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We present a novel theoretical approach for computing and analyzing two-dimensional spec-
troscopy of bosonic collective excitations in disordered many-body systems. Specifically, we employ
the Keldysh formalism to derive the nonlinear response and obtain two-dimensional spectroscopy
maps with particular emphasis on the rephasing sector, which allows to disentangle different sources
of broadening. Our many-body approach successfully distinguishes elastic and inelastic scattering
mechanisms contributing to the excitation linewidth. Additionally, using a non-perturbative con-
serving approach, we demonstrate that the echo peak exhibits a universal asymmetric shape in
the sole presence of static disorder, a feature that remains robust against quantum fluctuations.
This is in stark contrast to the standard theory based on isolated two-level systems, which fails to
account for the dispersive nature of excitations and the interactions between different momentum
components.

I. INTRODUCTION

Linear response theory underlies most of the tradi-
tional experimental techniques in quantum many-body
physics. In such experiments, results can be interpreted
from the perspective of two-point correlation functions of
appropriate operators. In the case of electron systems,
paradigmatic examples include density operators for X-
ray scattering [1, 2], current operators for optical spec-
troscopy [3] and transport [4, 5], and electron creation
and annihilation operators for STM [6] and ARPES [7]
experiments. Collective excitations manifest themselves
as peaks in the response functions and provide clear sig-
natures of underlying many-body states. Investigations
of collectives modes using linear response probes have
been ubiquitous in physics, chemistry, biology, and ma-
terial science. However, despite their immense accom-
plishments, these techniques also present certain short-
comings. For instance, understanding the origin of the
excitation broadening can be challenging since different
mechanisms often result in similar lineshapes. The ex-
tension of linear response measurements to the nonlin-
ear regime, and the consequent access to higher-order
correlators, has opened the door to circumvent some of
these limitations. Of special relevance are the accom-
plishments of nuclear magnetic resonance (NMR) [8–14]
and its optical analogs termed multidimensional coherent
spectroscopies (MDCS) [15–22]. For instance, these ap-
proaches have been employed to identify different interac-
tion mechanisms between excitations [23–25], resolve en-
ergy transfer pathways [26–29], classify bound states [30–
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32], and disentangle homogeneous and inhomogeneous
broadening [33–35].

In condensed matter systems, the characteristic low-
energy excitations typically lie in the terahertz frequency
(THz) range, including Josephson plasmons in high tem-
perature superconductors [36–41], magnons [42–44], and
cyclotron orbits in 2D electron gas [45, 46], among many
others. Historically, the well-known THz gap [47] has
hindered the use of nonlinear probes in studying said
low-energy excitations. However, the recent progress
in terahertz technology [48, 49] has led to the develop-
ment of a terahertz analogue of multidimensional opti-
cal spectroscopies, known as two-dimensional terahertz
spectroscopy (2DTS) [50–61]. In recent years, this tech-
nique has been applied to a wide-range of condensed mat-
ter systems, including superconductors [58, 62–67], cor-
related metals [68] and insulators [69], ferroics [70–74],
topological materials [75–77], and spin liquids [78–80] and
ices [81].

Similarly to MDCS, 2DTS is poised to be a promising
technique to disentangle different sources of broadening
in a correlated many-body system. However, the appli-
cability of the standard interpretation in terms of ho-
mogeneous and inhomogeneous broadening in a system
of isolated two-level systems (ITLS) becomes question-
able when studying collective modes. This is particu-
larly relevant when studying the influence of randomness
and spatial inhomogeneity, since the effects of disorder
strongly depend on the nature of excitations. In the case
of dispersive collective excitations, elastic scattering due
to a disorder potential changes their momentum but not
energy. In the standard ITLS treatment, this would be
misinterpreted as homogeneous broadening, despite the
collective mode having an infinite lifetime in the absence
of disorder.
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FIG. 1. (a) Cartoon of the standard two-dimensional tera-
hertz spectroscopy protocol. External perturbations EA and
EB are sent with a relative time delay τ (b). After a waiting
t with respect to the arrival of the second pulse, the measure-
ment of the resulting nonlinear signal Snl is performed.

This paper provides a new theoretical framework for
analyzing 2DTS for collective excitations in the pres-
ence of static spatial disorder. Employing a conserving
field-theoretical approach in the Keldysh formalism we
compute the third-order nonlinear response of a many-
body system and obtain the characteristic asymmetric
(almond-like) echo peak signature in the 2DTS proto-
col. In particular, we demonstrate the non-perturbative
nature of the rephasing physics and the necessity to con-
sider the infinite series of non-crossing disorder diagrams.
In the sole presence of static disorder, we find a uni-
versal echo peak asymmetry independent of the disorder
strength and robust against quantum fluctuations. This
is in stark contrast to the ITLS scenario where the echo
becomes more asymmetric as disorder increases. Finally,
when both elastic and inelastic scattering are present, we
demonstrate how two-dimensional spectroscopy in collec-
tive excitations is capable of disentangling the two broad-
ening mechanisms.

The rest of the paper is organized as follows. In Sec. II,
we introduce the 2DTS protocol and provide an intuitive
discussion of the signatures of disorder in the 2D maps.
In Sec. III, we describe our theoretical approach to com-
pute the nonlinear 2D maps within the Keldysh path in-
tegral formalism and provide a general equation for the
third-order susceptibility in terms of the linear suscepti-
bility and the “dressed” vertex. In Sec. IV, we outline
a conserving calculation of the third-order susceptibility
and the associated 2D map for a system without disor-
der. Then, in Sec. V, we detail the calculations of the 2D
map considering static disorder. In Sec. VI, we discuss
the signatures of the 2D map when both elastic and in-
elastic scattering are considered simultaneously. Finally,
in Sec. VII, we present our conclusions and outlook.

II. ECHO PEAK IN MANY-BODY SYSTEMS:
ITLS AND COLLECTIVE EXCITATIONS

To set notations for subsequent discussion of disor-
dered quantum many-body systems, we first describe
the standard 2DTS protocol and introduce the two-
dimensional (2D) map. Then, we provide a qualitative
discussion on the signatures of disorder in the 2D map

for ITLS and collective excitations, and motivate the ne-
cessity for a reformulation of the interpretation of the
disorder effects.
The standard 2DTS protocol can be summarized as

follows: An external perturbation consisting of two iden-
tical excitation pulses, denoted EA and EB , separated by
a time delay τ > 0, is sent towards the sample. After the
arrival of the second pulse, the system is left to evolve un-
perturbed for time t > 0, after which the measurement is
performed to obtain the signal S(τ, t), see Fig. 1. In this
type of protocols, both the linear contributions in EA or
EB , and the self-nonlinearities proportional to E3

A and
E3

B are usually filtered out experimentally. This leaves
behind a purely nonlinear signal Snl(τ, t) with terms pro-
portional to E2

AEB (A) and EAE
2
B (B) . Assuming the

pulses to be perfect Dirac delta functions, the E2
AEB sig-

nal can be obtained from the third-order nonlinear re-
sponse χ(3) via

SA
nl(t, τ) = 3

∫ 3∏
i=1

dωi

2π
χ(3)(ω3, ω2, ω1)e

−i(ω1+ω2)τe−iω̄t,

(1)
and similarly for the EAE

2
B signal:

SB
nl(t, τ) = 3

∫ 3∏
i=1

dωi

2π
χ(3)(ω3, ω2, ω1)e

−iω1τe−iω̄t, (2)

where ω̄ = ω1+ω2+ω3. The 2D map is subsequently ob-
tained upon performing a double Fourier transform with
respect to t and τ restricted to t > 0 and τ > 0. Of
special interest in multidimensional spectroscopy is the
so-called echo peak, or rephasing peak, a nonlinear sig-
nal contained in the EAE

2
B contribution of the 2D map,

analogous in nature to the spin echo [82]. This peak
has been successfully employed in NMR and MDCS to
disentangle and quantify the presence and strength of
homogeneous and inhomogeneous broadening [83]. We
now discuss and contrast the echo peaks for ITLS and
collective excitations
First, consider an ensemble of non-interacting ITLS

spatially distributed such that their resonance frequency
depends on their position, see Fig. 2(a). In the sim-
plest theoretical treatment, one introduces the linewidth
γ, characterizing the T1 and T2 processes (homogeneous
broadening), and assumes a Gaussian distribution for the
resonance frequencies with mean ω0 and variance σ (in-
homogeneous broadening). Under these assumptions, the
time-domain echo nonlinearity in a 2-pulse protocol can
be obtained exactly:

S(τ, t) ∼ θ(τ)θ(t)e−iω0(t−τ)e−γ(t+τ)e−σ2(t−τ)2/2. (3)

