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Competing orders in thermally fluctuating superconductors in two dimensions
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We extend recent low-temperature analyses of competing orders in the cuprate superconductors to the
pseudogap regime where all orders are fluctuating. A universal continuum limit of a classical Ginzburg-Landau
functional is used to characterize fluctuations of the superconducting order: this describes the crossover from
Gaussian fluctuations at high temperatures to the vortex-binding physics near the onset of global phase coher-
ence. These fluctuations induce affiliated corrections in the correlations of other orders, and in particular, in the
different realizations of charge order. Implications for scanning tunneling spectroscopy and neutron-scattering
experiments are noted: there may be a regime of temperatures near the onset of superconductivity where the
charge order is enhanced with increasing temperatures.
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[. INTRODUCTION be described by a classical partition function of a suitable
universal continuum limit of the Ginzburg-Landau free en-
A number of recent perspectiveg have highlighted new ergy: this will be reviewed here in Sec. Ill. Such an approach
experimental**and theoreticaP~2"works exploring the in-  describes the crossover from Gaussian superconducting fluc-
terplay between the multiple order parameters which charaduations at temperatures well abolg, to the vortex physics
terize the ground state of some of the cuprate superconduc®f the Kosterlitz-Thouless transition nedg. A dynamic
ors. Good evidence was obtained for a strong couplingheory with a similar static componefalthough with a lat-
between the superconducting order and density wave orddice cutoff was recently us€d>°to describe the notable
in spin/charge/bond correlatior{glescribed more precisely measurements of the Nernst effect.
below). In particular, by tuning the superconducting order by ~ This fluctuating superconductor is also expected to have
an applied magnetic field at very low temperatur@3,(a  appreciable correlations in other order parameters. The spin-
strong field-dependent variation was observed in the latteflensity-wave order is described by the complex three-
correlations. component vector®,, , ®,,, wherea=x,y,z extends over
In this paper, we explore the possibility of observing re-the three spin directions, and the spin operator on rsite
lated connections in the finite temperature “pseudogap” reS,(r) is given by
gion above the superconducting critical temperatiite K K
Here, the superconducting order has strohglependent Sa(r)=Re s Dy (1) +eTsv Dy, ()] (1.9)
fluctuations; we will compute these fluctuations in the frame—Here K
work of a two-dimensional Ginzburg-Landau theory, includ-
ing a precise characterization of strong fluctuations obtained _ . _ _
from numerical studies. We will show that the model of Ref. :o(e;rjgwlzl;_ 5In ;/i’imrl\fr r::;\/ﬁeljsv)\(/e (faz/t,g‘%neaggndK%’rder

16 predicts that such fluctuations lead to a correspondin - . .
) Lo . arameter r) by examining the modulations in the
sympathetic variation in the autocorrelations of the other or—g Shaxy(r) bY g

ders. Working to linear order in the coupling between super-eXChange energy of a pair of spins separated by a dis@nce
conductivity and these orders, we provide a computation of _ iKay iKgy
certain universal characteristics of thiedependence of the Sa(1)Sa(r+a)=Ree Parlr)+ €T ¢ay(r)]'(1 2)
latter fluctuations. Our results will also be formally extended '
to T<T, for completeness, but it must be noted that weThe special casa=0 of ¢,, , is a measure of the charge-
neglect the interlayer coupling and quantum effects, whichdensity wave order. Comparison between Efj2) and(1.1)
become important at lowéF.? suggests that the ordering wave vectors are relateld Qy

We begin by defining the order parameters under consid=2Kg, ,, and this is observed experimentally.
eration. The primary order is the complex superconducting A number of other order parameters which are invariant
orderW(r) which describes the spatial variation in the orderunder spin rotations, likap,.,, can also be definel§:?
associated with condensation of Cooper pairs. This is exThese include the site charge density, the average electron
pected to undergo strong “phase” fluctuatiéhgor T near  kinetic energy in a bond, or modulations in the pairing am-
T.. Using the proximity of the underdoped cuprates to aplitude. By symmetry, all such quantities will have modula-
superfluid-insulator quantum transition, Refs. 30,31 arguedions at the wave vectoi§., ,, and we can therefore expect
that “amplitude” fluctuations should be treated at an equalthat their order parameter fluctuations will track those of
footing*? and proposed that such thermal fluctuations couldp,, ,. Differences in microscopic physics can, of course,

