs,
along with the large effective masses of electrons and
holes and small dielectric permittivity of the surround-
ing medium, excitons are tightly confined, with the Bohr
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radius substantially smaller than the typical separation
between doped charges [15]. These features make exci-
tons in TMDs a promising tool for optical probing of
many-body electron correlations. In particular, under-
standing the exciton fine structure of a doped sample has
proven pivotal for a number of recent discoveries. Exam-
ples range from investigating polaronic dressing effects,
which manifest through exciton line splitting into attrac-
tive and repulsive branches [16], to probing correlated
many-body phases using excited-state spectroscopy [17],
to observing electron crystalline states via umklapp scat-
tering [2], and to studying the rich magnetic properties of
TMDs [18–20]. While most of the prior studies focused
on intralayer excitons, where both the exciton electron
and hole reside in the same TMD layer, bilayer TMDs
can host interlayer excitons (Fig. 1A,B), where the elec-
tron and hole are separated across the two layers [21].
However, interlayer excitons typically have weak opti-
cal transition dipole moments, posing challenges for opti-
cal measurements. In materials like MoS2-homobilayers,
intra- and interlayer excitons strongly hybridize [22–24],
making interlayer excitons optically bright and enabling
their use for optical probing of electronic correlations.

Here, we experimentally investigate the properties of
indirect excitons in naturally-grown MoS2-homobilayer,
integrated into a dual-gate device structure (Fig. 1A)
whereby the top and bottom gate voltages, VTG and
VBG, are simultaneously used to independently control
the out-of-plane electric field Ez and the electron den-
sity n in the sample (see Methods). The interlayer ex-
citons (IXs) have large permanent electric dipole mo-
ments ±dz (Fig. 1A), which make them highly sensitive
to Ez. This can be studied by measuring reflectance con-
trast spectra (R − R0)/R0 = ∆R/R0 using a weak, in-
coherent white light source, where R is the reflectance
obtained on the bilayer MoS2 flake and R0 is the ref-
erence spectrum at a high doping level (see Methods).
Figure 1C shows the undoped case (n = 0), illustrating
the DC Stark effect, where the two interlayer excitons
with opposite dipoles shift linearly with Ez and cross
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FIG. 1. DC Stark effect of interlayer excitons (IXs). A Schematic of a dual-gated 2H-stacked MoS2-homobilayer encapsulated
with hexagonal boron nitride (hBN). Tuning of the top and bottom gates, composed of a few layers of graphene (FLG), allows
for independent control of the total electron density n and out-of-plane electric field Ez. Interlayer excitons, highly sensitive to
Ez due to their large dipole moments, are also depicted. B Schematic electronic bandstructure near the K- (top) and K′-valleys
(bottom) showing the relevant excitonic levels, electron spin, and corresponding azimuthal quantum numbers (AQNs) of the
electronic bands, which determine optical selection rules. C In the undoped case n = 0, the energies of interlayer excitons shift
linearly with Ez, as can be seen in the simple crossing of exciton branches in the measured reflectance map ∆R/R0 at T = 8K.
D The system exhibits two well-separated branches at a finite Ez ̸= 0, becoming degenerate at Ez = 0, with doubled oscillator
strength. E DC Stark effect for the doped sample with n ≈ 1.3× 1012 cm−2, showing that the simple crossing in C turns into
a stochastic avoided crossing (Fig. 2). F Linecut at VTG = 0.50V, corresponding to Ez = 0, displays a broad feature with
reduced relative amplitude compared to the undoped case in D.

at Ez = 0 (VTG ≈ −0.48V). The degeneracy point
Ez = 0 is characterized by the amplitude doubling in
the reflectance contrast spectrum of interlayer excitons,
Fig. 1D (blue curve). Surprisingly, when the sample is
doped (n ≈ 1.3 × 1012 cm−2, as extracted from simu-
lations based on a simple capacitance model in Sec. I in
SI), the simple crossing in Fig. 1C turns into an elongated
shape shown in Fig. 1E. This effect is highly reproducible
across different collection light spots within the same
sample, as well as in other similar devices (Sec. II in SI).
The putative degeneracy point Ez = 0 (VTG ≈ 0.50V),
no longer exhibits the amplitude doubling (Fig. 1F). In-
stead, we observe a broadened feature with the overall
amplitude roughly the same as that of individual inter-
layer excitons.

To understand these observations, we consider a simple
model of two coupled harmonic oscillators describing the
excitonic polarization response to the probe electric field

E(t):
iℏ∂tXT = ωTXT − iγTXT +WXB − dTE(t), (1)

and a similar equation holds for XB. Here, the vari-
able XT/B represents the polarization oscillations as-
sociated with the interlayer exciton IXT/B (Fig. 1B),
with the subscript referring to the layer of the electron;
ωT/B = ±dzEz is the energy relative to the degeneracy
point Ez = 0; γT/B is the total respective exciton decay
rate; dT/B refers to the corresponding transition dipole
moment; and W is the coupling strength between the two
interlayer excitons, which we introduced for reasons that
will become clear shortly. Figure 2A depicts a simulated
absorption map Im[χ(ω)], where χ(ω) is the polariza-
tion response function of the sample (Sec. VI in SI). This
simulation corresponds to a simple crossing with W = 0
and closely resembles the measured signal for n = 0 in
Fig. 1C. For W ≠ 0, an avoided crossing occurs, charac-
terized by an asymmetry in intensities between the up-
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FIG. 2. Stochastic interlayer exciton hybridization. Simulated absorption map exhibits a simple crossing A as in Fig. 1C
when the two excitons are uncoupled (W0 = 0, σ = 0 in Eq. (2)), an avoided crossing B with asymmetry in the intensities
of the two branches when the excitons are hybridized (W0 = −20meV, σ = 0), and a stochastic crossing C reminiscent of
Fig. 1E when the exciton coupling has a static, random character (W0 = 0, σ = 20meV). D The measured reflectance contrast
spectra are analyzed using a few parameter-fit based on the model of stochastic coupling in Eq. (2); shown are two linecuts at
n ≈ 1.2× 1012 cm−2 corresponding to zero (blue curve) and nonzero electric fields (red curve), respectively. Such a fit (dashed
lines) quantitatively captures both the linear Stark effect as well as the stochasticity of the interlayer exciton hybridization.
Here, Rbkg is the fitted reflectance encoding background effects, while Rno−TMD is the measured reflectance at an optical spot
away from the bilayer (Sec. VIII in SI). E,F Evolution of W0 and σ with the electron density n at T ≈ 8 K (E) and temperature
T at n ≈ 1.3 × 1012 cm−2 (F). We find that both |W0| and σ increase (decrease) with increasing n (T ), indicating a stronger
hybridization between excitons at higher electron densities and lower temperatures. Dashed lines in E,F represent mean-field
trends for the stochastic variance σ (Sec. IX in SI).

per and lower exciton branches (Fig. 2B) – this effect
is attributed to constructive/destructive interference in
the photon emission process of the corresponding exci-
ton branches (Sec. VII in SI).

While we observe a slight asymmetry in intensities in
Fig. 1E, the overall elongated shape at high doping is
clearly not captured by either conventional level crossing
(Fig. 2A) or anti-crossing (Fig. 2B). Instead, we find that
the experimental data are well represented by a model
that incorporates ensemble averaging over the coupling
W, treated as a random, static variable distributed as:

⟨W⟩ = W0, δW = (W −W0) ∈ [−σ, σ]. (2)

Here, W0 is the mean coupling strength, while σ en-
codes the variance. The corresponding simulated absorp-
tion map (Sec. VI in SI), shown in Fig. 2C, qualitatively
agrees with Fig. 1E, capturing two distinctive features:
(i) a near equal intensity distribution between the upper
and lower interlayer exciton branches and (ii) a plateau-
like flattening of the signal along Ez = 0. For this reason,

the elongated shape in Fig. 1E is further referred to as
stochastic anti-crossing. We emphasize the importance
of the static character of the random coupling W. If W
were instead a time-dependent Markovian variable, its ef-
fects would be fully accounted for through a modification
of the decay rates γT and γB (Sec. VI in SI).

Using the model in Eqs. (1) and (2), we analyze the
experimental data obtained under a variety of different
conditions including different temperatures and dopings.
Specifically, we simultaneously fit the full reflectance
maps (Fig. 1E) with a few-parameter model (Sec. VIII in
SI), which incorporates substrate reflectance effects and
characterizes the interlayer excitons via six parameters:
W0, σ, γ = γT = γB, d = dT = dB, dz, and ω0, which is
the bare interlayer exciton energy at Ez = 0. The den-
sity and temperature behavior obtained from this analy-
sis, shown in Fig. 2E,F, reveals that the static stochastic
variance σ increases with increasing n and decreases with
increasing T . The data also point at the development of a
nonzero mean coupling W0 ̸= 0 (Sec. VII in SI), which is
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FIG. 3. Magnetic field and polarization-resolved properties.
A,B Electric-field sweeps at n ≈ 1.4 × 1012 cm−2 illustrate
the similar appearance of the stochastic anti-crossing for both
light polarizations and for both Bz = 0T A and Bz = 9T B.
At Bz = 9T, the σ+-measurements reveal a small intensity
asymmetry between the lower and upper exciton branches,
suggesting a slight development of W0 for this light polar-
ization. C At Bz = 9T and n ≈ 1.4 × 1012 cm−2 (white
dashed lines), conduction band electrons are expected to be
fully spin-polarized. This is supported by density sweeps at
Ez = 0 of the A-exciton, where the onset of the attractive po-
laron branch for σ−-polarized light (primarily probing spin-↑
electrons) is delayed compared to the σ+-polarized one (essen-
tially sensitive to spin-↓ electrons) – these onsets are indicated
with green dashed lines.

consistently found to be relatively small |W0| ≪ σ. The
mean coupling W0 roughly follows the trend of σ, but for
n ≈ 1.3× 1012 cm−2 vanishes at around T ≈ 40K, while
σ persists up to about T ≈ 75K (Sec. IV in SI).

To gain further insights into the nature of this exci-
ton hybridization, we examine both the valley and spin
structure of indirect excitons, illustrated in Fig. 1B. With

two inequivalent valleys, associated with the K- and K ′-
points of the hexagonal Brillouin zone (BZ), there are
four relevant, optically bright interlayer excitons in to-
tal: two excitons with opposite out-of-plane dipoles per
valley. The 2H-stacked MoS2-homobilayer exhibits C3-
rotational symmetry, assigning azimuthal quantum num-
bers (AQNs) to each of its electronic bands (Fig. 1B).
The AQNs of the valence bands are zero, allowing holes
to tunnel between layers. Conversely, the AQNs of the
conduction bands in the same valley are opposite, which
is the fundamental reason that prevents electron tunnel-
ing [7, 22, 25] and, thus, naively should prevent interlayer
exciton hybridization. The AQNs also dictate the optical
selection rules for excitons [22, 26, 27]: an electron with
AQN +1 (−1) corresponds to an exciton coupling to σ+-
(σ−-) polarized light.