The success of two-dimensional spectroscopy in disentan-
gling homogeneous and inhomogenoeus broadening is due
to the rephasing nature of the echo peak, which exhibits
a distinct time-dependence on the terms proportional to
γ and σ. This distinct time-dependence results not only
in a characteristic almond-like shape for the echo peak,
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FIG. 2. (a)-(b) Cartoon of the effects of disorder on ITLS and collective excitations. In (a) an ensemble of two-level systems
(spin precession) have a transition energy that depends on their position in space. Their collective signal presents a damping
due to their intrinsically different oscillation frequencies. In (b) a collective excitation undergoes elastic scattering events due to
the presence of disorder in the sample and becomes less well-defined after successive collisions. This series of scattering events
results in a finite lifetime for the excitation. (c)-(d) Echo peak and slices along the diagonal (teal) and cross-diagonal (orange)
of the echo peak for ITLS and collective excitations. In the sole presence of static disorder, the echo peak for ITLS (c) is
strongly asymmetric with a cut along the cross-diagonal becoming infinitely sharp; for collective excitations (d) the asymmetry
is less pronounced and the cut along the cross-diagonal presents a finite width. Note that for the sake of visualisation, we have
included a finite small damping to the ITLS echo peak of η/m = 0.01, since otherwise, it would be infinitely sharp along the
cross diagonal. (e) The striking differences in the signatures of the echo peak between ITLS and collective excitations (CE) can
be efficiently captured by the ratio of full-width at half maximum of the two-diagonal cuts α. Furthermore, as we demonstrate
in Sec. V, for collective excitations this ratio exhibits a robust value of α ≈ 0.75 within our approximation and in two spatial
dimensions. (f) Schematic of the four-wave mixing process corresponding to the EAE

2
B sector in the 2DTS protocol in the

presence of disorder.

but also enables a simultaneous fitting procedure for γ
and σ based on two orthogonal diagonal cuts of the echo
peak along ωt ± ωτ [83], see Fig. 2(a) and (c).

Consider now a many-body system in the absence of
disorder, when collective modes are infinitely long lived.
When the system is driven by light, excitations are cre-
ated or annihilated with zero momentum, causing them
to oscillate at the mass (resonance) energy without any
damping. However, if the medium is disordered, for ex-
ample, due to the presence of static impurities, elastic
scattering events will result in a finite lifetime leading to
broad peaks in the 2D map; see Fig. 2(b) and (d). It is
useful to contrast collective mode eigenstates in the pres-
ence of static disorder with propagators at specific mo-
menta. While the former have well defined energies and
infinite lifetimes (in the absence of interactions between
modes), the latter have finite broadening, corresponding
to finite lifetimes, and described mathematically by the
self-energies of individual excitations Σ. We note, how-
ever, that when analyzing the nonlinear response of col-
lective excitations, we need to go beyond the analysis of
single particle lifetimes and take into account correlations
that develop between different momentum components
of the photoexcited collective modes. In the language of
field theory, this means that we need to include ”vertex
corrections” (see sections IV and beyond for details).

We now contrast the physical picture of disorder in-
duced excitation lifetimes for dispersive collective modes
and ITLS. In the latter case, the different modes are, at

least within standard theoretical treatments, completely
uncorrelated, and thus static disorder does not affect the
intrinsic lifetime of each individual mode. However, the
correlations present in the quantum many-body system
do not allow for a separation between homogeneous and
inhomogeneous broadening, since as we have established
static disorder alone will result in a finite excitation life-
time. An interpretation based on such a separation can
therefore lead to misleading conclusions. As we show in
this paper, distinguishing between elastic and inelastic
scattering events provides a more suitable separation of
broadening mechanisms. These striking differences can
be efficiently captured by the ratio of the full-width at
half maximum of the diagonal cuts of the 2D map α,
see Fig. 2(e). The ratio α decreases with the disorder
strength for ITLS, whereas for collective excitations, this
ratio exhibits a robust value of α ≈ 0.75. We demon-
strate that this is a universal property of many-body sys-
tems with a bosonic collective mode and small quantum
fluctuations, see Sec. V.

Having established the breakdown of the separation
between homogeneous and inhomogeneous broadening,
we now address the rephasing nature of the echo peak in a
many-body system. In the simplest scenario, the essence
of the echo peak and its characteristic almond shape relies
on the system evolving with the same frequency during
time delays τ and t. If this is to originate from scattering
events, then these scatterings must correlate the excita-
tions present during τ and t, causing them to explore
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states with the same energy. These correlated scattering
events between different excitations correspond to a four-
wave mixing process which contains vertex corrections Γ,
i.e. two particle corrections, arising from the presence of
disorder; see Fig. 2(f). From these observations, two con-
clusions emerge naturally. First, the rephasing physics
arises from disorder effects within the four-wave mixing
process, i.e., vertex corrections. Second, not all vertex
corrections have a rephasing nature, implying that only
a partial rephasing is possible. In conclusion, rephasing
in collective excitations is possible, although only par-
tially, and thus one can also expect a similar, but not
identical, almond-like signature in the echo peak, com-
pare Fig. 2(b) and (d). Furthermore, from a theoretical
point of view, disorder induced vertex corrections must
be taken into account to capture rephasing effects.

III. NONLINEAR RESPONSE IN THE
KELDYSH FORMALISM

This section provides a general introduction to the
computation of third-order nonlinear responses in the
Keldysh formalism, alongside an intuitive understand-
ing of the diagrammatics involved. We follow closely
throughout [84–87] for the field theory discussion and [15]
for the nonlinear response. The structure of this section is
as follows: In subsection IIIA, we introduce the generic
φ4 model to study the nonlinear response of collective
bosonic excitations and discuss how to express nonlinear
response functions as correlators in the Keldysh formal-
ism. In III B, inspired by the lowest order approximation
in interaction strength to the nonlinear response, we ar-
gue for the general diagrammatic structure of χ(3).

A. Model and General considerations

We begin by considering a non-interacting relativistic
action for a real scalar bosonic field φ of the form

S0[φ] =

∫
C
dt

∫
ddr

1

2

[
(∂tφ)

2 − v2 (∇φ)2 −m2
0φ

2
]
,

(4)
where C denotes the Keldysh contour, v the velocity, and
m the mass. For further reference, the density of states
of the theory is given by

N (ϵ) = Θ(ϵ−m0)
Sd

(2π)d
ϵ

v2
(ϵ2 −m2

0)
d
2−1. (5)

To perform the integral along the Keldysh contour we
introduce two bosonic fields φ+ and φ− which reside in
the forward and backward parts of the time contour, re-
spectively. The non-interacting retarded, advanced and
Keldysh Green’s functions are given in the Keldysh ro-

tated basis φ± = φcl ± φq by

iDαβ
0 (r− r′, t− t′) =

∫
D[φ]φα(r, t)φβ(r′, t)eiS0[φ

cl,φq],

(6)
with α, β = {cl, q}, which further presents causality
structure typical of the Keldysh propagator:

Dαβ
0 =

(
DK

0 (r − r′, t− t′) DR
0 (r − r′, t− t′)

DA
0 (r − r′, t− t′) 0

)
. (7)

Note that D includes 1/Tr{ρ0}, with ρ0 the equilibrium
density matrix, following the standard Keldysh path in-
tegral measure [85]. Equivalently, the Green’s functions
in frequency-momentum representation are given by

DR/A
0 (k, ω) =

1

2

1

(ω ± iη)2 − ϵ2k
,

DK
0 (k, ω) = F (ω)

[
DR

0 (k, ω)−DA
0 (k, ω)

]
= − iπ

2ϵk
coth

( ω
2T

)
[δ(ω − ϵk)− δ(ω + ϵk)] . (8)

Here, ϵk =
√
m2

0 + v2k2 is the bare energy-momentum
dispersion relation, η = 0+ is the (anti-)causal regular-
ization, F (ω) = coth(ω/2T ) is the equilibrium distribu-
tion function, and T is the temperature of the system.
We consider an interaction between the bosons given by
a generic φ4 term:

Sint[φ] = −
∫
C
dt

∫
ddr

g

4!
φ4

= −
∫ ∞

−∞
dt

∫
ddr

g

3

[
φcl(φq)3 + (φcl)3φq

]
. (9)

In order to evaluate the response of the system to an ex-
ternal perturbation, we further introduce a drive/source
term in the action given by

Sdrive[φ, j] =

∫
C
dt

∫
ddr jφ

=

∫ ∞

−∞
dt

∫
ddr 2

(
jclφq + jqφcl

)
, (10)

and define the partition function Z[j] as

Z[j] =

∫
D[φcl, φq]eiS[φcl,φq,jcl,jq]+iSdrive[φ,j], (11)

where S[φ, j] = S0[φ]+Sint[φ]. In the Keldysh formalism,
the measured physical field is given by

〈
φcl(t)

〉
and the

response functions are obtained by differentiation with
respect to the physical sources jcl. The third-order re-
sponse function in the time-momentum space can be sim-
ilarly computed by further differentiating with respect to
classical sources:
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χ
(3)
k;k1,k2,k3