sxy are the spin-density-wave ordering wave vectors
long thex andy principle axes of the square lattice: near a
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make some of these modulations much larger than others. We Our theory for the fluctuating orders and their interplay is
will not explicitly consider all such possibilities here, and the summarized in Sec. I, which also contains our main results.
reader should viewp,, , as a suitable representative of the Details of the continuum theory of the superconducting fluc-
order parameters characterizing modulations at the wavkiations and its Gaussian-to-vortex crossover appear in Sec.
vectorsK, , in observables invariant under spin rotations.lll. Section 1V discusses experimental tests and possible ex-
We will subsequently refer to the order represented¢by tensions of our theory.
simply as charge order.
While the focus of this paper is on the interplay between)|. CORRELATIONS BETWEEN FLUCTUATING ORDERS:
the superconducting fluctuations and the orders mentioned MAIN RESULTS
above, it should be clear to the reader that our considerations . . ) )
are quite general. Simple extensions lead to similar effects in This section will introduce the free energies which control
the interplay of superconductivity with most of the other the fluctuations of the order parameters, and state our main
orders in the zoo of possibilities considered in the theory ofesults on thel dependence of the order atT>T,.
the cuprates. We describe the fluctuations of the superconducting order
In considering correlations oF’, ®, and ¢ in the fluc- W(r) by a classical continuum partition function over the
tuation region, it is important to consider the influence ofGinzburg-Landau free enerdy
random static impurities which are invariably present in the
cuprates. As almost all impurities preserve electron number ZGL:j DW(r)eFoL/(keD),
and spin rotation invariance, their influence rand® will
consist of perturbations in thandom exchangelass(this is
discussed more explicitly in Sec)llin contrast, the ordey ) #? ) ) b 4
breaks only lattice symmetries, and is consequently subjechL:j dr - [Vw(n[*+a(MW(n[*+ 5 [wn)]*).
to the far more disruptiveandom fieldperturbations’ In m
two spatial dimensions, this implies that true long-range or- (2.9)
der cannot develop a$—0, and that the¢ correlation We use here the notation of Refs 33—+85, a(T), andb are
length saturates at a finite value. We will assume here thgtarameters which can be computed, in principle, from the
there is a local onset ap, @, andV orders at temperatures microscopic physics of the underlying electrons. The coeffi-
where the pseudogap develops, but at lower temperathires cient of |W(r)|?, a(T), vanishes at a mean-field transition
correlations are predominantly controlled by the randomtemperaturea(T¥")=0, which will be distinct from the
field disorder, and have only a weak, intrinSiclependence. temperatureT . at which there is a Kosterlitz-Thouless tran-
This is also consonant with the result that thermal fluctuasition, i.e.,a(T.)<0. The purely two-dimensional, and clas-
tions are irrelevant at the random-field transition in highersical theory(2.1) is expected to apply to the cuprates only for
dimensions” In contrast, the fluctuations o and® are  T>T.: below T, we have to also account for three-
strongly T dependent, and can have an infinite correlationdimensional effects arising from interlayer couplings, and for
length asT—0. TheW¥ order becomes quasi-long-ranged atquantum effects at low enough All such effects will be
T=T, and has the strongly-dependent Gaussian-to-vortex neglected here, but for completeness, we will nevertheless
crossover noted above &t>T.. The® order can also have discuss properties of the theoi®.1) over the full range off
the exponential rapidT dependence associated with the values.
breaking of @3) spin rotation symmetry a§—0. An important point is that the functional integral in Eq.
This paper will consider the regime aboVe where (2.1) is not defined on its own and needs an ultraviolet regu-
lator. In the physical system this is provided by the underly-
(U(r)=0, (D,,a(r))=0, (¢a,(r)#0. (1.3  ing electron physics on the lattice, but this is very difficult to
characterize explicitly. Here, we shall follow the procedure
The nonzero valué¢) is due to the presence of random- proposed in Ref. 30: the ultraviolet dependence can be ac-
field perturbations which explicitly break lattice symmetries, counted for by a suitable renormalization in the value of
and so allowg to locally have a nonzero mean value which a(T). However, because we do not know the explicit form of
will fluctuate randomly as a function of. As noted above, the ultraviolet cutoff, we cannat priori compute the needed
we assume thdtp) only has a weak intrinsi® dependence. shift in a(T). This lack of knowledge can be circumvented
However, the fluctuations of tié', ®, and¢ orders are not by using the experimental value @ as an input into our
independent, and so the strofiglependence associated with calculation. The knowledge of the actual, combined with
the Gaussian-to-vortex crossoverdn will induce a corre- the parameters in Eq2.1) then allows a quantitative com-
spondingT-dependent variation itp). This paper will com-  putation of the Gaussian-to-vortex crossover with no free
pute this variation and suggest associated experimental testgarameters. We reiterate that Eg.1) cannot be regarded as
Strictly speaking, because there is only quasi-long-range oia fully predictive theory on its own, and so cannot, even in
der in¥ below T, the expectation valued.3) apply also  principle, predict the actual value df.: onceT, is deter-
for T<T,: indeed, our methods and results extend also tanined by other means, precise quantitative predictions for
T<T.. However, as noted earlier, we neglect the effects obther observables become possible.
interlayer couplings and of quantum fluctuations, and so our The Gaussian-to-vortex crossover can be expressed in
low T results should be treated with caution. terms of the following dimensionless parameter
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account for these in a similar manner, as will become clear

