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Competing orders in thermally fluctuating superconductors in two dimensions
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We extend recent low-temperature analyses of competing orders in the cuprate superconductors to the
pseudogap regime where all orders are fluctuating. A universal continuum limit of a classical Ginzburg-Landau
functional is used to characterize fluctuations of the superconducting order: this describes the crossover from
Gaussian fluctuations at high temperatures to the vortex-binding physics near the onset of global phase coher-
ence. These fluctuations induce affiliated corrections in the correlations of other orders, and in particular, in the
different realizations of charge order. Implications for scanning tunneling spectroscopy and neutron-scattering
experiments are noted: there may be a regime of temperatures near the onset of superconductivity where the
charge order is enhanced with increasing temperatures.
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I. INTRODUCTION

A number of recent perspectives1–8 have highlighted new
experimental9–14 and theoretical15–27works exploring the in-
terplay between the multiple order parameters which cha
terize the ground state of some of the cuprate supercond
ors. Good evidence was obtained for a strong coup
between the superconducting order and density wave o
in spin/charge/bond correlations~described more precisel
below!. In particular, by tuning the superconducting order
an applied magnetic field at very low temperatures (T), a
strong field-dependent variation was observed in the la
correlations.

In this paper, we explore the possibility of observing r
lated connections in the finite temperature ‘‘pseudogap’’
gion above the superconducting critical temperatureTc .
Here, the superconducting order has strongT-dependent
fluctuations; we will compute these fluctuations in the fram
work of a two-dimensional Ginzburg-Landau theory, inclu
ing a precise characterization of strong fluctuations obtai
from numerical studies. We will show that the model of R
16 predicts that such fluctuations lead to a correspond
sympathetic variation in the autocorrelations of the other
ders. Working to linear order in the coupling between sup
conductivity and these orders, we provide a computation
certain universal characteristics of theT dependence of the
latter fluctuations. Our results will also be formally extend
to T,Tc for completeness, but it must be noted that
neglect the interlayer coupling and quantum effects, wh
become important at lowerT.28

We begin by defining the order parameters under con
eration. The primary order is the complex superconduct
orderC(r ) which describes the spatial variation in the ord
associated with condensation of Cooper pairs. This is
pected to undergo strong ‘‘phase’’ fluctuations29 for T near
Tc . Using the proximity of the underdoped cuprates to
superfluid-insulator quantum transition, Refs. 30,31 arg
that ‘‘amplitude’’ fluctuations should be treated at an eq
footing,32 and proposed that such thermal fluctuations co
0163-1829/2004/69~14!/144504~9!/$22.50 69 1445
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be described by a classical partition function of a suita
universal continuum limit of the Ginzburg-Landau free e
ergy: this will be reviewed here in Sec. III. Such an approa
describes the crossover from Gaussian superconducting
tuations at temperatures well aboveTc , to the vortex physics
of the Kosterlitz-Thouless transition nearTc . A dynamic
theory with a similar static component~although with a lat-
tice cutoff! was recently used33–35 to describe the notable
measurements36 of the Nernst effect.

This fluctuating superconductor is also expected to h
appreciable correlations in other order parameters. The s
density-wave order is described by the complex thr
component vectorsFxa , Fya , wherea5x,y,z extends over
the three spin directions, and the spin operator on siter ,
Sa(r ) is given by

Sa~r !5Re@eiKsx•rFxa~r !1eiKsy•rFya~r !#. ~1.1!

HereK sx,y are the spin-density-wave ordering wave vecto
along thex andy principle axes of the square lattice: near
doping of d51/8, we have K sx5(3p/4,p) and K sy
5(p,3p/4). In a similar manner we can define bond ord
parametersfax,y(r ) by examining the modulations in th
exchange energy of a pair of spins separated by a distanca:

Sa~r !Sa~r1a!5Re@eiKcx•rfax~r !1eiKcy•rfay~r !#.
~1.2!

The special casea50 of fax,y is a measure of the charge
density wave order. Comparison between Eqs.~1.2! and~1.1!
suggests that the ordering wave vectors are related byK cx,y
52K sx,y , and this is observed experimentally.