One notable feature of MoS2-homobilayers is their
small conduction-band spin-orbit splitting of a few meV,
which could result in spin polarization, though not nec-
essarily valley polarization, of conduction-band electrons
via an out-of-plane magnetic field Bz. This expecta-
tion is corroborated by our measurements of polarization-
resolved reflection contrast spectra of the intralayer A-
exciton at Bz = 9T, Ez = 0, and varying n (Fig. 3C).
We observe that the attractive polaron (AP) branch for
σ−-polarized light, predominantly sensing spin-↑ elec-
trons, emerges at a higher doping level compared to the
σ+-polarized one, which primarily probes spin-↓ elec-
trons [18]. As a result, for electron densities in the asym-
metry region between the two AP onsets (green dashed
lines in Fig. 3C), conduction band electrons become fully
spin-polarized. Additionally, previous magnetism studies
on monolayer MoS2 [18] suggest that these spin-polarized
electrons remain valley-depolarized. For one such repre-
sentative density n ≈ 1.4×1012 cm−2 (white dashed lines
in Fig. 3C), we find that the stochastic anti-crossing is
robustly present for both light polarizations and for both
Bz = 0 (Fig. 3A) and Bz = 9T (Fig. 3B). Within the er-
ror margin of our analysis (Sec. VIII in SI), the stochastic
variance σ is found to be around 15meV across all four
panels in Fig. 3A,B, while the mean couplingW0 is nearly
zero throughout. A slight departure from this trend is
that W0 develops by at most −2meV for σ+-polarized
light at Bz = 9T, as evidenced by a small intensity asym-
metry between the upper and lower exciton branches in
the right panel of Fig. 3B. The persistent presence of a
large σ nearly independent of Bz indicates that the in-
terlayer exciton hybridization is predominantly agnostic
to the electron spin.

We now turn to the theoretical interpretation of our
observations. The stochastic anti-crossing in Fig. 1E
can be attributed to intravalley and/or intervalley inter-
layer exciton hybridization. The modest asymmetry in
the lower and upper branches (associated with a small
nonzero mean coupling W0 ̸= 0 in the model given by
Eqs. (1) and (2)) is likely due to the intervalley scenario,
as interlayer excitons within any of the two valleys have
opposite AQNs and the optical interference effects that
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give rise to W0 ̸= 0 are suppressed for excitons with
opposite polarizations (Sec. VII in SI). In contrast, the
stochastic variance σ ̸= 0 is compatible with both sce-
narios (Sec. VII in SI), suggesting that both types of
hybridization can play a role.

Hybridization between intervalley interlayer excitons
with opposing dipoles is allowed from a symmetry per-
spective, as these excitons, such as IXT,K′ and IXB,K

(depicted in red in Fig. 1B), have the same AQNs. Even
without electron doping the sample, these could hybridize
with each other via direct Coulomb interactions: either
via exciton exchange [28, 29], expected to be weak be-
cause of the reduced transition dipole moment of inter-
layer excitons compared to intralayer ones, or a process
involving the scattering of both the IXT,K′ -exciton elec-
tron and hole across the TMD BZ, which is suppressed
because it occurs at a large momentum K −K ′ and in-
volves electron and hole layer switching (Sec. X in SI).
Thus, such direct coupling is expected to be weak, con-
sistent with |W0| ≲ 2meV for n = 0 (Fig. 2E). Dop-
ing the sample could enhance such hybridization mech-
anisms via simple effects such as polaronic dressing or
Fermi sea fluctuations, possibly explaining the emergence
of nonzero mean coupling W0 ̸= 0 and the density trend
in Fig. 2E (such dynamical electron-enhanced exciton hy-
bridization is still expected to be suppressed, consistent
with our measurements in Fig. 2E,F, as further discussed
in Sec. X in SI). The intensity asymmetry in the right
panel of Fig. 3B could arise from the presence of doped
electrons indistinguishable from the corresponding exci-
ton electron. Increasing temperature weakens polaronic
dressing effects [30] and increases exciton scattering off
phonons [31], which reduces exciton wave-function over-
laps. Both effects may contribute to explaining decreas-
ing |W0| with increasing T as observed in Fig. 2F.

At the same time, the emergence of the stochastic vari-
ance σ involves quasi-static processes, which are beyond
the simple dynamical processes mentioned previously, es-
pecially given the large values of σ in Fig. 2E,F. More-
over, the effects of quenched disorder or charge traps
should be mitigated via electron screening, particularly
because strongly-interacting regimes in TMDs can be
achieved at significantly higher electron densities than
in conventional semiconductors [2, 3, 20]. Experimen-
tally, we observed σ increases as n increases, which in-
validates disorder-induced scenarios. Instead, σ could
originate from a correlated many-body state that devel-
ops an order parameter ∆, in which case the observed
stochastic behavior is attributed to quasi-static spatial
fluctuations of this order parameter (Fig. 4C). In par-
ticular, one potential candidate is interlayer electron co-
herence, corresponding to an exchange instability akin to
the typical emergence of ferromagnetism. This correlated
state has been proposed theoretically [8] and experimen-
tally established in quantum Hall bilayers [6, 9–14, 32],
where the strong magnetic field quenches the electron
kinetic energy and, thus, favors an ordered phase, but
it has not yet been conclusively observed at Bz = 0.

Such a state requires (i) strong Coulomb interactions
1 ≪ rs ≡ m∗e2/(4πε0εℏ2

√
πn) (m∗ and ε are the effec-

tive electron mass and permittivity of the surrounding
medium, respectively), (ii) the absence of electron tun-
neling, and (iii) a small interlayer separation lkF ≪ 1 (kF
is the Fermi momentum and l ≃ 0.6 nm is the interlayer
separation).
Our experimental conditions in the studied MoS2-

homobilayer naturally fulfill these stringent prerequisites.
First, the large effective mass m∗ ≈ 0.7me and the small
permittivity of hBN, ε ≈ 3.76 [33], result in rs ≃ 20 for
n = 1× 1012 cm−2 and rs ≃ 11.5 for n = 3× 1012 cm−2.
Second, due to the intravalley conduction-band AQNs
mismatch in Fig. 1B and as experimentally confirmed
in Ref. [7], electron tunneling between the layers is in-
trinsically absent. Third, we estimate lkF ≃ 0.2 for n =
3×1012 cm−2. Finally, by studying samples with varying
hBN thickness to modulate the strength of Coulomb in-
teractions, we confirm the Coulomb origin of the studied
phenomenon (Sec. III in SI).

The putative emergence of interlayer electron coher-
ence may manifest as the stochastic anti-crossing via
a Coulomb-mediated mechanism in Fig. 4B, consistent
with and potentially explaining our observations. In con-
ventional semiconductor double quantum wells, the order
parameter is associated with the spontaneous breaking
of U(1) symmetry, corresponding to in-plane rotations
of the layer pseudospin – the up and down directions
of the pseudospin represent the top and bottom layers,
respectively (for simplicity, we omit discussion of elec-
tron spin). In MoS2-homobilayers, the presence of two
valleys enriches this symmetry to U(1)×SU(2), where
the SU(2) part is related to valley pseudospin rotations
(Sec. X in SI discusses the approximate nature of this
U(1)×SU(2) symmetry in TMDs). This enlarged sym-
metry places intervalley (Fig. 4A, top) and intravalley
(Fig. 4A, bottom) correlations on equal footing (Sec. IX
in SI). The significance of intravalley correlations, such as

|∆|eiφ ∼ ⟨e†TeB⟩ ≠ 0 (Fig. 4A, bottom), where eB and e†T
are the K-valley electron annihilation and creation oper-
ators, respectively, is that they lead to strong Coulomb-
mediated electron tunneling-like processes [10, 34–38]
(Sec. IX in SI). In momentum space, these can be ex-
pressed as (we write only the processes in the K-valley):

−
∑

k

tkê
†
B,K(k)êT,K(k) + h.c., (3)

where the coupling constant tk, which provides an effec-
tive tunneling-like rate, is determined by both the or-
der parameter amplitude |∆(r)| and phase φ(r). As-
suming perfect Hartree-Fock correlations [8] and taking
into account the angstrom-scale interlayer separation be-
tween the TMD layers, we estimate tk ≃ 100meV for
n = 2 × 1012 cm−2 (Sec. IX in SI). While this estimate
is crude, it underscores the significance of the proposed
processes.

This electron tunneling-like process gives rise to a
hybridization of, for example, IXT- and AB-excitons
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FIG. 4. Coulomb-mediated mechanism of interlayer exciton hybridization. A The electronic many-body state can exhibit
interlayer electron coherence with intervalley (top) or intravalley correlations (bottom). B Intravalley coherence leads to an
effective order-parameter-induced electron tunneling-like process (left), resulting in hybridization between IXT- and AB-excitons
(shown is the K-valley). The AB-exciton couples to the IXB-state via exciton exchange (middle) followed by hole tunneling
(right), thereby hybridizing the two interlayer excitons.

(Fig. 4B, left), with the corresponding coupling esti-
mated to be of the order tIXT↔AB

≃ 85meV for n =
2×1012 cm−2 (Sec. IX in SI). The AB-exciton is, in turn,
coupled to the IXB-state via a two-step process shown
in the middle and right panels of Fig. 4B, involving ex-
citon exchange [39] (middle panel) followed by hole tun-
neling [22, 23] (right panel). This AB-IXB coupling is
already established experimentally [40], and its strength
is estimated to be about tAB↔IXB ≃ 4meV. Combined,
the processes in Fig. 4B result in the hybridization of the
two interlayer excitons IXT and IXB, with the coupling
strength being of the order of 5meV for n = 2×1012 cm−2

(Sec. IX in SI). Although the above analysis relies on two
simplifying assumptions – perfect Hartree-Fock correla-
tions and a perturbative approach to relating the elec-
tronic order parameter to interlayer exciton hybridiza-
tion – the estimated number is comparable to the mea-
sured values in Fig. 2E. Finally, the exciton exchange
step in the middle panel of Fig. 4B involves flipping both
exciton electron and hole spins, indicating that the pro-
posed mechanism is relevant even when conduction-band
electrons are spin-polarized by a magnetic field (Fig. 3),
provided the system remains valley-depolarized [18].

The corresponding interlayer exciton hybridization
δW(r) is determined by the interlayer electron coherence
|∆(r)|eiφ(r) and thus inherits its spatial inhomogeneities
arising from statistical fluctuations of the order param-
eter phase φ(r). Typically, these fluctuations take the
form of vortices; however, in TMDs with the enlarged
U(1)×SU(2) symmetry, other meron-like topological de-
fects might be essential [41]. In our experiment, the cou-
pling δW(r) is spatially averaged over the optical spot
size of about 0.5µm. This size is expected to be much
larger than the phase coherence length (at low tempera-
tures, it is on the order of the correlation length of the
disorder potential [42], which we expect to be at most a
few hundred nm). As a result, upon spatial averaging,
the order parameter induced contribution to the inter-

layer exciton hybridization vanishes ⟨δW(r)⟩ = 0 (see
also Sec. V in SI, where we experimentally explore opti-
cal size effects and argue against the phase coherence as
the origin of the mean coupling W0 in Eq. (2)). Never-
theless, an appreciable stochastic variance σ in Eq. (2)
can develop since it is essentially determined by the or-
der parameter amplitude |∆(r)|. The observed behavior
in Fig. 2E,F for σ is consistent with the development of
the amplitude |∆| as electron density n increases within
the range accessible in our experiment, and its gradual
suppression with increasing temperature T until even-
tual melting – both these trends are well-captured by
the mean-field analysis, as indicated by the dashed lines
in Fig. 2E,F (Sec. IX in SI).