: (2.2 from the discussion in Sec. Ill.
It is worth noting here that vortices are already present in

_ _ _ the Gaussian theory associated with zeros¥df).** The
The parameteg should be a monotonically increasing func- e it(2.4) accounts for the initial correlations between these
tion of T. For T<T, g~—1/T, atT=T,, we haveg=0,  \qrices, but does not include the vortex-binding physics of
and aboverl, g takes positive values. We will see later that ihe Kosterlitz-Thouless transition. The latter is only ac-
the present continuum theory eventually breaks down agqunted for by the numerical results in Sec. Ill.
large T, when g begins to ac_:quire a nonmonotonic depen- | ot us turn now to the density wave order parameters
dence onl. The value of ]1_/9| is a measure of the strength of ; The complete effective action for these order parameters
corrections to the mean-field theory 8§, . has a rather complicated structure and was discussed in Ref.

It is important to note that th& dependence o&(T) in 16 A simple Gaussian form will be satisfactory for our pur-
Egs. (2.1 and (2.2 is nonuniversal, and this will lead to poses here:

some nonuniversality in th€ dependence of all our predic-

tions. However, one of our main points is that there is a 5 5 s 2 5
universal dependence on the paramgtévioreover, once we 7'—<1>:f A1 [ K| Vi®xal “+ Ky | VyPral “+ €4 [Pl

assume a lineaf dependence o&(T) nearT, [as is com-

monly done, and we will do in Eq3.13], the T dependence +hox(N®2(r)+h (ND*2(r) + (x—y)+ - - -],
of our predictions becomes specific.

Aided by the results of Ref. 30, 39, and 40 we will show [ 2 ) 2, .2 )
that it is possible to obtain precise predictions for a variety of Fo= J d r[K¢x|VX¢ax| + K¢y|vy¢’ax| +&y | bad
correlators ofZ5, . We quote a result which will be useful in
our analysis here of multiple order parameters: F (1) Pax(N) N1 dag() + (X y) + - - - .

(2.5

}zD(g,T/TC), (2.3  Apart from the usual Gaussian terdfsthe above contains
complex random fieldbg(r) andh ,(r) which pin the “slid-
ing” mode of the charge-density wave. These fields arise
whereD(g,T/T,) is a universal function. The averages on from impurities which preserve spin rotation invariance: as a
the left-hand side are evaluated under the partition functiogonsequence, note that the random couplininisar in the
Zg. at the indicated temperature. We will show in Sec. lll fields ¢, but that there is only a random-exchange coupling
that it is possible to reexpress the two argument functiono O(3) rotations in the spin-density wave order. These
D(g,T/T,) in terms of a single argument functiéi(G) asin  simple facts have a number of interesting implications.
Eq. (3.12, where G depends uporg and T/T, as in Eq. (i) There can be no long-range charge order in two spatial
(3.11). Here we present results for the initial crossover fromdimensions, even &=0. This implies that there can be no
the Gaussian to the vortex regime, which occurs wigen T=0 quantum critical point, tuned by the hole concentration,
>1: associated with the onset of such order. A quantum critical
point associated with the restoration of3D symmetry re-
mains possible.
5 In(13.3T/T,) (ii) The strong relevance of such random-field perturba-
2mg tions suggests that in the absence of couplings to other criti-
cal order parameters, the correlation length can be as-

hZ
m*b

a(T) a(T)
keT  KkgTg

g

h_2[<|\P|2>T_<|q,|2>Tc

m* kBT kBTc

1
D(g,TIT)=— Eln(380;]T/TC)+

+ [IN2(13.3T/T)—2 In(7.863T/T,)] sumed to be roughly temperature independent at low
4mg? temperatures.
3 (iii ) The theorie$2.1) and(2.5) describe a phase in which
+O(1/g°). (2.4 the expectation values in E¢L.3) hold.