A number of other order parameters which are invari
under spin rotations, likefax,y , can also be defined.16,21

These include the site charge density, the average elec
kinetic energy in a bond, or modulations in the pairing a
plitude. By symmetry, all such quantities will have modul
tions at the wave vectorsK cx,y , and we can therefore expec
that their order parameter fluctuations will track those
fax,y . Differences in microscopic physics can, of cours
©2004 The American Physical Society04-1
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make some of these modulations much larger than others
will not explicitly consider all such possibilities here, and t
reader should viewfax,y as a suitable representative of th
order parameters characterizing modulations at the w
vectorsK cx,y in observables invariant under spin rotation
We will subsequently refer to the order represented byf
simply as charge order.

While the focus of this paper is on the interplay betwe
the superconducting fluctuations and the orders mentio
above, it should be clear to the reader that our considerat
are quite general. Simple extensions lead to similar effect
the interplay of superconductivity with most of the oth
orders in the zoo of possibilities considered in the theory
the cuprates.

In considering correlations ofC, F, andf in the fluc-
tuation region, it is important to consider the influence
random static impurities which are invariably present in
cuprates. As almost all impurities preserve electron num
and spin rotation invariance, their influence onC andF will
consist of perturbations in therandom exchangeclass~this is
discussed more explicitly in Sec. II!. In contrast, the orderf
breaks only lattice symmetries, and is consequently sub
to the far more disruptiverandom fieldperturbations.37 In
two spatial dimensions, this implies that true long-range
der cannot develop asT→0, and that thef correlation
length saturates at a finite value. We will assume here
there is a local onset off, F, andC orders at temperature
where the pseudogap develops, but at lower temperaturf
correlations are predominantly controlled by the rando
field disorder, and have only a weak, intrinsicT dependence
This is also consonant with the result that thermal fluct
tions are irrelevant at the random-field transition in high
dimensions.37 In contrast, the fluctuations ofC and F are
strongly T dependent, and can have an infinite correlat
length asT→0. TheC order becomes quasi-long-ranged
T5Tc and has the stronglyT-dependent Gaussian-to-vorte
crossover noted above atT.Tc . TheF order can also have
the exponential rapidT dependence associated with t
breaking of O~3! spin rotation symmetry asT→0.

This paper will consider the regime aboveTc where

^C~r !&50, ^Fx,ya~r !&50, ^fax,y~r !&Þ0. ~1.3!

The nonzero valuêf& is due to the presence of random
field perturbations which explicitly break lattice symmetrie
and so allowf to locally have a nonzero mean value whi
will fluctuate randomly as a function ofr . As noted above,
we assume that̂f& only has a weak intrinsicT dependence
However, the fluctuations of theC, F, andf orders are not
independent, and so the strongT dependence associated wi
the Gaussian-to-vortex crossover inC will induce a corre-
spondingT-dependent variation in̂f&. This paper will com-
pute this variation and suggest associated experimental t
Strictly speaking, because there is only quasi-long-range
der in C below Tc , the expectation values~1.3! apply also
for T,Tc : indeed, our methods and results extend also
T,Tc . However, as noted earlier, we neglect the effects
interlayer couplings and of quantum fluctuations, and so
low T results should be treated with caution.
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Our theory for the fluctuating orders and their interplay
summarized in Sec. II, which also contains our main resu
Details of the continuum theory of the superconducting flu
tuations and its Gaussian-to-vortex crossover appear in
III. Section IV discusses experimental tests and possible
tensions of our theory.

II. CORRELATIONS BETWEEN FLUCTUATING ORDERS:
MAIN RESULTS

This section will introduce the free energies which cont
the fluctuations of the order parameters, and state our m
results on theT dependence of thef order atT.Tc .

We describe the fluctuations of the superconducting or
C(r ) by a classical continuum partition function over th
Ginzburg-Landau free energy30

ZGL5E DC~r !e2FGL /(kBT),

FGL5E d2r F \2

2m*
u“ rC(r )u21a~T!uC~r !u21

b

2
uC~r !u4G .

~2.1!