(t3, t2, t1) =
δ3
〈
φcl
k (t1 + t2 + t3)

〉
δjclk3

(t1 + t2)δjclk2
(t1)δjclk1

(0)
= − i

2

δ4Z

δjqk(t1 + t2 + t3)δjclk3
(t1 + t2)δjclk2

(t1)δjclk1
(0)

∣∣∣∣
j=0

= −8i
〈
φcl
k (t1 + t2 + t3)φ

q
k3
(t1 + t2)φ

q
k2
(t1)φ

q
k1
(0)
〉
, (12)

such that the expectation value of the boson field at time t is given by〈
φcl
k (t)

〉(3)
=

1

L3d

∑
k1,k2,k3

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
χ̃
(3)
k;k1,k2,k3

(ω3, ω2, ω1) jk3
(ω3)jk2

(ω2)jk1
(ω1) e

−iω̄t, (13)

where we introduced the shorthand notation
χ̃
(3)
k;k1,k2,k3

(ω3, ω2, ω1) ≡ χ
(3)
k;k1,k2,k3

(ω1 + ω2 +

ω3, ω2 + ω1, ω1) Note that causality imposes that
χ(n)(tn, tn−1, . . . , t1) = 0 if tj < 0. Furthermore, in
the absence of interactions, it is clear that Eq. (12)
vanishes due to the presence of ⟨φqφq⟩ in all possible
Wick contractions. We note that some of the results
presented here can also be found in the context of the
one-dimensional transverse field Ising model in [88].

B. Diagrammatic representation of χ(3)

In this work, we focus on the situation where the field
perturbing the system, j, couples to the zero-momentum
component of the bosonic field, φ, and measurements of
the bosonic mode are also performed at k = 0. This is
indeed the standard scenario when light is used to drive
an excitation in a condensed matter system, for example
in Ref. [58]. Therefore, we drop the spatial/momentum
index in the rest of this subsection, understanding that
light always couples to the collective excitation at zero
momentum.

To lowest order in the interaction the third-order non-
linear response is given by (see Appendix A for a detailed
derivation):

χ̃
(3)
mf (ω1, ω2, ω3) = −g χ(1)(ω1)χ

(1)(ω2)χ
(1)(ω3)χ

(1)(ω̄),
(14)

which readily recovers the “mean field” response obtained
in [89] from an equations of motion formulation. Hence-
forth, we will use χ̃(3) to denote the frequency shifted
third-order response function, c.f. Eq (14). The dia-
grammatic representation of χ(3) in Eq. (14) allows for a
rather intuitive interpretation of the processes involved
in the nonlinear response. The first-order perturbative
calculation can be represented as

χ̃
(3)
mf (ω3, ω2, ω1) = . (15)

The dashed-to-solid line represents the retarded Green’s
function of the boson and thus establishes the arrow of
time. The dot simply denotes the nonlinearity strength
g coming from the φ4 term in the action. Thanks to the

built-in causality, the diagram Eq. (15) can naturally be
interpreted as a four-wave mixing process. First, three
collective modes with frequencies ω1, ω2, and ω3 are ex-
cited in the material (note the possibility of oscillating at
negative frequencies). At some point, the three excited
modes are combined via a four-wave mixing process into
a new mode with frequency ω̄ = ω1+ω2+ω1 which then,
propagates through the material; this is the mode that
is eventually measured by the protocol. The separation
between the incoming and outgoing modes is naturally
built in the Keldysh formalism and provides an intuitive
understanding of the processes involved in the nonlinear
response.
From the diagrammatic representation of χ(3) in

Eq. (14) we expect that the full nonlinear susceptibil-
ity can be obtained by dressing the external propagators
via the self-energy Σ and by including vertex corrections
to the four-wave mixing process Γ, see Appendix B for a
formal proof. That is, the external leg structure of the
diagram remains the same; this can be depicted diagram-
matically as

χ̃(3)(ω3, ω2, ω1) = iΓ(ω3, ω2, ω1)

4∏
i

χ(1)(ωi)

= , (16)

with the dressed propagator given by Dyson’s equation:

. (17)

We thus conclude that once Γ and χ(1) are known, we
have fully determined the third-order nonlinear response.
Furthermore, from this interpretation of the χ(3) re-
sponse, it becomes clear that the location of the peaks
in the 2D map is determined by the excitation linewidth,
or equivalently by the support of the imaginary part of
the self-energy. The vertex Γ can only “redistribute” the
weight in the vicinity of said support.
In this work, we adopt a conserving nonperturba-

tive approach based on the Baym-Kadanoff construc-
tion [90, 91]. This allows us to obtain the vertex Γ and
linear response χ(1) in a self-consistent manner. However,
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(a)

(b)

FIG. 3. (a) Luttinger-Ward functional approximation to low-
est order in interaction and subsequent contributions to the
self-energy and vertex. (b) Diagrammatic representation of
the Bethe-Salpeter equation for the full vertex within the RPA
approximation.

we envision that other nonperturbative approaches [92–
94], such as the functional renormalization group, could
be employed to obtain the 2D map beyond our current
analysis.

To demonstrate the capabilities of our framework, we
provide in the next section a derivation of χ(3) in the
absence of disorder, which already shows the effects of
many-body correlations in the 2D map. The reader in-
terested only in the effects of disorder in the nonlinear
response, can directly proceed to Sec. V.

IV. RANDOM PHASE APPROXIMATION

As an initial demonstration of the computational ca-
pabilities of the formalism developed in the previous sec-
tion we consider, in the absence of static disorder, the
lowest-order conserving approximation in g, correspond-
ing to the Random Phase Approximation (RPA). This
section is divided into two subsections. The first sub-
section focuses on the detailed calculation of χ(3) within
the RPA, providing all the relevant diagrams and deriv-
ing the corresponding self-energy and vertex corrections.
The second subsection examines the signatures of the 2D
map peaks through both analytical results and numeri-
cal simulations, while elucidating important connections
with linear response measurements and previous theoret-
ical work [89].

A. χ(3) within RPA

In this subsection, we employ the Keldysh formalism to
compute χ(3) within the (RPA). In order to have a con-
serving perturbative expansion, we begin by writing the
lowest order approximation of the Luttinger-Ward func-
tional and its resulting contributions to the self-energy
and vertex, see Fig. 3.

1. Self-energy

The self-energy calculation results in a constant term
(potentially diverging depending on the dimensionality)

Σg(ω) =
δΦ[D]

δDR(ω)
= =

ig

Ld

∑
k

∫
dΩ

2π
DK

k (Ω)

(18)
which renormalizes the mass. We subsequently fix the
renormalized bare mass m0 to match the physically ob-
served mass m.

2. Vertex

The bare vertex is obtained by cutting open two
Green’s function from the Luttinger-Ward functional, see
(a) in Fig. 3, and it is simply given by

Γ(0) =
δ2Φ[D]

δDK(ω)δDR(ω)
= = ig, (19)

compare with Eq. (A2).

3. Bubble

The bare bubble can be computed directly as

gB0(ω) = =
2ig

Ld

∑
k

∫
dΩ

2π
DR

k (ω +Ω)DK
k (Ω)

≃ g

2Ld

∑
k

coth
(
ϵk
2T

)
ϵk

[
DR

k (ω + ϵk) +DR
k (ω − ϵk)

]
,

where the second line is a good approximation when
the imaginary part of the self energy is small, in this
case when η is small since Σ is purely real. Moti-
vated by the experiments on the Josephson plasmon of
La2−xSrxCuO4 [58], we evaluate the relevant diagrams at
d = 2, given that the density of states of the low energy
Josephson plasmon model [95] presents the same struc-
ture as that of the φ4 theory at d = 2, Eq. (5). Hence,
in two dimensions and zero temperature, the bubble is
given by

gB0(ω) =
g

2L2

∑
k

coth
(
ϵk
2T

)
ϵk

[
(ω + iη)

2 − 4ϵ2k

]
= − g

8πv2
tanh−1

(
ω+iη
2m

)
ω + iη

. (20)

4. Third-order response

Collecting all the previously computed ingredients, the
vertex correction is simply given by (note that the exter-
nal legs have been amputated)
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(a) (b)

(c)

FIG. 4. (a) Two-sided Feynman diagrams for bosonic excitations. The solid arrows indicate the interaction with the first and
second pulse EA and EB , while the dashed arrows represent the measurement. First two diagrams correspond to the ITLS-type
paths, while the third is particular of bosonic excitations. Bosonic excitations can explore states beyond |0⟩ and |1⟩ resulting
in asymmetric decay factors in τ and t, as discussed in Sec. IVB, and the possibility to end in a different state than the initial
one after the protocol. (b) Nonrephasing peak experimentally obtained in Ref. [58] and theoretical nonrephasing peak from
Eq. (23), with η/m = 0.1, displaying the vertical elongation typical of bosons. (c) Theoretically obtained absolute-value echo
peak and its cuts along the diagonal (Diag) and cross diagonal (Cross). Both cuts follow the the spectral function of the single

bosonic excitation Imχ(1), in dashed gray, when the vertex corrections are small.

iΓRPA(ω3, ω2, ω1) = permutations 2

1
, (21)

and we arrive directly at the third-order response

χ
(3)
RPA(ω1 + ω2 + ω3, ω1 + ω2, ω1) =

(
2g −

3∑
i=1

g

1− gB0(ω1 + ω2 + ω3 − ωi)

)
︸ ︷︷ ︸

iΓRPA(ω3, ω2, ω1)

χ(1)(ω1)χ
(1)(ω2)χ

(1)(ω3)χ
(1)(ω̄), (22)

with χ(1) given by Dyson’s equation, see Eq. (17). Note
that for B0 ≪ 1, the RPA result asymptotically ap-
proaches the lowest order or “mean field” calculation, see
Eq. (14). In the classical limit, T ≫ ϵk, this result is the
analogue of the sum of both “mean field” and “squeez-
ing” contributions presented in [89]. As such, it serves
as a generalization to the quantum limit and shows that
the Gaussian state Ansatz for χ(3) corresponds to a ver-

tex correction within the RPA.