. L Finally, as promised, let us consider the influence of the
The numerical constants appearing in the arguments of t fluctuations described b§g, on the charge order corre-

logarithms are universal. These constants, and the constarn Sions. The simplest coupling between the orders is a

appearing in the arguments of all subsequent logarithms, de-| 5,2 2 2 : :
pend on only two universal numbers that have to be dete‘r%\lqr| (l(é“' *1dal%) term, and, as in Ref. 16, this leads to
. . o the leading-order correction
mined by computer simulations: the latter numbers are the
constantgc.computed first in Rgf. 30, .and the constant ' 5(;2(T)=§(;§(T)+A<|W|2)T. 2.6
computed in Refs. 39,40. Additional higher-order terms in
Eq. (2.4) have also been computed and these will be preHereé ,,(T) is the “bare” correlation length of the order,
sented in Sec. lll: we show there that it is possible to accounvhich is expected to be only temperature dependentfigar
for all logarithmic terms that appear at higher orderggin  We input the value of|¥|?) as computed in E¢2.3) and
Numerical results for the full range of values @fippear in ~ Sec. Ill, and obtain our main predictions for the supercon-
Sec. lll. The expressiori2.3) has ignored the possiblé  ducting fluctuation-induced modification in tlfecorrelation

dependencies ain* and b for simplicity: it is possible to length.
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[II. CONTINUUM THEORY OF THERMAL
SUPERCONDUCTING FLUCTUATIONS

This section will review the results of Ref. 30 relevant to

PHYSICAL REVIEW B89, 144504 (2004

For T<T., whereR<0, we haveG—o. Conversely, for
T>T,, R>0, andG—0.
The field theory(3.1) exhibits a Kosterlitz-Thouless tran-

obtaining Eqgs(2.3) and(2.4) and its extensions. Appendix A Sition at some critical temperature, and the arguments above
will review the work of Prokof'ev, Ruebenacker, and imply that this transition occurs atuniversalcritical value
Svistinov®# on the dilute two-dimensional Bose gas andG=0.. The numerical studies of Ref. 30 four#l~102.
show that the results of their numerical simulations can bdhe value ofG, can also be obtained from the subsequent,

mapped onto universal quantities needed here.

and more precise, numerical simulations of Refs. 39,40; this

Reference 30 studied the following continuum theory of aconnection is discussed in Appendix A, afAb) yields

N=2 component real scalar,, a=1,2:

1 2 ﬁ 2 U 2\2
E(Vrﬁpa) +§‘Pa+ ﬂ(‘Pa) 3.1

F¢=f d?r

(Here we have changed notation for the field, frdm in

Ref. 30, to ¢, here, to prevent confusion with the spin-

density wave order.This theory maps onto Eq2.1) with
the following correspondences:

V= \m* (o1 +igo)lh,
R=2m*a(T)/A?,
U=12m*2b/A*. (3.2

It was arguetf that the continuum limit ofF, required
only the single renormalization &% to R:

(3.3

5 R 2kBTUJA d’k 1
3 47?2 KP+R

Here we have introduced an ultraviolet cutdff which is
needed to regulate the theafy, . The renormalization in Eq.

G.=96.9+3. (3.5

We are interested here in the value(gf). This quantity
requires a single additive renormalization before the con-
tinuum limit is obtained; hence we can write

) —zJA d’k 1
kg T 47 K>+R
where F(G) is a universal function. A number of analytic

results for this universal function can be obtained from the
methods of Ref. 30, and details appear in Appendix B. For

G—0 (corresponding td>T_), perturbation theory in pow-
ers of U about thep,=0 saddle point yields

+F(G), (3.6

F(G—0)=(2.35571K 10" 4 G?+O(G%. (3.7

All subsequent terms in the above expansion involve only
integer powers of; and there are no logarithms. FGr«
(corresponding tar<T.), we expand about a saddle point
with ¢,# 0. As shown in Ref. 30, this is done by introducing
a “dual” coupling Gy related toG by
1+ 1 1 | ( g
—_ P n -
9o

AT . (3.9

(3.3 is associated with logarithmic ultraviolet divergence of NOte that agj—, Gp=3/In G. For largeg, the expansion

the one-loop “tadpole” diagram; the renormaliz&lin the

propagator on the right-hand side accounts for tadpoles-on-
tadpoles, etc. All other diagrams are ultraviolet convergent
and hence the simple structure of the renormalization theory.