We use here the notation of Refs 33–35m* , a(T), andb are
parameters which can be computed, in principle, from
microscopic physics of the underlying electrons. The coe
cient of uC(r )u2, a(T), vanishes at a mean-field transitio
temperature,a(Tc

MF)50, which will be distinct from the
temperatureTc at which there is a Kosterlitz-Thouless tra
sition, i.e.,a(Tc),0. The purely two-dimensional, and cla
sical theory~2.1! is expected to apply to the cuprates only f
T.Tc : below Tc we have to also account for three
dimensional effects arising from interlayer couplings, and
quantum effects at low enoughT. All such effects will be
neglected here, but for completeness, we will neverthe
discuss properties of the theory~2.1! over the full range ofT
values.

An important point is that the functional integral in Eq
~2.1! is not defined on its own and needs an ultraviolet re
lator. In the physical system this is provided by the under
ing electron physics on the lattice, but this is very difficult
characterize explicitly. Here, we shall follow the procedu
proposed in Ref. 30: the ultraviolet dependence can be
counted for by a suitable renormalization in the value
a(T). However, because we do not know the explicit form
the ultraviolet cutoff, we cannota priori compute the needed
shift in a(T). This lack of knowledge can be circumvente
by using the experimental value ofTc as an input into our
calculation. The knowledge of the actualTc , combined with
the parameters in Eq.~2.1! then allows a quantitative com
putation of the Gaussian-to-vortex crossover with no f
parameters. We reiterate that Eq.~2.1! cannot be regarded a
a fully predictive theory on its own, and so cannot, even
principle, predict the actual value ofTc : onceTc is deter-
mined by other means, precise quantitative predictions
other observables become possible.

The Gaussian-to-vortex crossover can be expresse
terms of the following dimensionless parameter
4-2
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COMPETING ORDERS IN THERMALLY FLUCTUATING . . . PHYSICAL REVIEW B69, 144504 ~2004!
g[
\2

m* b
Fa~T!

kBT
2

a~Tc!

kBTc
G . ~2.2!

The parameterg should be a monotonically increasing fun
tion of T. For T!Tc , g;21/T, at T5Tc , we haveg50,
and aboveTc , g takes positive values. We will see later th
the present continuum theory eventually breaks down
large T, when g begins to acquire a nonmonotonic depe
dence onT. The value of 1/ugu is a measure of the strength o
corrections to the mean-field theory ofZGL .

It is important to note that theT dependence ofa(T) in
Eqs. ~2.1! and ~2.2! is nonuniversal, and this will lead to
some nonuniversality in theT dependence of all our predic
tions. However, one of our main points is that there is
universal dependence on the parameterg. Moreover, once we
assume a linearT dependence ofa(T) nearTc @as is com-
monly done, and we will do in Eq.~3.13!#, theT dependence
of our predictions becomes specific.

Aided by the results of Ref. 30, 39, and 40 we will sho
that it is possible to obtain precise predictions for a variety
correlators ofZGL . We quote a result which will be useful i
our analysis here of multiple order parameters:

\2

m*
F ^uCu2&T

kBT
2

^uCu2&Tc

kBTc
G5D~g,T/Tc!, ~2.3!

whereD(g,T/Tc) is a universal function. The averages o
the left-hand side are evaluated under the partition func
ZGL at the indicated temperature. We will show in Sec.
that it is possible to reexpress the two argument funct
D(g,T/Tc) in terms of a single argument functionF(G) as in
Eq. ~3.12!, where G depends upong and T/Tc as in Eq.
~3.11!. Here we present results for the initial crossover fro
the Gaussian to the vortex regime, which occurs wheng
@1:

D~g,T/Tc!52
1

2p
ln~380gT/Tc!1

1

2p2g
ln~13.3gT/Tc!

1
1

4p3g2
@ ln2~13.3gT/Tc!22 ln~7.86gT/Tc!#

1O~1/g3!. ~2.4!

The numerical constants appearing in the arguments of
logarithms are universal. These constants, and the cons
appearing in the arguments of all subsequent logarithms,
pend on only two universal numbers that have to be de
mined by computer simulations: the latter numbers are
constantGc computed first in Ref. 30, and the constantj
computed in Refs. 39,40. Additional higher-order terms
Eq. ~2.4! have also been computed and these will be p
sented in Sec. III: we show there that it is possible to acco
for all logarithmic terms that appear at higher orders ing.
Numerical results for the full range of values ofg appear in
Sec. III. The expression~2.3! has ignored the possibleT
dependencies ofm* and b for simplicity: it is possible to
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account for these in a similar manner, as will become cl
from the discussion in Sec. III.