B. 2D maps within the RPA

The tree level approximation of the nonlinear response,
see Eq. (14), provides a reasonable approximation of the
2D map when the nonlinearity g is small. Assuming a
finite broadening η, the map is given by

S(ωt, ωτ ) ∼
2(6η − i(ωt + 3ωτ ))

(−iη +m− ωt)(−3iη +m− ωt)(iη +m+ ωt)(3iη − 3m+ ωt)(3iη +m+ ωt)(3iη + 3m+ ωt)(−iη +m− ωτ )(iη +m+ ωτ )
.

(23)

This expression provides valuable insights into key as-
pects of the 2D map for nonlinear collective excitations.
First, the poles in Eq. (23) exhibit a damping given by

η or 3η, instead of the expected η from the ITLS per-
spective. The appearance of these two different damping
rates can be understood by tracing the different path-
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ways contributing, for instance, to the echo response, see
Fig. 4(a) for a two-sided Feynman diagram interpreta-
tion. We identify the terms proportional to e−η(τ+t) as
the prototypical echo peaks of ITLS, corresponding to the
first two paths in Fig. 4(a). However, we also obtain an
additional contribution proportional to e−η(τ+3t), which
corresponds to the last path in Fig. 4(a). Note that this
term contains a larger decay rate during the second time
delay due to the fact that three excitations are coexisting
during this time evolution. Since this extra path comes
with a relative minus sign with respect to the previous
two, adding up the three contributions results in an elon-
gated peak along the τ axis (vertically), as can be seen in
Fig. 4 (b), where we present the experimentally observed
nonrephasing peak in [58] and the analytically obtained
following Eq. (23). Such contribution is absent in the
ITLS scenario, and the peaks are fully symmetric. One
may also wonder why they come with the same numerical
factors into Eq. (23) even though there are two diagrams
that contribute to the ITLS-type and one to the other.
This is due to the Bose enhancement factors arising in
the absorption and emission to and from the |2⟩ state.
This results in an extra factor of 2 that balances the
contributions. Note that this vertical elongation effect is
not limited to the tree-level calculation, but it generally
appears in the 2D maps of bosonic excitations [89].

Even more remarkable and of practical interest is the
fact that if vertex corrections are moderate, the cuts
along the diagonal and cross-diagonal of the echo peak co-
incide with each other and with the excitation linewidth,
i.e., with the linear response broadening. To illustrate
this point, we plot in Fig. 4(c) the absolute-value echo
peak and its cuts as well as the imaginary part of the lin-
ear response function for the full RPA response, Eq. (22),
with moderate nonlinearity g/m2 = 0.1. As can be seen,
the overlap is remarkably accurate; note the absence of
any fitting parameters in the comparison. We expect this
feature to break down as soon as vertex corrections start
to play an important role, since the nonlinear response
directly depends on the vertex function; see Eq. (B10).
One of the main contributions of the vertex is the in-
clusion of scattering corrections, as we will see in the
upcoming sections. Therefore, the 2D map contains rele-
vant information about the scattering processes between
the nonlinear collective modes and it can reveal intriguing
phenomena, such as bound state formation, the discus-
sion of which will be presented elsewhere.

V. ELASTIC SCATTERING

This section provides a quantitative discussion of the
effects of static disorder in the 2D maps of collective exci-
tations. The first subsection VA, is devoted to building
an intuitive understanding of the necessary subclass of
diagrams essential to capture the rephasing physics. In
the second subsection VB, we obtain the self-energy and
full disorder vertex in the sole presence of disorder. Then,

in the third subsection VC, we extend the diagrammatic
calculation of χ(3) to account for the disorder-induced
corrections to the self-energy and vertex. The fourth sub-
section VD focuses on the signatures of the echo peak for
correlated collective excitations, with particular empha-
sis on comparing and highlighting the striking differences
between these signatures and those of more familiar un-
correlated excitations typical of ITLS.
We consider an elastic scattering term in the action

given by

Sdis = −
∫
C
dt

∫
ddr

V (r)

2
φ2(r, t)

= −
∫ ∞

−∞
dt

∫
ddr 2V (r)φcl(r, t)φq(r, t), (24)

and assume a disorder distribution which is Gaussian and
flat, i.e., V = 0 and V (r)V (r′) = V 2

0 δ(r − r′). Here,
V 2
0 = V 2ξd, where V 2 characterizes the strength of the

disorder and ξ its (short-range) correlation length. Inte-
grating out the disorder results in a φ-dependent action,
with an effective disorder induced vertex given by

Seff
dis[φ] = i

∫
dt

∫
dt′
∫
dr 2V 2

0

× φcl(r, t)φq(r, t)φcl(r, t′)φq(r, t′).

(25)

The disorder vertex does not directly contribute to the
non-linear response χ(3) by its own due to its causality
structure. Specifically, this implies that there is no lead-
ing term in χ(3) solely proportional to V 2

0 .

A. Diagrammatic intuition of the echo peak

We expand here the intuitive discussion of Sec. II by
adapting it to the language of diagrammatics, and jus-
tify the subclass of diagrams necessary to capture the
echo signature. As previously argued, the origin of the
almond-like structure of the echo peak relies on the sys-
tem evolving with opposite frequencies during time de-
lays τ and t. Following the notation set by Eq. (2), the
first (second) time delay τ (t) is dominated by the dynam-
ics of ω1 (ω̄). This can intuitively be understood since
during the first time delay, only the first pulse (ω1) has in-
teracted with the system, while for the second time delay,
the effect of both pulses (ω̄) is present. Combining this
with the diagrammatic representation in Eq. (16), we de-
duce that the diagrams that have a rephasing nature are
the ones correlating propagators with frequency ω1 and
ω̄, see Fig. 5(a). However, there are other diagrams which
lack this rephasing structure, specifically those that cor-
relate propagators other than the ones with frequencies
ω1 and ω̄, see Fig. 5(b) for two examples. Therefore,
we do not expect perfect rephasing of the collective ex-
citation, even in the sole presence of static disorder, in
contrast to the ITLS scenario.
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Rephasing Not rephasing
(a) (b)

(c)

FIG. 5. Intuition behind the diagrams for the echo peak. In
(a) a disorder line correlates ω1, which corresponds to the first
time oscillation, with ω̄, which corresponds to the second time
delay oscillation. This results in the diagram presenting the
rephasing structure. In (b) two examples of vertex corrections
that do not correlate ω1 with ω̄, resulting in contributions that
do not exhibit the rephasing structure. In (c) the nonpertur-
bative ladder approximation for the disorder that we consider
in this work.

As we discuss in Sec. VC, in order to capture the ef-
fects of disorder, it is not enough to consider the lowest
order disorder corrections. This is due to the intrinsically
nonperturbative character of disorder effects [96]. In this
work, we consider the ladder resummation of the previ-
ously discussed class of diagrams, i.e., the infinite series
of noncrossing disorder lines, see Fig. 5(c). By consider-
ing the infinite set of disorder lines connecting the first
and last excitation, we enhance the correlations between
them which results in a dramatic increase of the rephas-
ing. In the next subsection, we proceed to perform the
ladder resummation of the disorder effects without con-
sidering nonlinearity.

A second family of diagrams involving impurity scat-
tering crossings can be considered beyond the ladder
approximation. However, similar arguments to the
fermionic counterpart can be applied to safely disregard
them in the limit of Eτe ≫ 1 [96, 97], where E is the
typical excitation energy and τe the elastic collision time,
which can be associated to the decay time of the single-
boson propagator. The typical energy scale can be associ-
ated to the boson mass E ∼ m, and the typical collision
time τ−1

e ∼ V 2
0 /v

2m can be obtained from the Born
approximation to the impurity scattering, see Eq. (28).
The validity of the ladder approximation thus relies on
(mv/V0)

2 ≫ 1.