It is important to note that3.3) is the exact definition of
R, and consequentliR is not the fully “self-energy” of the

of Fis

F(G— * | g)_¢8 +0O(G3 3.9
o0 )= JEE—
All subsequent terms in the present expansion involve only

integer powers ofjp , with no additional logarithms. As dis-

¢, field at zero external momenturR;only accounts for the . ,ssed in Appendix A, the numerical results of Ref. 39,40

resummation of tadpole graphs. In practice, the relationshigiem the values of for all values ofg. In particular, at the

(3.3 implies that, when we perform a Feynman graph eX-.yitical pointG= G, we have from Eq(A8)

pansion of any observable, we can ignore all tadpole graphs,
and replaceR by R in all propagators. Note also that as the F(G.)=0.502+0.003. (3.10

bare couplingR extends from—c to «, the renormalized The theory of the Kosterlitz-Thouless transition implies that
couplingR extends from 0 toe. F(G) will have a weak essential singularity @ G., similar
After the renormalization oR to R, all subsequent corr- to that in the specific heat. A plot of the values B{G)
elators of 7, are ultraviolet convergent and so we can safelyappears in Fig. 1. It is interesting to note that either the small
take A — oo in them. This implies that all these correlators areg or the smallg, expansions is accurate for the entire range
universal functions of the single dimensionless quantity thabf G values.
can be obtained from the parameters in By1): this is the The discussion so far presents our most complete results
analog of the “Ginzburg ratio,” defined here as for the properties ofFg, and.F, with essentially no approxi-
mations. There is, however, still some residual cutoff depen-
dence. This can be removed by subtracting corresponding

results at two different values of the bare coupliR4T [or

keTU
-

(3.9
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1.04
ps(0) T
g= kSBT 1—% . (3.13
Cc
F ] The parametrizatiora(T)=ao(T—T¥") is chosen to be

valid nearT, but can also be reasonably extended as)

[in BCS theory, we expect a divergena(T—0)

~ —In(1/T), but this divergence is expected to be cutoff near
0.5+ a superfluid-insulator transitignBy p(0)=—%2a(0)/(m*b)

in Eq. (3.13, we mean the value of the helicity modulus of
Zg1 extrapolated tor =0 in this mannefthe London pen-
etration depth is related to the helicity modulus ky?
=16me?p4(T)/(%2c?)]. It is worth noting here thap(0)

" and T; are, in general, independent of each other, and the
Nelson-Kosterlitz relatioff only constrains py(T.)/T.
00 v 1 v 1 v 1 v 1 v ) v 1 v 1 v 1 :2/77'
0 50 100 150 200 250 300 350 400 This framework now predicts all physical properties with
G two input parameters: the values@f(0) andT.. Mukerjee

and Husé also defined a parameter as a measure of the

_ tEIG. 1 |E|Ots of the utnive_rszl f(%”%“fr‘fg)lj The ”t';]e on :t"? Itegt strength of fluctuations. This is related to the parameters used

is the smallg approximation in Eq(3.7). The line on the right is the _ MF ;

large G approximation in Eqs(3.8) and(3.9). The square symbols here by7=2kgT¢ /65(0)' In S,L:”nuTencal resu_lts beIQW,

are the numerical data of Ref. 40 transformed by E4®) and we setps(0)/(kgTc) =(2/7)(Tc"/Tc)=6.8 following their
arameters.