It is worth noting here that vortices are already presen
the Gaussian theory associated with zeros ofC(r ).41 The
result~2.4! accounts for the initial correlations between the
vortices, but does not include the vortex-binding physics
the Kosterlitz-Thouless transition. The latter is only a
counted for by the numerical results in Sec. III.

Let us turn now to the density wave order parametersF,
f. The complete effective action for these order parame
has a rather complicated structure and was discussed in
16. A simple Gaussian form will be satisfactory for our pu
poses here:

FF5E d2r @KFxu“xFxau21KFyu“yFxau21jF
22uFxau2

1hFx~r !Fa
2~r !1hFx* ~r !Fa*

2~r !1~x↔y!1•••#,

Ff5E d2r @Kfxu“xfaxu21Kfyu“yfaxu21jf
22ufaxu2

1hfx~r !fax~r !1hfx* ~r !fax~r !1~x↔y!1•••#.

~2.5!

Apart from the usual Gaussian terms,16 the above contains
complex random fieldshF(r ) andhf(r ) which pin the ‘‘slid-
ing’’ mode of the charge-density wave. These fields ar
from impurities which preserve spin rotation invariance: a
consequence, note that the random coupling islinear in the
fields f, but that there is only a random-exchange coupl
to O~3! rotations in the spin-density wave order. The
simple facts have a number of interesting implications.

~i! There can be no long-range charge order in two spa
dimensions, even atT50. This implies that there can be n
T50 quantum critical point, tuned by the hole concentratio
associated with the onset of such order. A quantum crit
point associated with the restoration of O~3! symmetry re-
mains possible.

~ii ! The strong relevance of such random-field pertur
tions suggests that in the absence of couplings to other c
cal order parameters, the correlation lengthjf can be as-
sumed to be roughly temperature independent at
temperatures.

~iii ! The theories~2.1! and~2.5! describe a phase in whic
the expectation values in Eq.~1.3! hold.

Finally, as promised, let us consider the influence of
C fluctuations described byZGL on the charge order corre
lations. The simplest coupling between the orders is
luCu2(ufaxu21ufayu2) term, and, as in Ref. 16, this leads
the leading-order correction

jf
22~T!5jf0

22~T!1l^uCu2&T . ~2.6!

Herejf0(T) is the ‘‘bare’’ correlation length of thef order,
which is expected to be only temperature dependent nearTc .
We input the value of̂ uCu2& as computed in Eq.~2.3! and
Sec. III, and obtain our main predictions for the superco
ducting fluctuation-induced modification in thef correlation
length.
4-3
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III. CONTINUUM THEORY OF THERMAL
SUPERCONDUCTING FLUCTUATIONS

This section will review the results of Ref. 30 relevant
obtaining Eqs.~2.3! and~2.4! and its extensions. Appendix A
will review the work of Prokof’ev, Ruebenacker, an
Svistinov39,40 on the dilute two-dimensional Bose gas a
show that the results of their numerical simulations can
mapped onto universal quantities needed here.

Reference 30 studied the following continuum theory o
N52 component real scalarwa , a51,2:

Fw5E d2r F1

2
~“ rwa!21

R̃

2
wa

21
U

24
~wa

2!2G ~3.1!

~Here we have changed notation for the field, fromFa in
Ref. 30, to wa here, to prevent confusion with the spin
density wave order.! This theory maps onto Eq.~2.1! with
the following correspondences:

C5Am* ~w11 iw2!/\,

R̃52m* a~T!/\2,

U512m* 2b/\4. ~3.2!

It was argued30 that the continuum limit ofFw required
only the single renormalization ofR̃ to R:

R̃5R2
2kBTU

3 EL d2k

4p2

1

k21R
. ~3.3!