Our observations open up exciting opportunities for
exploring strongly-correlated many-body phenomena in
bilayer systems, particularly in understanding magnetic
exchange instabilities – one of the important challenges
in modern condensed matter physics. Experimentally,
the challenge lies in controllably entering and probing
a strongly-interacting regime, while theoretically, the
phase diagram for rs ≃ 10 − 20 (as in our experiment),
where the electronic system is between a simple Fermi
liquid and crystalline states [3, 20], is not yet fully under-
stood, with only limited Monte Carlo data. In this con-
text, MoS2-homobilayers offer a key advantage as we can
naturally access this strongly-interacting regime, while
interlayer excitons represent a unique optical probe of
pseudospin correlations.

Our observations have close connections with several
fundamental many-body phenomena. First, the proposed
interlayer electron coherence is closely related to inter-
layer exciton condensates [4–6] and, thus, is expected
to exhibit superfluid and counterflow responses [10–
13, 36, 43–46]. In this context, our observation in Fig. 2F
suggests the possibility of superfluidity at temperatures
as high as 75K, even without an applied magnetic field.
Second, while our study reaches a maximum electron den-
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sity n of about 3×1012 cm−2, further increase in n should
eventually melt the electron coherence [8], an expectation
supported by the absence of electron tunneling observed
at rs ≃ 3 [7]. At densities about an order of magnitude
larger than those in our experiment, bilayer superconduc-
tivity is expected to emerge [1]. Third, a small twist be-
tween the TMD layers breaks the C3-rotational symmetry
and gives rise to a small direct electron tunneling. This
tunneling is expected to stabilize the order parameter
phase coherence and lead to more coherent rather than
stochastic hybridization between interlayer excitons. In
addition, the application of an in-plane magnetic field
might enable the exploration of the Pokrovsky-Talapov
phase transition [47] (Sec. X in SI discusses that even
without twisting, electron pair tunneling events can oc-
cur but their role is yet to be fully understood). Fourth,
the TMD valley degree of freedom is expected to enrich
the phase diagram compared to conventional semicon-
ductors, as the order parameter is likely to have multiple
components (Fig. 4A and Sec. IX in SI) – understanding
the structure of spatial order parameter inhomogeneities
and their interplay with disorder warrants further theo-
retical investigation.

Finally, another exciting avenue for future research
is to explore the coherence properties of strongly-
interacting indirect excitons. Our work demonstrates
that these can be substantially influenced by tuning the
many-body electron system, potentially enabling novel
quantum optics applications. We envision that, similar
to the interlayer exciton coupling observed here, electron
doping of MoS2-trilayers might lead to the hybridiza-
tion of quadrupolar excitons [23, 48], which could have
promising applications for sensing in the terahertz do-
main and quantum information processing [49].

METHODS

Device fabrication—2H-stacked bilayer MoS2, hBN,
and few-layer-graphite were exfoliated from bulk crys-
tals onto silicon substrates with a 285 nm silicon ox-
ide layer. Bilayer MoS2 flakes were identified accord-
ing to the reflectance contrast under an optical micro-
scope. The thickness of the hBN flakes was measured
by an atomic force microscope. Four graphite/hBN/BL
MoS2/hBN/graphite heterostructures were fabricated
using the dry transfer method [50], where electrical con-
tacts were made to the MoS2 and the graphite gates us-
ing 10 nm Cr and 100 nm Au deposited via electron beam
evaporation. Data from device 1, with top/bottom hBN
thicknesses of 19 nm/24 nm, are presented in the main
text. Devices 2 and 3 are fabricated with top/bottom
hBN thicknesses of 36 nm/38 nm and 32 nm/16 nm, re-
spectively. Device 4 uses thin hBN layers as gate di-

electrics, where the top/bottom hBN is 5.4 nm/6.3 nm
thick.

Optical spectroscopy—Polarization-resolved measure-
ments were conducted in a Bluefors dilution refrigera-
tor. All other optical measurements were carried out in
a Montana Instruments cryostat (base temperature T =
8K), using a custom-built 4f confocal setup with a Zeiss
(100x, NA = 0.75, WD = 4mm) objective. Reflectance
spectra were measured using a halogen source (Thorlabs
SLS201L) and a spectrometer (Acton SpectroPro 2300i).
Electrostatic gating was performed with Keithley 2400
sourcemeters.
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I. DEVICE ELECTROSTATICS

A. Dual-gated voltage scan

Doping the sample modifies the A-exciton lineshape, splitting its resonance into attractive and repulsive polaron
branches. By keeping track of the A-exciton, we, therefore, can decipher electrostatic and doping properties of the
MoS2-homobilayer.

A representative differential reflectivity spectrum is shown in Fig. S1A, where we identify the A-, IX-, and B-
excitons. We represent the oscillator strength of the A-exciton as the integrated area under the positive part of the
respective Fano-resonance peak (shaded grey; red dashed lines denote the boundaries of the integrated energy range).
Integrating over the area at each (VTG, VBG)-pair and normalizing by the maximum integrated area, we obtain the
2D map in Fig. S1B. The brighter/darker region represents a higher/lower A-exciton oscillator strength and, thus,
a lower/higher doping level. Due to the Fermi-level pinning to the MoS2 conduction band, only electron doping is
achievable in our applied gate-voltage range [1–4]. The direction of the electric-field sweeps described in the main
text is illustrated in the 2D map as the white dashed line. The black dashed line is the predicted Ez = 0 line from
our electrostatic simulations in Sec. I B below. While our simulations might not be quantitatively accurate due to
simplified assumptions about the real system, the electric-field sweeps conducted in the main text always cross the
Ez = 0 line. Since we have not observed degeneracy of IXT- and IXB-excitons at any gate voltage along such sweeps
and for a finite density n ̸= 0, we conclude that these excitons become non-degenerate at Ez = 0 when the sample is
doped.

B. Electrostatic model

We model the electrostatic properties of the sample as follows. Simple capacitance equations – relating the elec-
tric potentials at the top gate VTG, bottom gate VBG, top TMD layer ϕtop, and bottom TMD layer ϕbot to the

FIG. S1. Dual-gated voltage sweep. A Representative differential reflectivity spectrum ∆R/R0 of the MoS2-homobilayer. The
A-exciton oscillator strength is represented by integrating the area under the positive part of the A-exciton Fano-resonance,
indicated by the grey shaded area. B Dual-gated voltage map of the extracted A-exciton oscillator strength. Both MoS2 layers
are intrinsic (i,i) in the yellow region and electron-doped (n,n) in the blue region. (i,n) and (n,i) label the purple regions where
one layer is intrinsic while the other is doped. The black dashed line denotes the simulated Ez = 0 line. C Dual-gated voltage
map of the simulated electric field Ez. The white dashed line in B and the grey dashed line in C encode the direction of the
electric-field sweeps performed in the main text.



3

FIG. S2. Sweep along the Ez = 0 line encodes the evolution of A-, IX-, B-excitons A and the A-exciton oscillator strength B
with doping, simulated in C. The blue dashed line in all three panels mark the doping onset.

corresponding carrier densities nT, nB, ntop, nbot – are given by:

enT =
ϵhBN

dT
(VTG − ϕtop), (S1a)

entop =
ϵTMD

dTMD
(ϕtop − ϕbot)−

ϵhBN

dT
(VTG − ϕtop), (S1b)

enbot =
ϵhBN

dB
(ϕbot − VBG)−

ϵTMD

dTMD
(ϕtop − ϕbot), (S1c)

enB = −ϵhBN

dB
(ϕbot − VBG). (S1d)

Here, ϵhBN and ϵTMD are the permittivities of hBN and MoS2; dT, dB, and dTMD are the top hBN, bottom hBN, and
bilayer MoS2 thicknesses, respectively. Equations (S1) are consitent with the charge neutrality condition nT + ntop +
nbot + nB = 0. The TMD sample is grounded and in electro-chemical equilibrium with the corresponding contact,
resulting in the conditions:

ϕtop +
µtop

e
= ϕbot +

µbot

e
= 0, (S2)

where µtop and µbot label the chemical potentials of the top and bottom MoS2 layers, respectively. Disregarding
the possibility of hole doping, neglecting the small conduction-band spin-orbit splitting, and assuming the electron
state is well captured via a simple Fermi liquid, we relate the TMD densities ntop/bot to the corresponding chemical
potentials µtop and µbot via

ntop/bot =
2m∗

ekBT

πℏ2
ln
(
1 + e(µtop/bot−µ0)/kBT

)
, (S3)

where m∗
e is the effective electron mass and µ0 is a fitting parameter chosen to ensure that the simulated density onset

matches our measurements – see Fig. S2.
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FIG. S3. Reproducibility of the stochastic anti-crossing within the same device. A Microscope image of the main device 1;
the red line outlines the region containing the dual-gated MoS2-homobilayer. B-E Electric-field sweeps at four representative
optical spots marked in A confirming that the stochastic anti-crossing is robustly present across the sample.

II. REPRODUCIBILITY OF THE OBSERVATIONS

Reproducibility within the same device.—Figure S3 shows that the stochastic anti-crossing is robustly present across
the entire spatial extend of the main device (device 1), confirming that this effect is highly reproducible within the
same sample.

Reproducibility in other devices.—We fabricated two additional devices (device 2 and device 3) with roughly (but
not exactly) the same geometry. Figure S4 shows the stochastic anti-crossing measurements in device 2 (device 3
is not shown as a similar effect was observed there), confirming not only the reproducibility of this phenomenon in
another device but also the robustness of our data analysis. The extracted values for W0 and σ agree quantitatively
with those for device 1 in Fig. 2 of the main text.

III. EVIDENCE FOR THE COULOMB ORIGIN OF THE STOCHASTIC ANTI-CROSSING

To investigate the Coulomb origin of the stochastic anti-crossing, we fabricated another device (designated as device
4) using thin hBNs as gate dielectrics, as described in the Methods section. This new device features a substantially
different surrounding Coulomb environment compared to devices 1-3 with thick hBNs. Additionally, the thin hBN
dielectric enables screening of Coulomb interactions in the MoS2-homobilayer from the graphite gates due to the short
distance between the sample and the gates [5]. Figure S5 demonstrates that device 4 no longer exhibits the stochastic
anti-crossing due to this screening effect, confirming the Coulomb origin of the observed phenomenon.