B. Ladder resummation of disorder

The Luttinger-Ward functional for the noninteracting
disordered system is depicted in Fig. 6. By perform-
ing a derivative of the functional with respect to DR(ω)
we obtain the self-consistent self-energy within the Born

(a)

(b)

FIG. 6. (a) Luttinger-Ward functional approximation to low-
est order in disorder. (b) Bethe-Salpeter equation for the
disorder vertex.

(noncrossing) approximation (v = 1 henceforth),

ΣR
V (ω) = =

4V 2
0

Ld

∑
k

DR
k (ω)

=
V 2
0

2π

(
log(Λ)− log

(
ω2 −m2 − ΣR

V (ω)
))
, (26)

where we introduce an UV momentum cutoff and con-
sider it the largest scale in the problem. The self-
consistent solution gives a real contribution to the self-
energy which effectively renormalizes the mass term. To
find the renormalized (physical) mass we utilize on-shell
renormalization and introduce a counterterm δm that
relates the physical mass m to the bare one m0 by
m2 = m2

0 +ReΣV (m)− δm, leading to

δm = m2
0 −m2 +Re

{
ΣR

V (m)
}
. (27)

The counterterm allows us to safely take the limit Λ →
∞, resulting in the self-energy:

ΣR
V (ω) = −iV

2
0

2
sgn(ω). (28)

This demonstrates that the net effect of disorder is to in-
troduce a finite lifetime to the excitation −2 ImΣR

V (m) =
V 2
0 .
Having obtained the disorder contribution to the self-

energy, we proceed to compute vertex correction in the

cl−q−cl−q channel. The bare disorder vertex Γ
(0)
dis can be

obtained within the Baym-Kadanoff formalism by taking
a functional derivative of the self-energy,

Γ
(0)
dis(k;ωa, ωb) =

δΣR
V (ωa)

δDR
k (ωb)

= . (29)

Finally, to obtain the full disorder vertex Γdis we solve the
Bethe-Salpeter equation which is depicted in Fig. 6(b),

Γdis(k;ωa, ωb) =
2V 2

0

1− V 2
0 λ0(k;ωa, ωb)

, (30)

where we have introduced the disorder bubble:

λ0(k;ωa, ωb) =
4

Ld

∑
q

DR
k+q(ωa)DR

q (ωb). (31)
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FIG. 7. Luttinger-Ward functional employed for the compu-
tation of χ(3) in the presence of elastic scattering. In addition
to the RPA contribution and the disorder contribution, the
last term corresponds to an interaction-disorder term.

In two dimensions the disorder bubble can be computed
at vanishing momentum for an arbitrary momentum in-
dependent self-energy

λ0(0;ωa, ωb) =

1

4π

log
[
m2 +

ΣR
V (ωa)
2 − ω2

a

]
− log

[
m2 +

ΣR
V (ωb)
2 − ω2

b

]
ΣR

V (ωa)

2 − ΣR
V (ωb)

2 − ω2
a + ω2

b

.

(32)

Having obtained the RPA resummation without disor-
der and the full disorder vertex without interaction, we
proceed to compute the effects of disorder on the nonlin-
earity.

C. χ(3) with elastic scattering

To capture the echo physics it is essential to include
disorder corrections to the interaction vertex, as dis-
cussed in Sec. II. This is achieved by introducing an addi-
tional disorder-interaction contribution to the Luttinger-
Ward functional illustrated in Fig. 7. Specifically, we
incorporate the infinite series of noncrossing disorder di-

agrams into the functional by using Γdis instead of Γ
(0)
dis .

Notably, the χ(3) obtained when considering only Γ
(0)
dis

does not exhibit the almond-like signature in the echo
peak, although it provides an instructive hint toward the
correct physical mechanism. For completeness, the de-
tails of this calculation, along with the resulting 2D map
signatures, are presented in Appendix C. The necessity
to consider Γdis underscores the non-perturbative nature
of the echo peak signature in relation to disorder and
highlights the potential of 2D spectroscopy as a tool for
probing more complex disorder effects. We will explore
this in greater detail in a forthcoming publication. Fol-
lowing the same structure as in Sec. IV we proceed to
evaluate the necessary diagrams to obtain χ(3) in the
presence of disorder.

1. Self-energy

The interaction and disorder-only contributions to the
self-energy arising from the Luttinger-Ward functional
are given by Eqs. (18) and (26) respectively. There are
two additional contributions coming from the disorder-
interaction part:

ΣR
g−V (ω) =

= 2× 4ig

L2d

∑
k,q

∫
dΩ

2π
Γdis(q;ω,Ω)DR

k (ω)DR
q−k(Ω)DK

q (Ω).

(33)

In order to determine the full Green’s function we nu-
merically solve the self-consistent Dyson equation with
ΣR

tot = ΣR
g +ΣR

V +ΣR
g−V .

2. Vertices

The bare vertices contributing to the nonlinear re-
sponse are given by taking a derivative with respect to the
Keldysh Green’s function. The RPA contribution is given
in Eq. (19) and the interaction-disorder contribution to
the Luttinger-Ward results in the following vertices:

=ig

(
4

Ld

∑
k

DR
k (ωa)DR

−k(ωb)

)
Γdis(0;ωa, ωb)

=ig
2V 2

0 λ(0;ωa, ωb)

1− V 2
0 λ0(0;ωa, ωb)

=ig

(
4

Ld

∑
k

DR
k (ωa)DR

k (ωb)

)
Γdis(0;ωa, ωb)

=ig
2V 2

0 λ(0;ωa, ωb)

1− V 2
0 λ0(0;ωa, ωb)

. (34)

Note that we have employed the inversion symmetry of
our system, ϵk = ϵ−k. Here, λ(0;ωa, ωb) indicates that
we use the full self-energy in Eq. (32) as opposed to
λ0(0;ωa, ωb).

3. Bubbles

The bare bubble arising from the RPA contribution is
given by Eq. (20). The additional interaction-disorder
term gives rise to a second bubble given by:
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gBdis(ω) = = 2ig

∫
dΩ

2π

(
1

Ld

∑
q

DR
q (ω +Ω)DK

q (Ω)

)(
4

Ld

∑
q

DR
q (ω +Ω)DR

q (Ω)

)
Γdis(0;ω +Ω, ω)

= 2ig

∫
dΩ

2π

(
1

Ld

∑
q

DR
q (ω +Ω)DK

q (Ω)

)
2V 2

0 λ(0;ω +Ω,Ω)

1− V 2
0 λ0(0;ω +Ω,Ω)

. (35)

This concludes the calculation of all the necessary ingredients to compute χ(3) in the presence of disorder within our
conserving approximation.

4. Third-order response

Collecting all the pieces together, the vertex iΓ is diagrammatically given by

iΓ(ω3, ω2, ω1) = permutations 2

1

, (36)

where permutations refer to unique pairs without accounting for the frequency ordering. In total there exist three of
such permutations.

D. 2D maps with elastic scattering

Having obtained the vertex and self-energy in the
presence of static disorder, we proceed to compute the
nonrephasing and rephasing (echo) peaks by means of
Eq. (2). In Fig. 8(a) and (b) we present the evolu-
tion of the nonrephasing and echo peaks respectively as
a function of disorder strength for a fixed nonlinearity
g/m2 = 0.01. While the nonrephasing peak only be-
comes broader following the excitation linewidth, the
echo peak exhibits the characteristic almond shape, qual-
itatively analogous to the ITLS signature. In the latter
case of ITLS, the presence of inhomogeneous broaden-
ing results in a symmetric broadening of the nonrephas-
ing peak, while the echo peak reveals the presence of
disorder through its distinctive asymmetric almond-like
shape. However, a key difference of these spectra from
the ITLS scenario is that the shape of the echo peak in
the many-body case remains roughly unchanged as dis-
order increases. The only effect of increasing disorder
is an overall scaling of the peak, c.f. 8(b). We present
in the left panel of Fig. 8(c) the evolution with disor-
der of the ratio between the full width at half maxima
(FWHM) of the diagonal and cross-diagonal cuts of echo
peak (α) for g/m2 = 0.01 in the collective excitation
scenario (CE). The ratio α stays roughly constant as dis-
order grows, highlighting that the almond-like signature
does not become more asymmetric between the diagonal
and cross-diagonal. This differs significantly from the
case of ITLS, also shown in the left panel of Fig. 8(c),

where one expects this ratio to decrease for increasing
disorder. For the localized excitation scenario we choose
for comparison purposes σ2 = V 2

0 and a finite value for
the homogeneous broadening γ/m = 0.1 such that the
ratios for both situations are comparable given the same
initial value of V 2

0 /m
2v2 = 0.2.