Here we have introduced an ultraviolet cutoffL which is
needed to regulate the theoryFw . The renormalization in Eq
~3.3! is associated with logarithmic ultraviolet divergence
the one-loop ‘‘tadpole’’ diagram; the renormalizedR in the
propagator on the right-hand side accounts for tadpoles
tadpoles, etc. All other diagrams are ultraviolet converg
and hence the simple structure of the renormalization the

It is important to note that~3.3! is the exact definition of
R, and consequentlyR is not the fully ‘‘self-energy’’ of the
wa field at zero external momentum;R only accounts for the
resummation of tadpole graphs. In practice, the relations
~3.3! implies that, when we perform a Feynman graph e
pansion of any observable, we can ignore all tadpole gra
and replaceR̃ by R in all propagators. Note also that as th
bare couplingR̃ extends from2` to `, the renormalized
couplingR extends from 0 tò .

After the renormalization ofR̃ to R, all subsequent corr
elators ofFw are ultraviolet convergent and so we can saf
takeL→` in them. This implies that all these correlators a
universal functions of the single dimensionless quantity t
can be obtained from the parameters in Eq.~3.1!: this is the
analog of the ‘‘Ginzburg ratio,’’ defined here as

G5
kBTU

R
. ~3.4!
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For T!Tc , where R̃!0, we haveG→`. Conversely, for
T@Tc , R̃@0, andG→0.

The field theory~3.1! exhibits a Kosterlitz-Thouless tran
sition at some critical temperature, and the arguments ab
imply that this transition occurs at auniversalcritical value
G5Gc . The numerical studies of Ref. 30 foundGc'102.
The value ofGc can also be obtained from the subseque
and more precise, numerical simulations of Refs. 39,40;
connection is discussed in Appendix A, and~A5! yields

Gc596.963. ~3.5!

We are interested here in the value of^wa
2&. This quantity

requires a single additive renormalization before the c
tinuum limit is obtained; hence we can write

^wa
2&

kBT
52EL d2k

4p2

1

k21R
1F~G!, ~3.6!

where F(G) is a universal function. A number of analyti
results for this universal function can be obtained from
methods of Ref. 30, and details appear in Appendix B. F
G→0 ~corresponding toT@Tc), perturbation theory in pow-
ers ofU about thewa50 saddle point yields

F~G→0!5~2.355 71131024!G 21O~G 3!. ~3.7!

All subsequent terms in the above expansion involve o
integer powers ofG and there are no logarithms. ForG→`
~corresponding toT!Tc), we expand about a saddle poi
with waÞ0. As shown in Ref. 30, this is done by introducin
a ‘‘dual’’ coupling GD related toG by

1

G 1
1

2GD
5

1

6p
lnS G

GD
D . ~3.8!

Note that asG→`, GD53p/ ln G. For largeG, the expansion
of F is

F~G→`!5
1

2p
lnS G

GD
D2

6

G 1O~G D
2 !. ~3.9!

All subsequent terms in the present expansion involve o
integer powers ofGD , with no additional logarithms. As dis
cussed in Appendix A, the numerical results of Ref. 39,
yield the values ofF for all values ofG. In particular, at the
critical point G5Gc we have from Eq.~A8!

F~Gc!50.50260.003. ~3.10!

The theory of the Kosterlitz-Thouless transition implies th
F(G) will have a weak essential singularity atG5Gc , similar
to that in the specific heat. A plot of the values ofF(G)
appears in Fig. 1. It is interesting to note that either the sm
G or the smallGD expansions is accurate for the entire ran
of G values.

The discussion so far presents our most complete res
for the properties ofFGL andFw with essentially no approxi-
mations. There is, however, still some residual cutoff dep
dence. This can be removed by subtracting correspond
results at two different values of the bare couplingR̃/T @or
4-4
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m* a(T)/T], while U is fixed. Depending upon the physic

situation, changingR̃/T may also involve some changes
the values ofU. However, such changes are expected to
small and we neglect anyT dependence inU and L in the
remainder of this section. This allows to obtain an expli
relation between the dimensionless numberG used in the
present section, and the numberg in Eq. ~2.2!. Dividing Eq.
~3.3! by kBT and subtracting the corresponding equation
the critical point, and using the definitions in Eqs.~3.2! and
~3.4!, we obtain

g5
6

G 2
6

Gc
1

1

p
lnS TGc

TcGD . ~3.11!