IV. TEMPERATURE EFFECTS

Figure S6 presents raw data from stochastic anti-crossing measurements at n ≈ 1.3 × 1012 cm−2, comparing low
(T = 7.9K) and high (T = 75K) temperatures. At T = 7.9K, stochastic hybridization is evident, while at T = 75K, it
transitions to a simple crossing, characterized by amplitude doubling at the degeneracy point Ez = 0 in Fig. S6D. While
at higher temperatures processes such as exciton scattering off phonons become progressively more important and
result in excitonic line broadening, this broadening alone does not fully account for the observed relative amplitude
change. For this reason, and following the main text, we interpret our temperature-dependent measurements as
evidence of order parameter melting, see also Sec. IX.



5

FIG. S4. The stochastic anti-crossing in device 2. A Electric-field sweep in the intrinsic region (n ≈ 0), demonstrating a simple
interlayer exciton crossing. B Two linecuts at Ez = 0 and Ez ̸= 0, marked by white dashed lines in A, illustrate amplitude
doubling at the degeneracy point Ez = 0. C,D Similar to A,B, but for the doped system, revealing a transition from a simple
crossing to a stochastic crossing. In the doped case, the linecut at Ez = 0 no longer exhibits amplitude doubling. E Evolution
of the mean coupling W0 and the variance σ with electron density, obtained by fitting the 2D reflectance maps (see Sec. VIII
below), showing quantitative agreement with the results presented in Fig. 2 of the main text.

V. OPTICAL SPOT SIZE EFFECTS

In the main text, we proposed that the static stochastic variance σ originates from an order parameter – in the form
of interlayer electron coherence – of the many-body electron system. We attribute the origin of this static stochasticity
σ to immobile spatial order parameter fluctuations. In principle, if the phase coherence length ξ is comparable to the
optical spot size R, this order parameter could also contribute to the mean coupling W0. Furthermore, it is tempting
to attribute the observed trends of W0 in Fig. 2E,F to this long-range scenario. We remark that if the optical spot
size can be made small, such that ξ ≳ R, the interlayer exciton hybridization should be coherent without strong static
stochastic features, implying that we expect ξ ≲ R in the experiment.

One way to test this long-range scenario is to study how the stochastic anti-crossing varies with the optical spot
size, as we expect that the order-parameter contribution to the mean coupling behaves as δW0 ∝ ξ/R. Figure S7A,B
shows that upon increasing the optical spot size by about an order of magnitude, extracted by fitting the camera
image of a laser spot with a 2D Gaussian, both the stochastic variance σ and the mean coupling W0 roughly remain
intact. These data are, therefore, consistent with the picture where the phase coherence length is appreciably smaller
than the smallest optical spot size of about 0.6µm, so that the order parameter can contribute to σ but not to W0.
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FIG. S5. Coulomb origin of the stochastic anti-crossing. A Electric-field sweeps for the undoped case in device 4, with thin
hBNs as gate dielectrics, show the crossing of two interlayer excitons at the degeneracy point Ez = 0 (T = 4K). Linecuts
(white dashed lines in A) at Ez = 0 and Ez ̸= 0 in B reveal amplitude doubling at Ez = 0. In device 4, interlayer excitons
exhibit peaks, rather than dips, in reflectance spectra, attributed to interference with the thin-hBN background reflectivity.
C,D Doping this thin-hBN sample does not disrupt the crossing and degeneracy of the two interlayer excitons at Ez = 0.
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FIG. S6. Electric-field sweeps at two representative temperatures at n ≈ 1.3 × 1012 cm−2. The stochastic DC Stack effect,
clearly observed at T = 7.9K (panels A and B), disappears at T = 75.0K (panels C and D) and turns into a simple crossing,
as further evidenced by the amplitude doubling at the degeneracy point Ez = 0 in D (see also Fig. S4B).

FIG. S7. Optical spot size effects. A and B show electric-field sweeps at n ≈ 2.33× 1012 cm−2 for a focused (A) and defocused
(B) optical spot size. C and D depict fitted values of σ and W0, respectively, which do not exhibit a clear dependence on the
optical spot size.
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VI. STATIC STOCHASTIC AVOIDED CROSSING

In this section, we detail our phenomenological modeling of the stochastic crossing representing our measurements
of the DC Stark effect at a finite electron density.

The two interlayer excitons with opposite out-of-plane dipole moments can be modeled by a simple model of two
coupled harmonic oscillators (here we set the zero of energy to be the interlayer exciton energy at the degeneracy
point Ez = 0):

i∂tXT = ωTXT − iγTXT +WXB − dTEd(t), i∂tXB = ωBXB − iγBXB +WXT − dBEd(t). (S4)

Here ωT/B = ±dzEz encodes the bare excitonic energies that linearly shift with the out-of-plane electric field Ez;
dz is the out-of-plane dipole moment; γT/B is the total linewidth of the corresponding excitonic resonance; W is the
coupling strength between the two excitonic branches; dT/B is the transition dipole moment (assumed to be real in
our modeling) encoding the response to the probe field Ed. The observable we are interested in is the imaginary part
of the susceptibility Im[χ(ω)] defined as P(ω) = χ(ω)Ed(ω), where P(ω) = dTXT(ω)+dBXB(ω) is the TMD excitonic
polarization.

A. Modeling the fluctuating coupling

We consider two scenarios for the fluctuating coupling W:

• Static fluctuations model: W is time-independent but the measured signal represents an average over the
distribution with

⟨W⟩ = W0, δW = (W −W0) ∈ [−σ, σ]. (S5)

• Dynamic white-noise averaging:

⟨W(t)⟩ = W0, ⟨δW(t)δW(t′)⟩ = γδ(t− t′). (S6)

We note that in the former limit, the coupling W(t) can, in principle, be time-dependent, but its dynamics should
occur on timescales much longer than the exciton dynamics, set by the splitting ∆ = 2dzEz as well as by the decay
rates γT and γB. The latter scenario corresponds to the opposite limit where the dynamics of W(t) are much faster
than any other relevant timescales, allowing for the approximation of the variable W(t) as Markovian.

B. Analysis of the static fluctuations scenario

For a given W, the response function is given by:

χW(ω) =
−1

(ω −∆/2 + iγT)(ω +∆/2 + iγB)−W2

[
dT
dB

]T [
ω +∆/2 + iγB W

W ω −∆/2 + iγT

] [
dT
dB

]
. (S7)

We are interested in the average response ⟨χW(ω)⟩ over the distribution in Eq. (S5). This computation can be done
analytically, and it boils down to evaluating the following integrals:

I1 =
1

2C

∫ σ

−σ

dW
2σ

[ 1

W +W0 − C
− 1

W +W0 + C

]
, I2 =

1

2

∫ σ

−σ

dW
2σ

[ 1

W +W0 − C
+

1

W +W0 + C

]
, (S8)

where C2 = (ω−∆/2+iγT)(ω+∆/2+iγB). These integrals can be computed using

∫ σ

−σ

dW
W +A

= log[A+σ]−log[A−σ].
We verified that numerical averaging of Eq. (S7) matches the results obtained from the analytical approach. The
resulting response function is shown in Fig. S8 and well represents the measured data. We remark that we use here the
uniform distribution in Eq. (S5) only for numerical convenience, and any other reasonable distribution (e.g., Gaussian)
could be used instead.
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FIG. S8. Absorption maps Im[χ] for the two scenarios of fluctuating coupling. The left panel depicts the case of uncoupled
interlayer excitons. The middle panel illustrates the static stochastic scenario with W0 = 0 and σ = 20meV. The right panel
shows the dynamic scenario with γ = 20meV. Parameters used: dT = dB, γT = γB = 10meV.

C. Analysis of the dynamic fluctuations scenario

Dynamic modeling requires additional considerations as the fluctuating coupling term, δW(t), introduces multi-
plicative noise. Therefore, it may be essential to consider parametric processes. To see this point explicitly, we write
the equations of motion in the frequency domain:

Ĝ0,ω

[
XT(ω)
XB(ω)

]
−

∫ ∞

−∞

dω′

2π

[
0 δWω−ω′

δWω−ω′ 0

] [
XT(ω

′)
XB(ω

′)

]
= −Ed(ω)

[
dT
dB

]
, Ĝ0,ω =

[
ω −∆/2 + iγT −W0

−W0 ω +∆/2 + iγB

]
.

The second term encodes the mentioned frequency mixing due to the dynamics of δW(t), which can cause a parametric
instability provided δW(t) contains Fourier harmonics at frequencies commensurate with the bare Rabi oscillations.
In our case, we assume a broadband white noise ⟨δWωδWω′⟩ = 2πγδ(ω + ω′), which contains all possible frequency
harmonics, including the commensurate ones.

There are various ways to approach the problem at hand, including the direct numerical sampling over the dynamical
noise, and among them, the most efficient appears to be the non-equilibrium Green’s function technique developed in
Ref. [6]. If one is interested solely in the retarded susceptibility, the self-consistent Born approximation turns out to
be exact so that the solution can be written as:

Σ̂R
ω = −iγ

2
1̂ ⇒

[
XT(ω)
XB(ω)

]
= −Ed(ω)[Ĝ0,ω − Σ̂R

ω ]
−1

[
dT
dB

]
. (S9)

In other words, the effects of dynamical fluctuations are fully captured via the substitution:

γT → γT + γ/2, γB → γB + γ/2. (S10)

The dynamical fluctuations model can, thus, be understood as a microscopic model of a pure dephasing channel. The
resulting response function, plotted in Fig. S8 (right panel), clearly does not capture the observations.

VII. DEVELOPMENT OF A NONZERO MEAN COUPLING W0 ̸= 0

In this section, we present experimental evidence that a nonzero mean coupling W0 ̸= 0 develops at a finite electron
density and low temperatures. We also discuss the implications of W0 ̸= 0 for the nature of interlayer exciton
hybridization and for rigorous data processing.
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FIG. S9. Electric-field sweeps at three representative carrier densities at T = 8 K: n ≈ 0.34 × 1012 cm−2 (left), n ≈ 1.26 ×
1012 cm−2 (middle), and n ≈ 2.33 × 1012 cm−2 (right). The evolution from the upper exciton branch initially being stronger
than the lower branch, then becoming equal, and eventually becoming weaker, indicates the development of a non-zero W0 ̸= 0.

A. Experimental evidence

The presence of a nonzero coupling W0 ̸= 0 leads to an asymmetry between the upper and lower excitonic branches
(see also Fig. 2 of the main text). This effect can be understood as the onset of superradiant and subradiant states
of the two coupled dipoles – see Sec. VI. Figure S9 shows the evolution of the stochastic anti-crossing with electron
density: at low dopings (left panel), the upper branch exhibits slightly stronger oscillator strength; at intermediate
dopings (middle panel), the strengths of the two exciton branches are comparable; at high dopings (right panel), the
lower branch is brighter, while the upper branch weakens and eventually becomes barely observable. These raw data
unambiguously indicate W0 ̸= 0 (see also Fig. 2 of the main text).