To gain a deeper understanding regarding this intrigu-
ing scaling invariance feature, we plot in the middle panel
of Fig. 8(c) the FWHM of the diagonal and cross-diagonal
cuts as a function of V 2

0 for g/m2 = 0.01. As the elastic
scattering strength is increased, the resulting difference
between the widths of the cross-diagonal and diagonal
also increases such that their ratio α is kept constant.
Lastly, we plot in the right panel of Fig. 8(c), the evolu-
tion of the ratio α for different values of V 2

0 as a function
of nonlinearity strength g. This plot reveals a rather
striking feature: The asymmetry between the diagonal
and cross diagonal FWHM is rather insensitive to the
strength of g and V 2

0 , at least within our approximation,
and results in a robust value of the ratio α ≈ 0.75.

A further subtle but important difference with respect
to the ITLS scenario lies in the asymmetry of the almond-
like signature across the diagonal. In the ITLS case,
the Larmor frequencies are typically assumed to follow a
Gaussian distribution, leading to a symmetric echo peak
with respect to reflections along the cross-diagonal, c.f.
Fig. 2. In contrast, for collective excitations driven at
zero momentum, there are no finite momentum states be-
low the mass available to be scattered into via the static
disorder. Consequently, the explored virtual states al-
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FIG. 8. (a)-(b) Evolution of the Nonrephasing and Rephasing (Echo) peaks as the disorder strength V 2
0 increases for g/m2 =

0.01. The Nonrephasing peak (a) becomes broad in the presence of disorder while the Echo peak (b) displays the characteristic
almond-like signature signaling the origin of the broadening to be elastic scattering. (c) Left panel: comparison between the
ratio of the FWHM along the diagonal and cross-diagonal for the collective excitation (CE) and ITLS scenarios. While the ratio
decreases for the ITLS case, in the Many-body scenario the ratio stays roughly constant. Central panel: Extracted FWHM
for the diagonal and cross-diagonal slices of the echo peak as a function of elastic scattering strength for g/m2 = 0.01. The
FWHM increase in such a way that their ratio remains fixed. Right Panel: α as a function of nonlinearity g for different values
of V 2

0 . The ratio α ≈ 0.75 is roughly independent of the values of g and V 2
0 , a robust feature in our perturbative regime of

small g. (d) Slices along the diagonal (teal) and cross-diagonal (orange) of the echo peak for g/m2 = 0.01 and V 2
0 /m

2v2 = 0.8.

The dashed gray line represents the the spectral function Imχ(1), which coincides with the cut along the diagonal for energies
larger than the mass. (e) Diagram and color-plot of the absolute value of the tree-level vertex correction in the presence of
disorder. The vertex correction is most prominent along the ωa = −ωb line heralding the echo nature of the process.

ways have higher energies, resulting in an almond shape
which is elongated exclusively towards higher energies,
c.f. Fig. 8(b). This becomes especially evident when con-
sidering the slices of the echo peak across both diagonals,
see Fig. 8(d). We note that this asymmetry is compatible
with the echo peak experimentally measured in [58]. Fur-
thermore, we also plot in Fig. 8(d) the linear response in
dashed gray and note that it coincides with the diagonal
cut at frequencies larger than the mass. This is in stark
contrast to the discussion in IVB, where in the absence
of strong vertex corrections both diagonal and cross di-
agonal cuts are equivalent and coincide with the spectral
function.

In agreement with the intuition put forward in Sec. II,
we find from a quantitative perspective that the cen-
tral ingredient to capturing rephasing effects in the echo
peak lies in the vertex corrections induced by the static
disorder. In Fig. 8(e) we present a color plot of the
absolute-value disorder-corrected vertex. As can be di-
rectly seen, the contribution is most notable in the vicin-
ity of ωa = −ωb and for |ωa|, |ωb| > m. This asymmetry
between the two diagonals, favoring opposite sign fre-
quencies, heralds the echo physics contained in the ver-
tex correction and, in turn, is responsible for the appear-
ance of the characteristic almond-shaped peak in the echo
nonlinearity. Note however, that although the system is
solely subjected to static disorder, or equivalently elastic
scattering, we do not observe a perfect rephasing, i.e., an
infinitely sharp peak along the diagonal. We thus con-

clude that, although a perfect echo signature is unattain-
able for collective excitations, the almond-shaped signa-
ture can still be employed to identify broadening caused
by elastic scattering.
As a final remark, we highlight that using the stan-

dard fitting forms for ITLS [83] on the peaks in Fig. 8,
and interpreting the extracted inhomogeneous broaden-
ing as the disorder of the system, would lead to incorrect
conclusions. Even though the excitation only experiences
disorder, its broadening effects on the linewidth are mis-
interpreted by the fitting procedure as a homogeneous
contribution. One would thus conclude that the excita-
tion suffers from both homogeneous and inhomogeneous
broadening although only elastic scattering is present.
Hence, it is clear that, in the case of collective excitations,
using the concepts of homogeneous and inhomogeneous
broadening is misleading. We advocate, in this case, for
the use of the more appropriate concepts of elastic and
inelastic scattering.

VI. DISENTANGLING ELASTIC AND
INELASTIC SCATTERING

Having investigated the effects of elastic scattering in
the previous section, we now examine the scenario where
both elastic and inelastic scattering are present, focusing
on the signatures of the echo peak. In principle, inelastic
scattering processes can further contribute to the self-
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FIG. 9. (a) Evolution of the Rephasing (Echo) peak as the
inelastic scattering strength γ increases. The Nonrephasing
peak which displays a significant almond-like signature in the
absence of inelastic scattering starts losing the asymmetry as
disorder is increased. (b) Evolution of the ratio between the
diagonal and cross-diagonal FWHM, α. As the inelastic scat-
tering increases, the echo peak signature becomes more sym-
metric asymptotically tending towards α = 1. (c) Evolution
of the FWHM of both the diagonal and cross-diagonal cuts
as a function of γ for fixed g/m2 = 0.01 and V 2

0 /m
2v2 = 0.6.

When γ is increased the two widths grow while keeping their
difference approximately fixed.

energy and vertex of the collective mode. However, ver-
tex corrections can be safely disregarded in two different
scenarios: when the collective mode is coupled to another
massive collective mode with a significantly larger mass,
and when it is coupled to a continuum of quasiparticles
with a density of states sharply peaked at energies higher
than the mass. In Appendix D, we provide a microscopic
model for the former and demonstrate the irrelevance of
vertex corrections in this situation. Thus, we treat inelas-
tic scattering processes as an incoherent bath, adding to
the self-energy of the collective excitation a phenomeno-
logical damping term of the form iωγ.
Building on the limits of elastic and inelastic scatter-

ing discussed in Sec.V and IV, respectively, we analyze
the echo peak signatures as a function of V 2

0 and γ, for
a fixed nonlinear strength g. The behavior of the echo
peak in the presence of both elastic and inelastic scatter-
ing can be inferred from the results of the limiting scenar-
ios. The elastic scattering strength V 2

0 contributes asym-
metrically to the echo peak, while the inelastic strength
γ contributes symmetrically. The competition between
these two effects determines the overall shape of the peak.
In Fig. 9(a), we present the evolution of the echo peak as
the inelastic scattering increases, with a finite fixed elas-
tic scattering strength V 2

0 /m
2v2 = 0.6. The increase in

inelastic scattering washes away the almond-like signa-
ture, and the peak becomes more symmetric, approach-

ing α→ 1 in the inelastic-dominated limit, see Fig. 9(b).
To gain intuition and disentangle the effects of the two
scatterings, we present in Fig. 9(c) the FWHM of both
the diagonal and cross-diagonal cuts as a function of γ
for a fixed V 2

0 . For a fixed elastic scattering strength,
the FWHMs stay roughly parallel as γ increases, that is,
their difference stays constant. Furthermore, the increase
of the widths is linear with γ, at least within our approx-
imation, as shown in Fig. 9. This signature indicates
that the only processes activated – e.g. by increasing
the temperature – are inelastic scattering events, under
the reasonable assumption that the disorder strength re-
mains constant.
In conclusion, for a fixed disorder, an increase in γ

leads to a less pronounced almond-like signature, indi-
cated by a larger α. This process can also be identified by
investigating FWHMs that grow linearly with increasing
γ. Furthermore, the robustness of α in both the elastic
and inelastic scattering limits, as a function of g and V 2