As expected,g extends from1` to 2` asG extends from 0
to 1`. Applying the same procedure to Eq.~3.6! we obtain
the universal function in Eq.~2.3!

D~g,T/Tc!5
1

2p
lnS TcG

TGc
D1F~G!2F~Gc!. ~3.12!

The expressions~3.5!, ~3.7!–~3.12! constitute the central re
sults of this paper. Using as input the values ofg andT/Tc ,
we computeG from Eq. ~3.11! andGD from Eq. ~3.8!; then
using results~3.7! and ~3.9! we can computeF(G), and fi-
nally insert in Eq.~3.12! to obtainD(g,T/Tc). In particular,
the small G expansion in Eq.~3.7! yields Eq. ~2.4!. Of
course, it is better to numerically solve forG from Eq.‘~3.11!,
rather than obtaining the solution order-by-order in 1/g as
was done for Eq.~2.4!.

We now present some numerical results for the para
eters used by Mukerjee and Huse.35 They seta(T)5a0(T
2Tc

MF). Inserting this in Eq.~2.2! yields

FIG. 1. Plots of the universal functionF(G). The line on the left
is the smallG approximation in Eq.~3.7!. The line on the right is the
largeG approximation in Eqs.~3.8! and ~3.9!. The square symbols
are the numerical data of Ref. 40 transformed by Eqs.~A9! and
~A10!. The plus marks the position of the Kosterlitz Thouless tra
sition.
14450
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g5
rs~0!

kBTc
S 12

Tc

T D . ~3.13!

The parametrizationa(T)5a0(T2Tc
MF) is chosen to be

valid nearTc , but can also be reasonably extended asT→0
@in BCS theory, we expect a divergenta(T→0)
;2 ln(1/T), but this divergence is expected to be cutoff ne
a superfluid-insulator transition#. By rs~0![2\2a(0)/(m*b)
in Eq. ~3.13!, we mean the value of the helicity modulus
ZGL extrapolated toT50 in this manner@the London pen-
etration depth is related to the helicity modulus bylL

22

516pe2rs(T)/(\2c2)]. It is worth noting here thatrs(0)
and Tc are, in general, independent of each other, and
Nelson-Kosterlitz relation38 only constrains rs(Tc)/Tc
52/p.

This framework now predicts all physical properties wi
two input parameters: the values ofrs(0) andTc . Mukerjee
and Huse35 also defined a parameterh as a measure of the
strength of fluctuations. This is related to the parameters u
here byh52kBTc

MF/rs(0). In our numerical results below
we setrs(0)/(kBTc)5(2/h)(Tc

MF/Tc)56.8 following their
parameters.

An important subtlety should be noted here. The use
Eq. ~3.13! in Eq. ~3.11! normally yields a value forG which
decreases monotonically with increasingT, as seems reason
able, given our understanding of physical properties of
continuum theory. However, because the value ofg in Eq.
~3.13! saturates asT→` and because of the presence of t
ln(T/Tc) term on the right-hand side of Eq.~3.11!, for very T
the value ofG eventually starts increasing with increasingT.
This is clearly unphysical and is an indication that t
present continuum theory breaks down at large enoughT.
For the value ofh̄ being used here, this unphysical no
monotonicity arises only atT/Tc.20, and we will therefore
restrict our attention to values ofT below this.

Solving Eqs.~3.13! and ~3.11! for G as a function of
T/Tc , we use the results of this section and Appendix A
obtain the plot of Fig. 2 for the quantity appearing in E
~2.6!. Note, again that either the smallG or the largeG ex-
pansion is reasonable accurate.

IV. CONCLUSIONS

We conclude this paper by discussing some of the exp
mental and broader implications of our work. Our prima
result ~2.6! for the coherence length of the charge order c
be tested against neutron scattering and scanning tunn
spectroscopy ~STS! experiments. However, the stron
random-field disorder may makejf inaccessible to a neutro
probe which averages over the entire sample. In contr
STS provides a local probe, and so may be more sensitiv
the effects discussed here.