(A10). The plus marks the position of the Kosterlitz Thouless tran-P ;
An important subtlety should be noted here. The use of

ston- Eq. (3.13 in Eg. (3.11) normally yields a value fog which
« . I . .__ decreases monotonically with increasiigas seems reason-
m*a(T)/T], while L~J is fixed. Depending upon the physical able, given our understanding of physical properties of the
situation, changind?/T may also involve some changes in continuum theory. However, because the valuegof Eq.
the values ofU. However, such changes are expected to bg3.13 saturates a3— o and because of the presence of the
small and we neglect any dependence ity and A in the  |n(T/T,) term on the right-hand side of E(B.11), for very T
remainder of this section. This allows to obtain an explicitthe value ofg eventually starts increasing with increasifig
relation between the dimensionless numbeused in the  This is clearly unphysical and is an indication that the
present section, and the numiggin Eq. (2.2). Dividing Eq.  present continuum theory breaks down at large encligh
(3.9 by kgT and subtracting the corresponding equation aleor the value of; being used here, this unphysical non-
the critical poi.nt, and using the definitions in E@3.2) and monotonicity arises only &F/T > 20, z;md we will therefore
(3.4), we obtain restrict our attention to values @ below this.
Solving Egs.(3.13 and (3.11) for G as a function of

_ (3.11) TI/T., we use the results of this section and Appendix A to

obtain the plot of Fig. 2 for the quantity appearing in Eq.

(2.6). Note, again that either the smallor the largeG ex-
As expectedg extends fromt« to —« asg extends from 0 hansion is reasonable accurate.

to +<o. Applying the same procedure to E®.6) we obtain
the universal function in Eq2.3)

6 6+1|(TQC
=G ¢, 7 \Tg

IV. CONCLUSIONS

1 TG We conclude this paper by discussing some of the experi-
D(g,T/Te)= 2 ln(Tgc) RO -F(G). (€12 mental and broader implications of our work. Our primary

result(2.6) for the coherence length of the charge order can
The expression€3.5), (3.7)—(3.12) constitute the central re- pe tested against neutron scattering and scanning tunneling
sults of this paper. Using as input the valuegaindT/T.,  spectroscopy (STS experiments. However, the strong
we computeg from Eq.(3.11) andGp from Eq. (3.8); then  random-field disorder may makg, inaccessible to a neutron
using results(3.7) and (3.9 we can computd=(G), and fi-  probe which averages over the entire sample. In contrast,
nally insert in Eq.(3.12 to obtainD(g,T/T.). In particular,  STS provides a local probe, and so may be more sensitive to
the small G expansion in Eq.3.7) yields Eq.(2.4). Of the effects discussed here.

course, it is better to numerically solve f@rfrom Eq.%(3.11), Consider an STS experiment with a field of view of area
rather than obtaining the solution order-by-order ig &5 A, such as those performed in Refs. 7,13,14,42 and 43. Qua-
was done for Eq(2.4). siparticle interference contributions, such as those computed

We now present some numerical results for the paramin Ref. 18,44—47, appear at low temperatures, but we can
eters used by Mukerjee and HuSeThey seta(T)=ay(T expect that these will significantly broaden at temperatures
—TYF). Inserting this in Eq(2.2) yields aboveT.. We therefore focus here only on the contribution