0 ,
allows to quantify the presence and relative strength of
each scattering processes.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced a new framework for
understanding disorder effects in the nonlinear response
of collective many-body bosonic excitations. Specifically,
we have shown that the standard framework used for
interpreting two-dimensional spectroscopy, originally de-
veloped for isolated two-level systems, breaks down in
the presence of many-body correlations. In particular,
we have emphasized two main points: (i) the necessity to
depart from the concepts of homogeneous and inhomoge-
neous broadening in favor of elastic and inelastic scatter-
ing, and (ii) the impossibility of achieving perfect rephas-
ing in the echo nonlinearity, even in the sole presence
of elastic scattering. We have then developed a quan-
titative field-theoretical approach to calculate the third
order nonlinear response within the Keldysh formalism
and used it to compute the spectra of two-dimensional
terahertz spectroscopy of collective excitations. Through
a perturbative treatment of static disorder, we have
demonstrated that the echo peak exhibits an almond-
like signature, while confirming that perfect rephasing
cannot be attained. Finally, we have provided detailed
experimental signatures in two-dimensional spectroscopy
when both elastic and inelastic scattering processes are
present. These signatures can readily be employed to
investigate experimental echo nonlinearities, assisting in
identifying and quantifying different sources of broaden-
ing for bosonic collective excitations in many-body sys-
tems.
Of particular interest, and serving both as the motiva-

tion and inspiration for this work, is the study of the ef-
fects of spatial inhomogeneity in the superfluid density on
the Josephson plasmon excitations of high temperature
superconducting cuprates. Specifically, the recent ex-
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perimental realization of two-dimensional terahertz spec-
troscopy for the Josephson plasmon of La2−xSrxCuO4

near optimal doping has unearthed intriguing features of
the echo peak as a function of temperature [58]. These
results offer an ideal platform for applying our theoret-
ical developments to extract valuable insights into the
nature and effects of disorder in cuprates. This work is
currently under development and will be presented in a
forthcoming publication.

We envision that our work on two-dimensional spec-
troscopy of collective bosonic excitations can serve as a
foundation for investigating several intriguing open ques-
tions. A natural extension of this work would be to
explore the impact of real space localization of collec-
tive excitations on the echo peak. In this limit, the
standard treatment used in isolated two-level systems
could become accurate, allowing for a perfect rephas-
ing and potentially serving as a probe of localization.
Of particular interest could be the study of the non-
linear response of disordered Bose-Einstein condensates,
where Anderson localization has been observed in the
past [98, 99]. Nonlinear spectroscopy could provide a
new framework for understanding the impact of non-
linearities on disordered systems, potentially leading to
new insights into many-body localization [53]. Sim-
ilarly to how multidimensional-coherent spectroscopy
probes biexcitons and trions [30–32], two-dimensional
terahertz spectroscopy could be envisioned as a tool
to investigate bound states of bosonic collective exci-
tations, for instance biphonons or biplasmons. Extend-
ing our approach to fifth-order nonlinearities would cap-
ture the rephasing of two-quantum coherences and open
avenues for studying the effects of disorder on bound
states. [100]. Furthermore, inspired by the capabilities
of two-dimensional spectroscopy, a promising direction
would be to study the coupling and hybridization be-
tween different fields. For instance, extending the cur-
rent analysis to models with several coupled low-energy
excitation could elucidate unique features of interacting

fields.
Recent advancements have shown that dynamic ma-

nipulation of quantum materials using light can induce
non-trivial correlated phases [101], such as light-induced
ferroelectricity [102, 103] or superconductivity [104–106]
among many others. These out-of equilibrium phenom-
ena present new challenges for understanding the intri-
cate dynamics that govern them. Our formulation within
the Keldysh formalism provides an ideal foundation to
explore the promising capabilities of two-dimensional
spectroscopy in the study of nonequilibrium systems. Fi-
nally, we see potential in using our approach to inves-
tigate disordered magnetic systems and address ques-
tions such as the formation of spin glasses, spin liq-
uids, and fractionalized excitations, extending beyond
the integrable limit, where most previous works have fo-
cused [74, 76, 78, 88, 107, 108].
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Appendix A: Perturbative calculation of χ(3) to
lowest order in g

As a first application of the laid groundwork in Sec. III,
we show here an explicit calculation of χ(3) at first-order
in the interaction strength g, i.e., at the tree level:

χ
(3)
mf (t3, t2, t1) = −8i

〈
φcl(t1 + t2 + t3)φ

q(t1 + t2)φ
q(t1)φ

q(0)

× (−i)
∫ ∞

−∞
dt′
∫
ddr′

g

3

[
φcl(t′, r′)

(
φq(t′, r′)

)3
+
(
φcl(t′, r′)

)3
φq(t′, r′)

]〉
= −g 8

3
3!

∫ ∞

−∞
dt′ iDR

0 (t1 + t2 + t3 − t′) iDR
0 (t

′ − t1 − t2) iDR
0 (t

′ − t1) iDR
0 (t

′)

= −g
∫ ∞

−∞
dt′ χ(1)(t1 + t2 + t3 − t′)χ(1)(t′ − t1 − t2)χ

(1)(t′ − t1)χ
(1)(t′) (A1)

and expressed in frequency domain:

χ
(3)
mf (ω1, ω2, ω3) ≡

∫
dt1

∫
dt2

∫
dt3 e

iω1t1eiω2t2eiω3t3χ(3)(t1, t2, t3) = −g χ(1)(ω1)χ
(1)(ω2 − ω1)χ

(1)(ω3 − ω2)χ
(1)(ω3).

(A2)
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Performing the shift in the frequency arguments prescribed in equation (13), ω1 → ω1, ω2 → ω1 + ω2, and ω3 →
ω1 + ω2 + ω3 we arrive at

χ̃
(3)
mf (ω1, ω2, ω3) = χ

(3)
mf (ω1 + ω2 + ω3, ω1 + ω2, ω1) = −g χ(1)(ω1)χ

(1)(ω2)χ
(1)(ω3)χ

(1)(ω̄), (A3)

which provides χ(3) to the lowest order in g, see Eq. (14) in the main text.

Appendix B: General Structure of χ(3)

In this Appendix we provide a systematic field-
theoretical reformulation of the computation of χ(3) in
terms of the effective action. Even though this reformu-
lation is general for arbitrary momentum coupling and
measurement, we present it only for the zero momen-
tum scenario in Eq. (B10), which constitutes the central
result of this Appendix. At this stage, we redefine for
convenience a new source Jα(r, t) = 2jα(r, t), introduce
the lumped space-time notation x = (r, t), and define
the one particle irreducible (1PI) effective action as the
Legendre transform of W [J ] = i logZ[J ], such that:

Ξ[φcl, φq] = −W [Jcl, Jq]−
∫
dx
∑
α

J ᾱ(x)ϕα(x), (B1)

δW [J ]

δJ ᾱ(x)
= −⟨φα(x; J)⟩ = −ϕα(x; J),

and
δΞ[ϕ]

δϕα(x)
= −J ᾱ(x). (B2)

Here, we have also introduced the convenient notations
{c̄l, q̄} = {q, cl}, and

∫
dx =

∫
ddr

∫
dt. The effective

action fulfils the fundamental relation [84]∫
dx′
∑
γ

δ2W [J ]

δJ ᾱ(x1)δJ γ̄(x′)

δ2Ξ[ϕ]

δϕγ(x′)δϕβ(x2)

= δᾱβ̄ δ(x1 − x2). (B3)

In particular, this implies that

δ2Ξ[ϕ]

δϕα(x1)δϕβ(x2)
=
(
D−1

)αβ
(x1 − x2),

since
δ2W [J ]

δJ ᾱ(x1)δJ β̄(x2)
= Dαβ(x1 − x2). (B4)

The nth functional derivative of Ξ

Ξ(n)(α1x1, . . . , αnxn) =
δnΞ[ϕ]

δϕαn(xn) . . . δϕα1(x1)
(B5)

is often referred to as the nth 1PI vertex and can be con-
nected to the nth-point connected Green’s function. In
particular, for the four-point Green’s function this rela-
tion is given by

δ4W [J ]

δJ ᾱ4(x4)δJ ᾱ3(x3)δJ ᾱ2(x2)δJ ᾱ1(x1)
= −

∫
dt′1

∫
dt′2

∫
dt′3

∫
dt′4

∑
α1,α2,α3,α4

Ξ(4)(α′
4x

′
4, α

′
3x

′
3, α

′
2x

′
2, α

′
1x

′
1)

Dα4α
′
4(x4 − x′4)Dα3α

′
3(x3 − x′3)Dα1α

′
2(x2 − x′2)Dα1α

′
1(x1 − x′1). (B6)

Here we have employed that Ξ(3) vanishes for the considered system. Hence, the third-order nonlinear response can
be computed as

χ(3)(x3, x2, x1) = −8i
δ4W [J ]

δJq(x3 + x2 + x1)δJcl(x2 + x1)δJcl(x1)δJcl(0)
. (B7)

Assuming the system has translational invariance, equa-
tions (B6) and (B7) can be combined to obtain the con-
venient expression

χ̃(3)(p3, p2, p1) = iΓ(p3, p2, p1)

4∏
i

χ(1)(pi), (B8)

where pi = (ki, ωi), p4 = (k̄, ω̄), and

Γ(p3, p2, p1) =
1

2
Γ
(4)
cl,q,q,q(p̄,−p3,−p2,−p1). (B9)

Note that in Eq. (B7) we have used that in the Keldysh
formalism no vertex containing four external classical legs
is possible; this would otherwise lead to a non-vanishing
correction to the partition function [85]. For practical
purposes when exciting a mode with light, we will be
interested in coupling and measuring the zero momen-
tum excitations of the system. Under these assumptions,
we set all external momenta to zero and particularize
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FIG. 10. (a) Echo and nonrephasing peaks in the lowest-order
disorder calculation. (b) Slices along the diagonal (teal) and
cross-diagonal (orange) of the echo peak. As evident from the
peaks itself and the cuts, this approximation is insufficient to
capture and characterize the echo peak.