B. Hybridization of interlayer excitons with the same AQNs

One immediate implication of a nonzero W0 ̸= 0 is that interlayer excitons with the same AQNs hybridize with
each other. This implies that excitons in the opposite valleys hybridize with each other, as excitons within the same
valley have opposite AQNs and cannot interfere with each other (i.e., subradiant and superradiant states cannot form
in this case). This conclusion is further illustrated by a simple simulation as in Sec. VI – see Fig. S10. Our analysis,
however, does not rule out the possibility that excitons within the same valley can also hybridize (Fig. S10), which
might be relevant in case W0 and σ have different origins, as further discussed in the main text and in Secs. IX and X.

C. Additional considerations for data analysis

Below we analyze the experimental data using the static fluctuations model, encoded in Eqs. (S4) and (S5), and
here we discuss two additional considerations needed for robust data processing:

• Effects of σ and γT/B: We first note that for ∆ = 0, distinguishing the effects of σ from linewidth broadenings

γT and γB can be challenging. However, when |∆| ≳ σ, the excitonic peak linewidths are primarily determined
by γT and γB. Therefore, in our data analysis, we simultaneously consider the entire 2D reflectivity map to
unambiguously determine σ; we also fix γT = γB = γ, where γ is assumed to be independent of the applied
electric field.

• Effects of a finite W0 ̸= 0 and dT ̸= dB: We also note that two additional factors can manifest in the measured
reflectivity maps as W0 ̸= 0. One of these is interference effects from the background, which we found to be
unimportant – see Sec. II and Fig. S4E. The other factor arises from the hybridization between the interlayer
excitons with the B-excitons [7], resulting from hole tunneling. The B-excitons favor the higher-energy interlayer
exciton to be brighter, an effect that can be captured via dT ̸= dB but difficult to unambiguously disentangle
from W0 ̸= 0. On the other hand, this asymmetry effect due to the B-excitons is expected to be weak, as further
supported by |W0| ≲ 2meV for the intrinsic region (n = 0). To avoid overfitting, we, thus, set dT = dB = d,
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FIG. S10. Intravalley vs intervalley exciton hybridization. A,B Assuming the case of intervalley hybridization, the simulated
stochastic anti-crossing for W0 = 0 A and for W0 = −20meV B illustrates that a nonzero W0 ̸= 0 leads to an intensity
asymmetry between the upper and lower exciton branches. Such asymmetry emerges due to an interference effect between
the two intervalley excitons with the same AQNs. In contrast, for the case of intravalley hybridization C,D, the stochastic
anti-crossing shows no such asymmetry even for W0 ̸= 0 because intravalley interlayer excitons have opposite AQNs and, thus,
cannot interfere. Here we fixed σ = 20meV.

where d is assumed to be electric field independent. This assumption is intuitive because the two interlayer
excitons should be degenerate at ∆ = 0, but it can lead to a small systematic error in determining W0.

VIII. DATA PROCESSING

When one considers reflectivity properties of a TMD sample, it is natural to separate the background contribution
Rbg(ω) from the excitonic resonances [8–10]:

R(ω) ≈ Rbg(ω)− Im[eiφ(ω)(χIX(ω) + χA(ω))], (S11)

where φ(ω) encodes the effects due to the interference between the background and excitonic parts. In analyzing the
measured data, we employ Eqs. (S7) and (S8) to fit the interlayer exciton contribution and

χA(ω) = − d2A
ω − ωA + iγA

(S12)

to fit the A-exciton contribution. While we are primarily interested in the IX-properties, we consider a rather large
fitting energy range (about 100meV) so that the A-exciton part cannot be fully disregarded – see Fig. S9. We let
Rbg(ω) ≈ R0 + R1(ω − 2000meV) to be linearly dependent on ω for |ω − 2000meV| ≪ 2000meV (the choice of
2000meV is close to the interlayer exciton energy at Ez = 0). In principle, φ(ω) can also depend on ω, but we verified
that approximating φ(ω) as constant, denoted as φ0, provides good fits to the data.

In our analysis, we fit the normalized reflectance data S(ω) = (RTMD −Rno-TMD)/Rno-TMD, using a similar fitting
form as in Eq. (S11). Here, Rno-TMD represents the measured reflectance from the graphite/hBN/hBN/graphite
heterostructure, i.e., from the full stack but without the TMD part – it should reasonably well approximate Rbg in
Eq. (S11).
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FIG. S11. Data processing when the sample is undoped. A and B show a back-to-back comparison of the measured (A) and
fitted (B) electric-field sweeps, demonstrating excellent quantitative agreement. C This agreement is further corroborated by
individual linecuts at Ez = 0 and Ez ̸= 0. The green dashed line represents the fitted background, which includes the A-exciton
contribution.

A. Fitting the intrinsic data

We use the intrinsic data to fix the three background parameters (S0, S1, and φ0), which are assumed to be
independent of applied voltages and, thus, electron doping. Here, each interlayer exciton is modeled by a Lorentzian
as in Eq. (S12), with three parameters (ωT/B, γT/B, and dT/B) that can vary with Ez (VTG). The A-exciton parameters
(dA, ωA, and γA) can depend on the electron density but not on the electric field Ez, acting as a correction to the
background Rbg. Figure S11 demonstrates that this fitting approach accurately captures the intrinsic data, allowing
us to confidently estimate the background parameters S0, S1, and φ0.

B. Fitting the doped data

As discussed in Sec. VII, we analyze interlayer excitons using full 2D reflectance maps and model IXs via Eqs. (S7)
and (S8). To minimize the number of fitting parameters while capturing both the linear Stark effect and stochastic
hybridization, we represent these excitons with six parameters: W0, σ, dT = dB = d, γT = γB, and both the bare
interlayer exciton energy ω0 and linear Stark shift, as encoded in dz, are allowed to depend on the electron density.
Figure S12 shows that this few-parameter fit reasonably well captures the measured signal. While not as perfect as in
Fig. S11, this fit provides robust data processing (see below) by using significantly fewer parameters and still captures
the essential physics. This fitting procedure is then used to analyze the experiment (see Fig. 2 of the main text).

Let us comment on the physical content of each of the six fitting parameters associated with the interlayer excitons:

• The mean coupling W0 encodes the intensity asymmetry between the upper and lower exciton branches.

• The stochastic variance σ describes the stochastic anti-crossing, which is most evident at Ez = 0.

• The rate γ corresponds to the excitonic linewidth for some appreciable Ez ̸= 0.

• The transition dipole moment d encodes the exciton-photon coupling and IX oscillator strength.

• dz is the effective IX out-of-plane dipole moment.

• ω0 is the bare IX energy at Ez = 0.

C. Error bar analysis

In estimating error bars for the fitted mean coupling W0 and stochastic variance σ, we consider both experimental
error and fitting error.

The experimental error arises primarily from two factors: i) the inherent variability in individual measured spectra,
as each spectrum represents an average of several measurements, leading to a variance in the measured signal, and
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FIG. S12. Data processing when the sample is doped. A, B, C depict a back-to-back comparison of the measured (top panels)
and fitted (bottom panels) electric-field sweeps at three representative dopings. This comparison demonstrates that the few-
parameter fit is in reasonable quantitative agreement with the data, capturing both the linear Stark effect and the stochastic
anti-crossing.

ii) the signal-to-noise ratio, which we assess by smoothing the spectrum using a Savitzky-Golay filter and extracting
the variance relative to the smoothed spectrum. However, we find that the experimental error is negligible compared
to the fitting error. A complication we face with our fits is the worsening signal-to-noise ratio as the temperature
increases.

When using standard statistical tools, such as those based on confidence intervals (lsqcurvefit function in Matlab),
we often obtain fitting errors that are unreasonably small. This situation arises because our few-parameter model
is somewhat constrained, leading to an incidence of underfitting in the analysis of 2D reflectance maps [11, 12]. To
estimate the fitting error bars for parameters like the stochastic variance σ, we then proceed as follows: we sweep σ
around the optimal value σ∗ while re-fitting the remaining parameters and evaluating the global least-squares error:

F [θ] =
∑

i,j

|S(ωi, VTG,j)− Sfit[θ](ωi, VTG,j)|2 , (S13)

where θ represents the vector of fitting parameters (in our case, these are three parameters associated with the A-
exciton and six with the interlayer excitons). Figure S13A,B shows such scans for the stochastic variance σ (A) and
the mean coupling W0 (B), where, as expected, the global error displays a minimum at the optimized values σ∗ and
W∗

0 , respectively. We define the error tolerance to be 5% above the global error minimum, leading to error bars that
significantly better represent the measured data (Fig. 2 of the main text).

To provide more insight in how well the fitting model represents the measured signal, we perform similar but now 2D
scans of the global error as in Fig. S13C,D. We find reasonably isotropic error contours indicative of i) the robustness
of parameter estimates, ii) the consistency of our fitting, and iii) the independence of model parameters [11, 12].
These contours, thus, suggest that the model is well-suited to capturing the underlying data distribution and that the
fitted parameters accurately represent the relationships between the model and the observed data.

IX. THEORY FOR THE STOCHASTIC ANTI-CROSSING

In the main text, we argued that the experimental conditions (low temperatures, strong Coulomb interactions
rs ≃ 10− 20, small interlayer separation lkF ≪ 1, and absence of electron tunneling) strongly suggest the presence of
interlayer electron coherence [13–15]. Here, we further discuss how such coherence can lead to the robust emergence
of the stochastic anti-crossing.
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FIG. S13. Error bar analysis of the stochastic variance σ (A) and the mean coupling W0 (B). The error bars are estimated as
follows: we scan σ (or W0) near its optimized value σ∗ (W∗

0 ), while the rest of the parameters are refitted, and plot the resulting
global least-squares error function. To determine the error bar, we use an error tolerance of 5% above the global error minimum
(indicated by dashed lines in A and B). C and D depict the global error function in the (W0, σ)-map (C) and (γ0, σ)-map
(D), respectively, illustrating that the global error is reasonably isotropic in the vicinity of the optimized parameters.

In TMDs, the valley degree of freedom allows for interlayer electron coherence with intravalley character,

∆intra,K(k) = ⟨ê†T,K(k)êB,K(k)⟩ ̸= 0, and/or intervalley character, ∆inter(k) = ⟨ê†T,K(k)êB,K′(k)⟩ ̸= 0 (see Fig. 4A of

the main text). Here, ê†T,K(k) is the electron creation operator in the top K-valley, with k being the wave vector
relative to the band bottom. For our discussion, we assume the system is spin-polarized but valley-depolarized, a
situation expected in our finite magnetic-field measurements (see Fig. 3 of the main text). This assumption simplifies
the analysis by omitting the electron spin, although including it is straightforward. The close energies of these two
order parameters make it likely that both are present and interplay within the system, as further discussed below.

A. Intravalley interlayer exciton hybridization and crude estimates

Interlayer excitons serve as an optical probe of doped electrons; for this reason, we distinguish between the electron
system with its microscopic interactions and the excitonic probe. Assuming the presence of interlayer electron coher-
ence, we show here how this order parameter leads to interlayer exciton hybridization, consistent with our experimental
findings, and discuss its stochastic behavior.