Consider an STS experiment with a field of view of ar
A, such as those performed in Refs. 7,13,14,42 and 43. Q
siparticle interference contributions, such as those compu
in Ref. 18,44–47, appear at low temperatures, but we
expect that these will significantly broaden at temperatu
aboveTc . We therefore focus here only on the contributio
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of the f fluctuations, which also lead to modulations in t
local density of the states measured in STS, as shown in
18,47. We know that the STS measurements are in the lin
response regime. So, when we perform the Fourier transf
of the local density of states at the ordering wave vectorK c ,
we find that the signal is proportional to the uniform part
the charge order parameter,f̃[f(q50). Let us estimatef̃.
We have for the free energy

^F&q50,A.2^h2&1/2f̃A1/21jf
22f̃2A. ~4.1!

Here we used that the result that the random field ene
scales as the square root of the area. We can now minim
Eq. ~4.1! with respect tof̃

f̃;
^h2&1/2jf

2

A1/2
. ~4.2!

Taking jf
2 (T) from Eq. ~2.6! we obtain the temperature de

pendence of the STS signal at the wave vectorK c .
For the case of competition between the superconduc

(C) and charge (f) orders, the couplingl in Eq. ~2.6! will
be positive. In this situation we have a seemingly counte
tuitive effect: asT is increased throughTc , the amplitude of
the charge order is enhanced. The physical origin of thi
not difficult to understand: the increase in phase coherenc

FIG. 2. Plots of the universal function (T/Tc)D(g,T/Tc) as a
function ofT/Tc for rs(0)/(kBTc)56.8. From Eq.~2.3! we see that
^uCu2&T5(T/Tc)^uCu2&Tc

1(m* kBTc /\2)(T/Tc)D(g,T/Tc); so

^uCu2&T is determined from the above plot up to an additive, no
singular, linear dependence onT determined bŷ uCu2&Tc

. This lin-
earT dependence can compensate for the linearT dependence in the
plot above so that̂uCu2&T saturates at highT. Also, as noted in the
text, the present theory breaks down at large enoughT and its main
utility is in capturing the singular increase in^uCu2&T asT crosses
Tc . The solid line is the smallG approximation obtained by solving
Eqs.~3.5!, ~3.7!, ~3.10!, ~3.11!, ~3.12!, and~3.13!. The dashed line
is the largeG approximation obtained by solving Eqs.~3.5!, ~3.8!,
~3.9!, ~3.10!, ~3.11!, ~3.12!, and~3.13!. The square symbols are th
numerical data of Ref. 40 processed via Eqs.~3.11!, ~3.12!, ~3.13!,
~A9!, and ~A10!. The plus marks the position of the Kosterlitz
Thouless transition.
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T is lowered is associated with an enhanced coherent mo
of the Cooper pairs, and this leads to a decrease in the
plitude of the spatial modulations.48

An alternative statement of the same physics can be m
in terms of the vortices. As we argued in Ref. 16, vortic
nucleate static charge order, and this was proposed a
explanation of the experiments of Ref. 13~other
approaches4,22,23,25–27have proposed static spin order in th
vortices—in our theory, static spin order is not nucleated
vortices and appears only in phases with global magn
order16!. IncreasingT aboveTc causes a proliferation of vor
tices and hence an enhancement of charge order.

While our discussion in this paper has been entirely at
level of the Landau theory of multiple order parameters, i
important to keep in mind that such a theory is an effect
model, and does not preclude other interpretations which
cus directly on the electronic quasiparticles. In particular
can view the competition between charge order and su
conductivity as the competition for the ordering of low
energy quasiparticles near the Fermi surface. So as the
perconducting pairing of these quasiparticles is redu
aboveTc , they are more susceptible to charge ordering.

An interesting direction for future work is to combine th
continuum theory of the Ginzburg-Landau functional pr
sented here with the theory of time-dependent supercond
ing fluctuations presented in Refs. 33–35: this has the p
pect of placing more precise quantitative constraints on
analysis of the Nernst effect experiments. Moreover, the
curacy of either the smallG or largeG expansions suggest
that useful analytic results may be possible. Results for
fluctuation conductivity in such an approach, including c
rections to the Aslamazov-Larkin fluctuation conductivit
have appeared recently.49 A similar dynamic approach can
also be applied to computing the linewidths of the electro
quasiparticles in the pseudogap regime: the strong ampli
fluctuations inC should lead to significant broadening in th
electronic spectral functions measured in photoemission
periments.
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APPENDIX A: CORRESPONDENCE WITH THE DILUTE
BOSE GAS

This appendix discusses the connection between
analysis of the dilute Bose gas in Refs. 39,40 and the res
of Ref. 30 and the present paper. Let us make it clear at
outset that we are not advocating a dilute Bose gas des
tion of the underdoped cuprates; rather, the finite tempera
properties of the dilute Bose gas are characterized by s
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universal numbers which appear also in the models of in
est in the present paper.