144504-5



SUBIR SACHDEV AND EUGENE DEMLER PHYSICAL REVIEW B9, 144504 (2004

L] T is lowered is associated with an enhanced coherent motion
2l R of the Cooper pairs, and this leads to a decrease in the am-
\ plitude of the spatial modulatior{.
(T/T)D{ % An alternative statement of the same physics can be made
in terms of the vortices. As we argued in Ref. 16, vortices
nucleate static charge order, and this was proposed as an
explanation of the experiments of Ref. 13other
approaches’?2325-2"haye proposed static spin order in the
vortices—in our theory, static spin order is not nucleated by
vortices and appears only in phases with global magnetic
order®). Increasingr aboveT, causes a proliferation of vor-
4 - tices and hence an enhancement of charge order.
While our discussion in this paper has been entirely at the
05 10 15 20 25 30 35 40 !evel of the LandaL_l the_ory of multiple order parameters, i'F is
T/ Tc important to keep in mind that such a theory is an eff_ectlve
model, and does not preclude other interpretations which fo-
FIG. 2. Plots of the universal functioriT(T,)D(g,T/T.) as a  Ccus directly on the electronic quasiparticles. In particular we
function of T/T, for p<(0)/(kgT.) =6.8. From Eq(2.3) we see that Ccan view the competition between charge order and super-
(192 1= (TIT)(|W|?)r_+(m*kgT /A2 (TIT)D(Q,T/Te);  so  conductivity as the competition for the ordering of low-
(|¥|?)+ is determined from the above plot up to an additive, non-€nergy quasiparticles near the Fermi surface. So as the su-
singular, linear dependence d@rdetermined b)(|\lf|2)Tc. This lin- perconducting pairing of these quasiparticles is reduced
earT dependence can compensate for the lifedependence inthe aboveT., they are more susceptible to charge ordering.
plot above so thaf| ¥'|?); saturates at highi. Also, as noted in the An interesting direction for future work is to combine the
text, the present theory breaks down at large endughd its main ~ continuum theory of the Ginzburg-Landau functional pre-
utility is in capturing the singular increase {fW|?); asT crosses  sented here with the theory of time-dependent superconduct-
T.. The solid line is the smaly approximation obtained by solving ing fluctuations presented in Refs. 33—35: this has the pros-
Egs.(3.5, (3.7), (3.10, (3.11, (3.12, and(3.13. The dashed line pect of placing more precise quantitative constraints on the
is the largeG approximation obtained by solving Eq8.5), (3.8,  analysis of the Nernst effect experiments. Moreover, the ac-
(3.9), (3.10, (3.11), (3.12, and(3.13. The square symbols are the curacy of either the smalf or largeG expansions suggests
numerical data of Ref. 40 processed via B@s11), (3.12, (3.13,  that useful analytic results may be possible. Results for the
(A9), and (A10). The plus marks the position of the Kosterlitz- f|ctuation conductivity in such an approach, including cor-
Thouless transition. rections to the Aslamazov-Larkin fluctuation conductivity,
i ) ) _ have appeared recenffyA similar dynamic approach can
of the ¢ fluctuations, which also lead to modulations in the 554 pe applied to computing the linewidths of the electronic
local density of the states measured in STS, as shown in Refy asiparticles in the pseudogap regime: the strong amplitude
18,47. We know that the STS measurements are in the lineafyctyations in¥ should lead to significant broadening in the
response regime. So, when we perform the Fourier transforgjecironic spectral functions measured in photoemission ex-
of the local density of states at the ordering wave vektor periments.
we find that the signal is proportional to the uniform part of

the charge order parametér=¢(q=0). Let us estimate.
We have for the free energy
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- (4.2

APPENDIX A: CORRESPONDENCE WITH THE DILUTE

Taking &5(T) from Eq. (2.6) we obtain the temperature de- BOSE GAS

pendence of the STS signal at the wave veétgr

For the case of competition between the superconducting This appendix discusses the connection between the
(W) and charge ¢) orders, the coupling in Eq. (2.6) will analysis of the dilute Bose gas in Refs. 39,40 and the results
be positive. In this situation we have a seemingly counterinof Ref. 30 and the present paper. Let us make it clear at the
tuitive effect: asT is increased througf,, the amplitude of outset that we are not advocating a dilute Bose gas descrip-
the charge order is enhanced. The physical origin of this ision of the underdoped cuprates; rather, the finite temperature
not difficult to understand: the increase in phase coherence gsoperties of the dilute Bose gas are characterized by some
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universal numbers which appear also in the models of interwith universal numbeg, computed in Ref. 39 related to the
est in the present paper. universal numbeg,. computed earlier in Ref. 30 by
The dilute Bose gas is defined by the partition function

gce—ﬁﬂ'/gc
Zy= f Dy(r,r)e %", W= (A5)
kT oy h2 References 39,40 obtaingg =13.3+0.4, which is in rea-
ngf drf d? [ W —m|Vrz,//|2—M|z/;|2 sonable agreement with the valgg~102 obtained in Ref.

30; the latter value ofj; yields ¢,~14.1 from EQq.(A5).
The same method can be used to compute the boson den-
(A1) sity n. Integrating out the nonzero frequency modes and
mapping onto the classical theof¥.1) we obtain

We follow the notation of Refs. 39,40 throughout this appen-
dix. The only exception is that the boson interactidrhas f dzk( 1 T

Ug
+—|ul*.
=

m 2
_<(Pa>

been replaced by to prevent confusion with the coupling n= ; WA 2m) T - HAEI 2m)— + 42