The absence of electron tunneling in MoS2-homobilayers [16] indicates that the many-body electron Hamiltonian

(approximately, see Sec. X) commutes with the particle number operators N̂T and N̂B in each layer. Interlayer
electron coherence corresponds to the spontaneous breaking of layer U(1) symmetry (in Sec. X, we discuss that this

U(1) symmetry is weakly broken down to Z2), where the symmetry-broken state is not an eigenstate of N̂T − N̂B.
This order parameter can be thought of as pseudospin ferromagnetism with the layer pseudospin pointing in-plane
(see, for instance, Ref. [13]).

The key idea of the hybridization mechanism we propose in Fig. 4B of the main text is that the presence of the
intravalley coherence mediates strong electron tunneling-like processes. To illustrate this, we write the density-density
interlayer Coulomb interaction between conduction-band electrons as (scattered electrons remain in the same valley
and layer):

Ĥl =
1

A
∑

k,k′,q

∑

α,β=K,K′

Vl(q)ê
†
T,α(k + q)êT,α(k)ê

†
B,β(k

′)êB,β(k
′ + q), (S14)

where Vl(q) is the interlayer Coulomb potential and A is the area of the sample. For estimates, we use Vl(q) =
2πe2e−ql/(εq) with ε ≈ 3.76 – this form might slightly overestimate the strength of interlayer interactions as the
TMD permittivity is larger than that of hBN [16]. The presence of a nonzero order parameter, ∆intra,K(k) =

⟨ê†T,K(k)êB,K(k)⟩ ̸= 0, results in an effective electron tunneling-like term (we write only the processes in the K-

valley):

−
∑

k

tkê
†
B,K(k)êT,K(k) + h.c., (S15)
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where the effective tunneling rate is set by the order parameter:

tk =
1

A
∑

q

Vl(q)∆intra,K(k + q). (S16)

Let us note that a small but finite electron tunneling, which explicitly breaks the U(1) layer symmetry, would imprint
the phase on the order parameter, much like a small magnetic field in a ferromagnet polarizes spins along its direction.
In spin systems with strong ferromagnetic correlations, a small magnetic field induces significant spin polarization.
Analogously, in our case, even weak interlayer electron tunneling is expected to enhance tunneling conductance. This
effect, a definitive signature of interlayer electron coherence, has been experimentally established in conventional
quantum Hall bilayers [15, 17–21].

The layer separation in our system is only a few angstroms, making the effective electron tunneling-like processes
in Eq. (S16) strong. Assuming perfect Hartree-Fock correlations with ∆intra,K(k) ≃ nF (k) (nF is the Fermi-Dirac
distribution function), we estimate tk=0 ≃ e2

√
πn/ε ≃ 96meV and tk=1/aX

≃ 36meV for four electron bands

(corresponding to the spin-polarized case as in Fig. 3 of the main text), n = 2× 1012 cm−2, aX = 3nm, and T = 0K
– see also Sec. IXC, where we detail our self-consistent Hartree-Fock analysis.

The significance of such tunneling-like electron processes is that they give rise to the hybridization of, for example,
IXT- and AB-excitons – see Fig. 4B (left) of the main text. This coupling could be estimated as (we note that l ≪ aX):

tIXT↔AB
≃

∫
d2k

(2π)2
tkΨ

∗
A(k)ΨX(k) ≃ 85meV for n = 2× 1012 cm−2, (S17)

where we substituted for the exciton wave-functions ΨA(q) ≈ ΨX(q) ≈ 2
√
2πaX/((qaX)2 + 1)3/2. Given our as-

sumptions, the value in Eq. (S17) is likely an overestimate, but it nevertheless underscores the importance of the
processes we propose. At the same time, the AB-exciton couples to the IXB-state via the two-step process shown
in Fig. 4B (middle and right panels) of the main text, with experimental evidence supporting this effect [7] and a
coupling strength of about ∼ 4 meV. All three processes in Fig. 4B of the main text combined lead to the intravalley
interlayer exciton hybridization (we again write only the K-valley terms):

Ĥintravalley = δW[∆intra,K]X̂
†
B,KX̂T,K + h.c. (S18)

Using second-order perturbation theory, the coupling δW[∆intra,K] between the interlayer excitons can then be esti-
mated as 85meV × 4meV/70meV ≃ 5meV for n = 2 × 1012 cm−2 (here, 70meV is the energy difference between
IX- and A-excitons). While this estimate is rather crude – as we (i) assumed perfect Hartree-Fock correlations, (ii)
considered only the lowest energy intermediate exciton states (we note that the 2s A-exciton, though having a small
oscillator strength, is energetically closer to the interlayer excitons, see also Sec. X), and (iii) used perturbation the-
ory to relate the electronic order parameter to interlayer exciton hybridization – we find that the estimated value is
comparable to the measured ones (Fig. 2E of the main text), suggesting that the proposed hybridization mechanism
is realistic.

B. Additional symmetry considerations for MoS2-homobilayers

In contrast to conventional semiconductors with a single electron valley (assuming the electron system is spin-
polarized), MoS2-homobilayers feature not just a single but two distinct K- and K ′-valleys (when the electron spin
can be disregarded, these valleys are approximately degenerate), which bring in an additional spin-1/2-like degree
of freedom. The effective microscopic Hamiltonian, consisting of the electron kinetic energy (with approximately
parabolic dispersion) in each of the valleys and Coulomb interactions, now commutes with the particle number

operators N̂α
T/B = A−1

∑
k ê

†
T/B,α(k)êT/B,α(k) in each layer and each valley α ∈ {K,K′}. The valley degree of

freedom suggests the introduction of the order parameter as:

ê†T,α(k)êB,β(k) → ∆̂0(k)τ
0
αβ + [∆̂x(k)τ

x
αβ + ∆̂y(k)τ

z
αβ + ∆̂z(k)τ

z
αβ ], (S19)

where ∆̂a(k) ≡ 1
2 ê

†
T,α(k)τ

a
αβ êB,β(k), a ∈ {0, x, y, z}, and τa are the Pauli matrices in the valley-space. The K-valley

electron coherence, which determines the K-valley interlayer exciton hybridization in Eq. (S18), see Sec. IXA, is then

written as ∆intra,K(k) = ⟨∆̂0(k)⟩+ ⟨∆̂z(k)⟩. We note that the component ∆̂0 transforms trivially (as a scalar) under

the global SU(2) valley rotations, while the vector components (∆̂x, ∆̂y, ∆̂z) transform as an SU(2) triplet. Therefore,

if the electronic ground state develops ⟨∆̂0⟩ ≠ 0 only, it breaks the original U(1)×SU(2) symmetry – here, the U(1)
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part is associated with the operator N̂ tot
T − N̂ tot

B = N̂K
T + N̂K′

T − N̂K
B − N̂K′

B , while the SU(2) part is associated with
valley pseudospin rotations – down to SU(2). On the other hand, the development of a nonzero vector component
breaks both the U(1) and SU(2) parts of this U(1)×SU(2) symmetry.

This effective microscopic description, where the valley index is analogous to a spin index, implies that the system
can be thought of as effectively translationally invariant (noting that in the sample, intervalley correlations actually
carry the momentum K −K ′). For this reason, in Eq. (S19), we consider both electron operators to have the same

momentum. In other words, we assume that the ground state can give a nonzero expectation value ⟨ê†T,α(k)êB,β(k
′)⟩ ≠

0 only if k = k′. With this in mind, we write the reduced [22] (corresponding to k = k′ in Eq. (S14)) interlayer
Coulomb interaction (S14) as:

Ĥl → − 2

A
∑

k,k′

Vl(|k − k′|)[∆̂†
0(k)∆̂0(k

′) + ∆̂†
x(k)∆̂x(k

′) + ∆̂†
y(k)∆̂y(k

′) + ∆̂†
z(k)∆̂z(k

′)], (S20)

and this form is clearly U(1)×SU(2) symmetric. This form also indicates that the intravalley and intervalley electron
coherences stand on equal footing in our system.
At the same time, from the perspective of intravalley interlayer excitons, the coupling in Eq. (S18) requires the

explicit presence of a nonzero order parameter. Indeed, within the perturbation theory discussed above, we get

δŴintra,K ∝ th

∫
d2k

(2π)2

∫
d2q

(2π)2
Ψ∗

A(k)ΨX(k)Vl(q)[∆̂0(k + q) + ∆̂z(k + q)], (S21)

where th is the hole tunneling rate, on the order of a few tens of meV in MoS2-homobilayers. (From the symmetry
perspective, holes are allowed to tunnel as the valence bands have the same AQNs, see also the right panel of Fig. 4B
in the main text.) The expression (S21) indicates that δŴintra,K is sensitive to both the order parameter amplitude
and phase, thereby inheriting spatial inhomogeneities due to statistical fluctuations of the order parameter phase.
Consequently, the model in Eq. (S18) should be extended to account for spatial dependence. In the experiment, this
coupling is spatially averaged over the optical spot size, which we expect to be much larger than the phase coherence
length (see also Sec. V). As a result, the spatial average ⟨δW[∆intra,K]⟩ ≈ 0 vanishes, but the variance σ can be
significant, manifesting as the stochastic anti-crossing. This explains the experimental observations, as elaborated in
the main text.

We comment that MoS2-homobilayers possess C3-rotationally rotational symmetry, assigning opposite AQNs to
interlayer excitons within the same valley. As a result, there is no Hamiltonian term that directly couples such two
excitons (disorder could potentially play a role, but as discussed in the main text, it is not expected to be dominant).
These excitons can hybridize when the system breaks this symmetry, specifically through intravalley interlayer electron
coherence. In other words, the coupling in Eq. (S18) serves as a probe of this order parameter. We also note that
because these two excitons have opposite AQNs, their hybridization cannot explain the small intensity asymmetry
observed between the lower and upper exciton branches – see Fig. S9 and Sec. VII. We address this question further
in the following section.

C. Self-consistent Hartree-Fock analysis

We conclude this section by presenting our self-consistent Hartree-Fock analysis, which reasonably captures the
observations in Fig. 2E,F of the main text. These calculations extend the single-band analysis in Refs. [13, 14] to the
case of two K- and K ′-valleys relevant for TMDs. Specifically, we consider the following microscopic Hamiltonian
(neglecting electron spin and, as such, the small spin-orbit coupling):

Ĥ =
∑

k

∑

l,v

k2

2m∗ ê
†
lv(k)êlv(k) +

1

2A
∑

k,k′,q

∑

l

∑

vv′

V (q)ê†lv(k + q)ê†lv′(k
′ − q)êlv′(k′)êlv(k)

+
1

A
∑

k,k′,q

∑

vv′

Vl(q)ê
†
Tv(k + q)ê†Bv′(k

′ − q)êBv′(k′)êTv(k), (S22)

where l ∈ {T,B} is the layer index, v ∈ {K,K ′} is the valley index, and m∗ is the effective electron mass.
Within the Hartree-Fock approximation, and in the strongly-interacting regime relevant to the experiment (1 ≪ rs),

the ground-state wave function with ⟨∆̂0⟩ ≠ 0 is given by (analogous to the |S2⟩-state in the single-band case [13, 14]):

|ψ0⟩ =
∏

k≤kF

1

2
(ê†T,K(k) + ê†B,K(k))(ê

†
T,K′(k) + ê†B,K′(k)) |0⟩ , (S23)
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FIG. S14. Temperature-dependent, self-consistent Hartree-Fock simulation at n ≈ 1.3× 1012 cm−2.

where kF =
√
2πn. For future reference, we define TF = k2F /(2m

∗) = πn/m∗ = (2/r2s)Ry
∗, where rs = 1/(a∗

√
πn),

Ry∗ ≡ e2/(2a∗ε) = 1/(2m∗(a∗)2) is the Rydberg energy, and a∗ ≡ ε/(m∗e2) is the Bohr radius (estimated to be
a∗ ≃ 0.3 nm and Ry∗ ≃ 530meV).