Eq. (B8) to arrive at

χ̃(3)(ω3, ω2, ω1) = iΓ(ω3, ω2, ω1)

4∏
i

χ(1)(ωi), (B10)

c.f. Eq. (16) of the main text.

Appendix C: χ(3) within the lowest-order disorder
approximation

In this Appendix, we briefly discuss the caclulation of
χ(3) in the lowest order approximation for the disorder.
The employed Luttinger-Ward has the same structure as
the one presented in Fig. 6 and is obtained by setting
Γdis to be Γ0

dis, introduced in Eq. (29). In similar fashion
to the discussion of the main text, we compute the self-
energy:

Σ
R (0)
g−V (ω) =

= 2× 8igV 2
0

L2d

∑
k,q

∫
dΩ

2π
DR

k (ω)DR
q−k(Ω)DK

q (Ω), (C1)

the vertex correction

=2igV 2
0

(
4

Ld

∑
k

DR
k (ωa)DR

−k(ωb)

)

=i2gV 2
0 λ(0;ωa, ωb)

=2igV 2
0

(
4

Ld

∑
k

DR
k (ωa)DR

k (ωb)

)

=2igV 2
0 λ(0;ωa, ωb), (C2)

and the bubble in the presence of disorder:
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FIG. 11. (a) Imaginary part of the self-energy due to the
presence of the optical phonon, for µ/m2 = 1, T/m = 1,
and M/m = 5. In the inset, the on-shell broadening as a
function of temperature. (b) Evolution of the boson linewidth
due to the presence of the optical phonon as temperature
increases. The inset provides the extracted values of γ after a
phenomenological fit to the self-energy. (c)-(d) Color-plot of
the absolute value of the tree-level vertex correction for the
two distinct vertices (Eqs. (D3) and (D4)) in the presence of
the optical phonon; same numerical values as in (a).

gB
(0)
dis (ω) =

= 4igV 2
0

∫
dΩ

2π

(
1

Ld

∑
q

DR
q (ω +Ω)DK

q (Ω)

)
× λ(0;ω +Ω,Ω).

This concludes the calculation of all the necessary ingre-
dients to compute χ(3) in the presence of disorder within
our conserving approximation. χ(3) is readily obtained
following Eq. (36). We proceed to compute the nonlinear
maps, and present the rephasing and nonrephasing peaks
in Fig. 10. The echo peak shown in Fig. 10(a) exhibits
a slight bludge towards higher energy states, which be-
comes more apparent when compared to the nonrephas-
ing peak or investigating the slides in Fig. 10(b). This
minor asymmetry suggests that the calculation points in
the correct direction, but is insufficient to capture the
echo peak signature. A more sophisticated treatment, as
the one presented in Sec. V, is needed.

Appendix D: Inelastic Scattering

In this Appendix, we present an analogous discussion
to Sec. V for the case of inelastic scattering. Diagram-
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matically, the analysis requires extra effort because an
additional field must be incorporated to model the in-
elastic scattering events, introducing an additional en-
ergy scale, the mass of the mode M . In situations where
M/m ∼ 1, the modes can strongly couple and develop
hybridized excitations, leading to a more complicated
structure in the 2D map, as expected from the intuition
of MDCS [16, 109]. The signatures of hybridization for
collective modes in the many-body scenario require care-
ful analysis and are therefore left for future work.

Here, we restrict ourselves to the scenario where the ex-
tra mode is an optical phonon with a mass much larger
than the one of the collective mode under study, i.e.
M/m≫ 1. In this regime, the phonon acts as an incoher-
ent bath in which the collective mode can decay, leading
to an iωγ term in its self-energy, where γ characterizes
the broadening strength. Furthermore, the phonon can
also, in principle, lead to vertex corrections in the four-
wave mixing process. Intuitively, the rephasing of the in-
elastic scattering seems hard to conceive, since the char-
acteristic frequency of the exchanged phonon is ∼ M ,
much faster than the typical scale of the boson m. How-
ever, as a sanity check, we evaluate the vertex corrections
coming from the phonon to confirm that no rephasing is
possible. Thus, showing that these corrections can be
completely disregarded in the regime M/m≫ 1.

The interaction between the collective mode φ and the
optical phonon is given by

Sph = −µ
2

∫
C
dt

∫
ddr ψ(r, t)φ2(r, t)

= −µ
∫
dt

∫
ddr
(
φclφclψq + 2φclφqψcl + φqφqψq

)
,

(D1)

where we introduce classical and quantum fields for the
phonon analogously to those for the collective mode.
Note that, although the coupling structure is similar to
that of Eq. (24), key differences arise due to the phonon’s
dynamics. First, the phonon enables energy transfer to
the collective mode. Second, a larger number of diagrams
must be considered in both the self-energy and vertex
corrections.

1. Self-energy

The lowest order correction to the boson self-energy
due to the presence of the optical phonon is given by

ΣR(ω) = =

4µ

Ld

∑
k

(
DR

0k(ω)iD̃K
0k(ω) + iDK

0k(ω)D̃R
0k(ω)

)
(D2)

where 2D̃R
k (ω) = ((ω + iη)2 −M2)−1 is the phonon re-

tarded Green’s function at momentum k and frequency
ω. To keep the mass of the excitation fixed at the phys-
ical mass m, we introduce a mass counterterm δm =
Re{Σ(ω = m)}, such that m2 = m2

0 + ReΣ(m) − δm.
Since the phonon can now exchange energy with the ex-
citation of interest, the fluctuations of the phonon field
control the linewidth broadening. At small temperatures,
the phonon fluctuations are exponentially suppressed,
and the broadening is negligible. Upon increasing tem-
perature, the phonon fluctuations become sizable, result-
ing in a broadening of the boson linewidth, as can be
seen in Fig. 11 (a) and (b). This is a generic feature that
can be phenomenologically captured, independently of
the coupling strength µ or massM , by a self-energy term
of the form iωγ(T ), where γ characterizes the broadening
of the linewidth.

2. Vertices

Similarly to the case of elastic scattering, we evalu-
ate the vertex corrections in the presence of the phonon.
Here, we compute the vertices only to lowest order to
demonstrate that, in the limit M/m ≫ 1, they can be
completely disregarded. Unlike for the case of elastic
scattering, Eq. (34), the vertices cannot be reexpressed as
a single vertex and have to be computed independently.
These correspond to the exchange of a phonon between
two incoming, or one incoming and one outgoing bosons
and are given by

= igλ̃1(ωa, ωb) =
i8gµ2

Ld

∑
0k

∫
dΩ

2π

[
iD̃K

0k(Ω)DR
0k(ωa +Ω)DR

0k(ωb +Ω)

+ D̃R
0−k(−Ω)DR

0k(ωa +Ω)iDK
0k(ωb +Ω) + D̃R

0k(Ω)DR
0k(ωa +Ω)iDK

0k(ωb +Ω)

]
+ ωa ↔ ωb

(D3)
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and

= igλ̃2(ωa, ωb) =
i8gµ2

Ld

∑
k

∫
dΩ

2π

[
iD̃K

0k(Ω)DR
0k(ωa +Ω)DR

0−k(ωb − Ω)

+ 2D̃R
0k(Ω)DR

0k(ωa +Ω)iDK
0−k(ωb − Ω)

]
+ ωa ↔ ωb (D4)

To show that there is no rephasing physics involved in
these vertex corrections for M/m ≫ 1, we present a

color-plot of the absolute value of the two vertices λ̃1
and λ̃2 in Fig. 11(c) and (d) for M/m = 5. Indeed, the
fast dynamics of the phonon ∼M push the effects of the
vertex corrections to ωa ∼ ωb ∼ M , resulting in a neg-
ligible contribution in the frequency region of the boson
mass m. However, as aforementioned, for M/m ∼ 1 the
vertex corrections can be important around the mass en-
ergy m and may give rise to interesting signatures in the

2D map.
As a last comment, we note that from the phonon-

boson action in Eq. (D1) an effective vertex with external
legs cl−cl−cl−q arises, which contributes to the nonlin-
ear response. However, the effective interaction scales as
∼ µ2/M2, for a large phononic mass. Therefore, we can
safely ignore its corrections to the preexisting interaction
strength g.
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