U in Eq. (3.2).
Integrating out the nonzero Matsubara frequency modes

2
in the Bose gas, the action for the zero-frequency modes :f ﬁ - L — T
takes the form(3.1) with the coupling constants 472\ ePKICM=pIT 1 52Kk2[(2m) —
#7R a2k 1 . 2mkgT/h2 kaTF(g)
“om M Bf 4_772( c(W2K2I(2m)— ) (kgT) _ 1 k?+R #?
mksT [ 2mkgT| mkgT
kT = ——In| == |+ ——F(9), (16)
ﬁ2k2/(2m)_lu ! 2mh 7 R h
12m2U in the last equation we have made the same simplification as
U= B (A2)  thatin the last equation in EGA3). The result(A6) yields
ht the expression obtained in Ref. 39 for the critical density
The integral above is divergent in the ultraviolet, but if we mksT | #2¢
use EQ.(3.3 to obtain the value of the renormalized cou- ne= 5 ( ) (A7)
pling R we obtain a convergent integral 2mh mUg
with the universal numbef given by
2mu 4mUBJ d?k 1
hZ N hZ 4_772 e(ﬁ2k2/(2m)7p,)/(kBT)_1 gz %QZWF(GC)_ (A8)

The simulations of Refs. 39,40 obtainéd 380+ 3, and in-
serting this result in EqA8) allows us to computé& (G.).

B 2m2|<BTUBI 2mu
T ot M\ azRerken_q)
2m%kgTU 2mkg T
L 2mkeTUs [ 2MiaT) (A3) Q
ah? %2R

kT ) 2kaT/ﬁ2)
n2Kk2(2m)—pw K2+R

(@)

In the last expression we have expanded to leading order in
Ug, as required from consistency with previous approxima-
tions. Now using the definition of the dimensionless coupling
G in Eq. (3.4), we obtain the value of the chemical potential

at the Kosterlitz-Thouless transition

)

(A4) FIG. 3. Feynman graph expansion of E8.1) for the correlator
(3.6.

kaTUBI

wh?

ﬁgﬂ

/"LC: mUB
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Finally, subtracting Eq(A7) from the last equation in Eq. 2G2 d2p d?q [ d%k
F(@)=—5 f

(A6) we obtain —_— —
2 472) Ag?

n—ng
———=5=In(G/G.) +F(G)—F(G.) =N(X). 1
kaT/hZZ (G1Ge) +F(9) = F(Go)=\( — : :
(A9) (k*+1)(q*+ D[(p+k)*+1][(p+a)*+1]
The function\(X) was computed in numerically Ref. 40, 2g j 1 \/p7+4+p
and its argumenX can be related to our couplir@by (A3), n
yielding ’ Pgby (A3) 47| 2mp\p®+4 | Vp®+4—p
6 6 1 (G y {p+ 2 |<\/2+ +p”
X__E’LQ_C_E'”(E) (A10) amp(p>+4) [ p7ra | JpPrd-p
These earlier results fox(X) therefore yield the needed (B1)
function F(G) from Egs.(A9) and (A10). We evaluated the last integral numerically and obtained Eqg.
(3.7).
APPENDIX B: WEAK AND STRONG COUPLING For largegG, the method described in Appendix C of Ref.
EXPANSIONS 30 was used. To one Ioop order, the result
This appendix presents discusses the expansion for the F(G)= iln( ) B2)
universal functior(G) appearing in Eq(3.6) for small and k TU 2 Rp
large g. is easily obtained, where, as in Ref. 3®,G5=RG. In ob-

For smallg, a simple Feynman graph expansion of Eq.(ajning Eq.(B2), we have to explicitly account for all tadpole
(3.1) can be carried out to ordeg® with the diagrams graphs, and the relationship in E@.4) of Ref. 30 between
shown in Fig. 3. All propagators in Fig. 3 involve the bare g anqr_ The large momentum behavior of the expansion
“mass” R. A simple calculation shows that the graphs ahoute,=0 and¢,+0 saddle points should be the same,
(a,b,c,¢ are all absorbed by the first term on the right-handangd this ensures that the ultraviolet divergences cancel. At
side of Eq.(3.6), after substitution of Eq(3.9). This is @ two loop order, 35 Feynman graphs appear; these were
simple example of our claim that all *tadpole” diagrams can evaluated as in Appendix C of Ref. 30, and their sum was
be neglected after substitutifgfor R. Only Fig. 3d) con-  found to vanish. Consequently, there is no ordgrterm in

tributes toF (G) in Eq. (3.6) and yields F, and the resul{3.9) follows.
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