We propose that this many-body ground state wave funcion (S23) can qualitatively explain our low-temperature
measurements shown in Fig. 2E of the main text. To support this, we evaluate the expression in Eq. (S17), which
captures the effective hybridization strength between the IXT- and AB-excitons:

tIXT↔AB
≃

∫
d2k

(2π)2
8πa2X

(1 + (kaX)2)3

∫
d2q

(2π)2
Vl(q)⟨ê†T,K(k + q)êB,K(k + q)⟩ (S24)

≃
∫

d2k

(2π)2
8πa2X

(1 + (kaX)2)3
2πe2

kε

∫
d2q

(2π)2
⟨ê†T,K(q)êB,K(q)⟩ (S25)

=
3π2e2aX

2ε

∫
d2q

(2π)2
⟨ê†T,K(q)êB,K(q)⟩ =

3π2e2aX
8ε

n, (S26)

where in the second identity, we have used kF ≪ a−1
X ≪ l−1, a condition that further implies that the rate tIXT↔AB

∝
∆0(r = 0) is approximately set by the local value of the order parameter ∆0(r). Our mean-field analysis neglects
spatial inhomogeneities in the order parameter due to phase fluctuations. Thus, using Eq. (S26) and perturbation
theory for interlayer exciton hybridization described above, our Hartree-Fock analysis estimates the stochastic variance:

σmf = C

∫
d2q

(2π)2
⟨ê†T,K(q)êB,K(q)⟩. (S27)

where in our approach, C is a phenomenological parameter that may depend on temperature T . Notably, at low
temperatures, σmf is approximately proportional to the electron density n, Eq. (S26), consistent with our measure-
ments in Fig. 2E of the main text (dashed line), which were used to determine C. Let us comment that while the
Hartree-Fock approximation might underestimate the role of low-momenta fluctuations, it should reasonably well
capture local properties, particularly the stochastic variance σ.

To explore finite-temperature effects within the same mean-field approximation, where the many-body density
matrix is assumed to be Gaussian, we introduce the covariance matrix:

Γll′
vv′(k) ≡ ⟨ê†lv(k)êl′v′(k)⟩. (S28)

For the state in Eq. (S23), the covariance matrix reads:

Γk

∣∣∣
k≤kF

=
1

2

[
12×2 12×2

12×2 12×2

]
. (S29)

We note that this matrix satisfies the purity condition Γ2
k = Γk, consistent with the fact that the density matrix at

T = 0 is pure. The energy expectation value is then understood as:

E[Γ] =
∑

k

k2

2m∗ tr(Γ(k))−
1

2A
∑

k,k′

∑

l

∑

vv′

V (k − k′)Γll
vv′(k)Γll

v′v(k
′)− 1

A
∑

k,k′

∑

vv′

Vl(k − k′)ΓTB
vv′(k)ΓBT

v′v(k
′), (S30)
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where the first term represents the kinetic energy, and the last two terms correspond to the exchange energies associated
with intra- and interlayer electron interactions, respectively. The electrostatic energy is not included as it vanishes for
the balanced symmetric case of equal densities considered here [13, 14, 23]. Specifically, we assume that (i) all four
conduction bands (two valleys and two layers) are equally populated (consistent with the magnetic field measurements
discussed in the main text) and (ii) there is no intralayer intervalley coherence. Under these assumptions, and using
similar notation as above, the covariance matrix takes the form:

Γ(k) = nk14×4 +

[
02×2 ∆0(k)τ

0 +∆x(k)τ
x +∆y(k)τ

y +∆z(k)τ
z

∆∗
0(k)τ

0 +∆∗
x(k)τ

x +∆∗
y(k)τ

y +∆∗
z(k)τ

z 02×2

]
, (S31)

where ∆a(k) =
1
2 tr(Γ

TB(k)τa). For such states, the energy expectation value is further given by, cf. Eq. (S20):

E[Γ] =
∑

k

2k2nk
m∗ − 2

A
∑

k,k′

V (k − k′)nknk′

− 2

A
∑

k,k′

Vl(k − k′)[∆∗
0(k

′)∆0(k) + ∆∗
x(k

′)∆x(k) + ∆∗
y(k

′)∆y(k) + ∆∗
z(k

′)∆z(k)]. (S32)

This expression reflects that the Hamiltonian in Eq. (S22) is U(1)×SU(2) symmetric, as discussed above.

The mean-field Hamiltonian ĤMF =
∑

k Ψ̂
†
kh(k)Ψ̂k, where Ψ̂k ≡ (êT,K(k), êT,K′(k), êB,K(k), êB,K′(k))T, is derived

from Eq. (S30) by evaluating the variational derivative hll
′

vv′(k) = δE[Γ]/δΓll′
vv′(k) and can be expressed as:

hll
′

vv′(k) =
k2

2m∗ δll′δvv′ − δll′

A
∑

k′

V (k − k′)Γll
v′v(k

′)− (1− δll′)

A
∑

k′

Vl(k − k′)Γl′l
v′v(k

′). (S33)

Without loss of generality, and as follows from Eq. (S32), we can consider states that can have ∆0(k) ̸= 0 only
(we also fix ∆0(k) to be real so that the pseudospin points in-plane, along the x-axis), in which case the mean-field
Hamiltonian is written as:

h(k) = ξk14×4 − tk

[
02×2 12×2

12×2 02×2

]
, (S34)

where

ξk =
k2

2m∗ − 1

A
∑

k′

V (k − k′)nk′ , tk =
1

A
∑

k′

V (k − k′)∆0(k
′). (S35)

We write the eigenvectors of Eq. (S34) as:




ψ̂1,−(k)
ψ̂2,−(k)
ψ̂1,+(k)

ψ̂2,+(k)


 =

1√
2



1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1






êT,K(k)
êT,K′(k)
êB,K(k)
êB,K′(k)


 , (S36)

and the corresponding eigenvalues are ξk− tk, ξk− tk, ξk+ tk, and ξk+ tk, respectively. Self-consistency then implies:

nk =
1

2
[nF (ξk − tk) + nF (ξk + tk)], ∆0(k) =

1

2
[nF (ξk − tk)− nF (ξk + tk)], (S37)

where nF (ε) = [1+ exp((ε−µ)/T )]−1 is the Fermi-Dirac distribution function, and the chemical potential µ is set by

the total density n = 2

∫
d2k

(2π)2
[nF (ξk − tk) + nF (ξk + tk))].

We solve Eqs. (S35) and (S37) numerically, with the results shown in Fig. S14(b) using experimental parameters
at n = 1.3 × 1012 cm−2, i.e, as in Fig. 2F of the main text. The Hartree-Fock approximation predicts a critical
temperature of Tc ≃ 4.35TF ≃ 225K; however, this value should be considered an upper bound, as this method tends
to underestimate the role of low-momenta fluctuations. By rescaling the temperature to match the experimental
critical temperature Tc = 75K and using the experimentally determined value of C (assumed to be temperature
independent), we achieve reasonable agreement between the theory and the data, as shown in Fig. 2F of the main
text. This analysis suggests that the disappearance of the stochastic anti-crossing can be understood as the order
parameter amplitude is suppressed with increasing T until it eventually melts.
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X. INTERVALLEY INTERLAYER EXCITON HYBRIDIZATION, WEAK SYMMETRY BREAKING,
AND FERMI SEA FLUCTUATIONS

Our theory in Sec. IX provides an interpretation of essentially all the experimental features except the small
asymmetry between the lower and upper exciton branches – see, for instance, Fig. S9. In Sec. VII, we argued
that this asymmetry is indicative of intervalley interlayer exciton hybridization (as opposed to intravalley exciton
hybridization discussed in Sec. IX), which have the same AQNs. In the experiment, this asymmetry is associated
with the development of small mean value W0 ̸= 0, which has large error bars – see Fig. 2E,F of the main text.
Furthermore, in Sec. V we further experimentally argue that this mean value W0 ̸= 0 does not originate from order
parameter phase coherence.

Because these excitons – such asXB,K andXT,K′ (depicted in red in Fig. 1B of the main text) – have the same AQNs,
there is no symmetry argument preventing their direct hybridization even in the absence of doped electrons. However,
such a direct coupling is expected to be weak because the involved processes require both exciton electron and hole
layer and valley switching. This expectation aligns with the experiment in Fig. 2E, which indicates that |W0| ≲ 2meV
for n = 0. We note that the interlayer excitons have rather large linewidths on the order of 10meV, making it difficult
to resolve a small possible hybridization. It is plausible that doped carriers could amplify this coupling through simple
processes that do not involve the exotic physics discussed in the preceding section. To illustrate this expectation, in
this section, we provide one such mechanism based on dynamical Fermi liquid fluctuations (we also mentioned in the
main text that polaronic dressing might be important for the intervalley scenario as well). Let us remark that while
the existence of such dynamical processes can explain the weak exciton intensity asymmetry, they cannot account for
the static stochastic variance σ.

To understand how intervalley interlayer excitons could hybridize, we introduce processes termed ‘hole flip’ and
‘electron flip’, both corresponding to layer switching and scattering across the TMD Brillouin zone – see Fig. S15. The
hole flip, shown in Fig. S15 (left), can occur through the simultaneous scattering of the hole of the XT,K′ -exciton from
the bottom K ′-valley to the top K-valley and a Fermi sea electron. In such scattering processes, the total momentum
is conserved, and the spin and AQN of the Fermi sea electron remain unchanged, resulting in the two possibilities
depicted in Fig. S15 (left). Figure S15 (right) shows that similar Fermi sea scatterings can give rise to the electron
flip, allowing us to write the following bare microscopic Hamiltonian:

Ĥint =
Va
A

∑

k,k′,q

(F̂ (e)
k+q,kê

†
B,K,↑(k

′ − q)êT,K′,↑(k
′)− F̂ (h)

k+q,kĥ
†
T,K,↓(k

′ − q)ĥB,K′,↓(k
′)) + h.c., (S38)

F̂ (e)
k1,k2

≡
∑

σ

[ê†B,K′,σ(k1)êT,K,σ(k2) + ê†T,K′,σ(k1)êB,K,σ(k2)], (S39)

F̂ (h)
k1,k2

≡
∑

σ

[ê†T,K,σ(k1)êB,K′,σ(k2) + ê†B,K,σ(k1)êT,K′,σ(k2)], (S40)

where the hole creation operator is understood as ĥ†T/B,σ(q) ≡ êT/B,v,σ̄(−q). The parameter Va is determined by

the Coulomb potential at |K − K ′| (2πe2/ε|K − K ′|, see also Refs. [24, 25]) and, since both scattered particles
switch layers, by the corresponding wave function overlaps. Given the small interlayer separation l ≃ 0.6 nm and
strong hole tunneling (on the order of tens of meV), these overlaps can be non-negligible. In our approach, Va is a
phenomenological parameter that is further assumed to be momentum-independent.

In what follows, we demonstrate that Eq. (S38) leads to the intervalley interlayer exciton hybridization of the form:

Ĥintervalley = ŴinterX̂
†
B,KX̂T,K′ + h.c. (S41)

We evaluate the strength Ŵinter within second-order perturbation theory, cf. Eq. (S49), and show that its mean

expectation value can be nonzero ⟨Ŵinter⟩ ≠ 0 even if the system does not spontaneously break any of the symmetries
mentioned in Sec. IX, thereby providing an interpretation of the weak intensity asymmetry in, for example, Fig. S9,
as well as optical size effects discussed in Sec. V.

A. Anomalous terms and the U(1) layer symmetry

Before we proceed, let us mention that strictly speaking, the Hamiltonian in Eq. (S38) contains terms such as

∼ ê†T,Kê
†
T,K′ êB,KêB,K′ , which do not conserve the total number of particles in the top or bottom layers, explicitly

breaking the U(1) layer symmetry. To illustrate this, we write for these processes a similar reduced expression as in
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Eq. (S20) (as in Sec. IX, we disregard the electron spin):

Va
A

∑

k,k′

{
∆̂x(k)∆̂x(k

′) + ∆̂y(k)∆̂y(k
′) + ∆̂z(k)∆̂z(k

′)− ∆̂0(k)∆̂0(k
′) + h.c.

}
. (S42)

Clearly, these anomalous terms in Eq. (S42) break the U(1) layer symmetry.
Apart from the processes in Fig. S15, anomalous terms generally appear in the Hamiltonian through the density-

density Coulomb interactions and have the structure ê†T,αê
†
T,β êB,γ êB,δ. These terms, involving electron layer switching

(with electron density operators of the form ê†T,αêB,β), are expected to be suppressed due to wave function overlap
considerations. Assuming the AQN is a good quantum number – supported by the small Fermi momentum relative to
the lattice scale momentum, and experimentally by the absence of electron tunneling [16] – the C3-symmetry imposes

that the anomalous terms take the form ê†T,Kê
†
T,KêB,K′ êB,K′ , ê†T,K′ ê

†
T,K′ êB,KêB,K, or ê

†
T,Kê

†
T,K′ êB,K′ êB,K. For the first

two types of terms, the involved density operators have intervalley character such as ê†T,KêB,K′ , so that the involved

Coulomb processes carry a large momentum of the order K − K ′. Therefore, we expect that the corresponding
anomalous terms are weak compared to the primary Coulomb interactions in Eq. (S14). Indeed, a similar estimate
as in Sec. IX for n = 2× 1012 cm−2 gives a value ∼ Van/4 ≃ 1meV, which is about two orders of magnitude weaker
than in Sec. IXA if we substitute Va = 2πe2/ε|K − K ′|, i.e., if we neglect the wave-function overlaps that might

further suppress this estimate. For the third direct processes of the form ê†T,Kê
†
T,K′ êB,K′ êB,K, these interactions do

not necessarily occur at large momenta near K − K ′. However, the corresponding density operators at a finite

momentum q have contributions from electronic states with different AQNs, such as ê†T,K(k + q)êB,K(k). Due to
this AQN mismatch for electrons in the same valley but opposite layers, these contributions should vanish for q → 0
(otherwise, electron tunneling would be allowed, in disagreement with the experiment of Ref. [16]). Hence, the
anomalous terms from direct interactions are also expected to be suppressed in the low-density regime.

We finally note that the anomalous terms break the U(1) symmetry down to Z2, i.e., the Hamiltonian remains

symmetric under ∆̂a → −∆̂a. Therefore, a local expectation value ⟨∆̂a⟩ ̸= 0 breaks this Z2 symmetry. This implies
that even if there are anomalous terms, which are not suppressed, we get order parameter fluctuations that involve
not only the magnitude of ⟨∆̂a⟩ ≠ 0 but also its sign. As in Sec. IX, we, thus, expect such fluctuations to manifest in
the stochastic anti-crossing.

B. Second-order perturbation theory

We write the exciton wave function as:

X̂†
T,K′(k) =

1√
A

∑

q

ΨX(q)ê†T(K
′ + q + k/2)ĥ†B(−K ′ − q + k/2), (S43)

where k (q) is the XT,K′-exciton center-of-mass momentum (momentum of the relative motion). In TMDs, the
binding energy of this state is in the hundreds of meV range, and the Bohr radius aX is on the order of a few
nanometers. Consequently, the momenta of both the electron and hole of this exciton are large, much larger than
the Fermi momentum kF . From the perspective of the XT,K′ -state, the hole-flip process scatters the XT,K′-exciton
into an electron-hole pair, with the hole now belonging to the top K-valley. Both particles are expected to have
large momenta on the order of a−1

X . We remark that the form in Eq. (S43) is only approximate, as i) the XT,K′ -state
is expected to have appreciable spectral weight also in the K-valley and ii) the exciton linewidth is rather large
γ ≃ 10meV in MoS2-homobilayers [26].

From the energy perspective, it seems most intuitive to understand the hole-flip Hamiltonian as if it couples the
X̂T,K′ -exciton to the lowest-energy momentum-indirect exciton ŶT,K′ at the cost of perturbing the two involved Fermi

seas. This excitonic ŶT,K′ -state should have properties similar to the A-excitons, except it is optically dark. More
generally, we will consider not only the lowest-energy intralayer state but the entire Rydberg series, encompassing
both bound and scattering states and fully covering the phase space of the involved electron-hole pair. The Rydberg
states are expressed as:

Ŷ †
T,K′,ν(k) =

1√
A

∑

q

Ψν(q)ê
†
T(K

′ + q + k/2)ĥ†T(−K − q + k/2). (S44)

Here, the index ν runs over the entire Rydberg series, while k is the center-of-mass momentum – the Rydberg series
of the two-dimensional hydrogen atom is known analytically [27–30].
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FIG. S15. The hole flip (left) occurs through a scattering process, where the hole of the XT,K′ -state transitions from the
bottom K′-valley to the top K-valley, accompanied by one of the two depicted Fermi sea electron scatterings. Note that
when an electron scatters, its spin and AQN are both preserved. The electron flip (right) occurs similarly: the electron of the
intermediate YT,K′ -state transitions from the top K′-valley to the bottom K-valley, accompanied by one of the two conduction-
band electron scatterings.

The hole-flip matrix elements can then be written as:

Û(p, ν;p′) ≡ ⟨YT,K′,ν(p)| Ĥint |XT,K′(p′)⟩ = −VaA Jν(p,p
′)
∑

q

F̂ (h)
q+p′,q+p, (S45)

where

Jν(p,p
′) =

1

A
∑

k

Ψ∗
ν(p

′ − k − p/2)ΨX(p′/2− k). (S46)

Similarly, the electron-flip matrix elements are given by:

V̂(p′′;p′, ν) ≡ ⟨XB,K(p
′′)| Ĥint |YT,K′,ν(p

′)⟩ = Va
A J̃ν(p

′′,p′)
∑

k

F̂ (e)
k−p′′,k−p′ , (S47)

where

J̃ν(p
′′,p′) =

1

A
∑

k

Ψ∗
X(k − p′ + p′′/2)Ψν(k − p′/2). (S48)

Within second-order perturbation theory, Eqs. (S45) and (S47) result in the following effective interlayer exciton
hybridization of the bright excitons with p′ = p′′ = 0:

Ŵinter ≈ −V
2
a

A2

∑

p,ν

∑

k,q

J̃ν(0,p)Jν(p,0)

EX(0)− Eν(p) + iγν
F̂ (e)

q,q−pF̂ (h)
k,k+p, (S49)

where Eν(p) = Eν+p
2/(2MY ), EX(p′) = EX+p′2/(2MX), and γν(n, T ) represents the decay rate of the intermediate

state. We neglected the energy correction to the denominator coming from perturbing the involved Fermi seas – such
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correction is expected to be small as it is set by the Fermi energy, which is typically much smaller than the energy
detuning |δν |, δν = Eν − EX . For a similar reason, the entire momentum dependence of the denominator can be
disregarded. We note that the electron flip can occur first, followed by the hole flip, and the corresponding expression
can be computed using the same analysis as outlined above. It is instructive to rewrite Eq. (S49) in the reduced form
as in Eq. (S21) using the order parameter operators (S19) (again, we disregard the electron spin):

Ŵinter →− V 2
a

∫
d2k

(2π)2

∫
d2k′

(2π)2

∑

ν

J̃ν(0,0)Jν(0,0)

EX − Eν + iγν

{
2[∆̂†

x(k)∆̂x(k
′) + ∆̂†

y(k)∆̂y(k
′)] (S50)

+ [∆̂†
x(k)∆̂

†
x(k

′) + ∆̂†
y(k)∆̂

†
y(k

′)] + [∆̂x(k)∆̂x(k
′) + ∆̂y(k)∆̂y(k

′)]
}

− V 2
a

∫
d2k

(2π)2

∫
d2k′

(2π)2

∑

ν

J̃ν(0,k − k′)Jν(k − k′,0)
EX − Eν + iγν

{
− [∆̂0(k)− ∆̂z(k)][∆̂0(k

′) + ∆̂z(k
′)]

− [∆̂†
0(k)− ∆̂†

z(k)][∆̂
†
0(k

′) + ∆̂†
z(k

′)] + n̂B,K′(k)(1− n̂T,K(k
′)) + n̂T,K′(k)(1− n̂B,K(k

′))
}
,

where n̂T,K(k) ≡ ê†T,K(k)êT,K(k), etc.

The expression in Eq. (S50) suggests that the expectation value ⟨Ŵinter⟩ can be nonzero in the regime when the
magnitude of the order parameter has developed but the phase is fluctuating. This arises because the coupling in
Eq. (S50) contains terms determined solely by the magnitude of the order parameter, in contrast to the intravalley
interlayer exciton hybridization in Eq. (S21), which depends on the relative phase between the hole tunneling and
the spatially fluctuating interlayer coherence order parameter. Additionally, the last two terms in Eq. (S50) indicate
that finite hybridization can occur even in a Fermi liquid state. We note, however, that the coupling in Eq. (S50) is
expected to be small due to the factor V 2

a , consistent with the experimental observations in Fig. 2E,F of the main
text.
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