The dilute Bose gas is defined by the partition functio

ZB5E Dc~r ,t!e2SB /\,

SB5E
0

\/kBT

dtE d2r F\c*
]c

]t
1

\2

2m
u¹rcu22mucu2

1
UB

2
ucu4G . ~A1!

We follow the notation of Refs. 39,40 throughout this appe
dix. The only exception is that the boson interactionU has
been replaced byUB to prevent confusion with the couplin
U in Eq. ~3.1!.

Integrating out the nonzero Matsubara frequency mo
in the Bose gas, the action for the zero-frequency mo
takes the form~3.1! with the coupling constants

2
\2R̃

2m
5m22UBE d2k

4p2 S 1

e(\2k2/(2m)2m)/(kBT)21

2
kBT

\2k2/~2m!2m
D ,

U5
12m2UB

\4
. ~A2!

The integral above is divergent in the ultraviolet, but if w
use Eq.~3.3! to obtain the value of the renormalized co
pling R we obtain a convergent integral

R1
2mm

\2
5

4mUB

\2 E d2k

4p2 S 1

e(\2k2/(2m)2m)/(kBT)21

2
kBT

\2k2/~2m!2m
1

2mkBT/\2

k21R
D

5
2m2kBTUB

p\4
lnS 2mm

\2R~em/(kBT)21!
D

'
2m2kBTUB

p\4
lnS 2mkBT

\2R
D . ~A3!

In the last expression we have expanded to leading orde
UB , as required from consistency with previous approxim
tions. Now using the definition of the dimensionless coupl
G in Eq. ~3.4!, we obtain the value of the chemical potent
at the Kosterlitz-Thouless transition

mc5
mkBTUB

p\2
lnF\2jm

mUB
G , ~A4!
14450
r-

-

s
s

in
-
g
l

with universal numberjm computed in Ref. 39 related to th
universal numberGc computed earlier in Ref. 30 by

jm5
G ce

26p/Gc

6
. ~A5!

References 39,40 obtainedjm513.360.4, which is in rea-
sonable agreement with the valueGc'102 obtained in Ref.
30; the latter value ofGc yields jm'14.1 from Eq.~A5!.

The same method can be used to compute the boson
sity n. Integrating out the nonzero frequency modes a
mapping onto the classical theory~3.1! we obtain

n5E d2k

4p2S 1

e[\2k2/(2m)2m]/T21
2

T

\2k2/~2m!2m
D 1

m

\2
^wa

2&

5E d2k

4p2 S 1

e[\2k2/(2m)2m]/T21
2

T

\2k2/~2m!2m

1
2mkBT/\2

k21R
D 1

mkBT

\2
F~G!

5
mkBT

2p\2
lnS 2mkBT

\2R
D 1

mkBT

\2
F~G!, ~A6!

in the last equation we have made the same simplification
that in the last equation in Eq.~A3!. The result~A6! yields
the expression obtained in Ref. 39 for the critical density

nc5
mkBT

2p\2
lnS \2j

mUB
D , ~A7!

with the universal numberj given by

j5
G c

6
e2pF(Gc). ~A8!

The simulations of Refs. 39,40 obtainedj538063, and in-
serting this result in Eq.~A8! allows us to computeF(Gc).

FIG. 3. Feynman graph expansion of Eq.~3.1! for the correlator
~3.6!.
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Finally, subtracting Eq.~A7! from the last equation in Eq
~A6! we obtain

n2nc

mkBT/\2
5

1

2p
ln~G/Gc!1F~G!2F~Gc!5l~X!.

~A9!

The functionl(X) was computed in numerically Ref. 40
and its argumentX can be related to our couplingG by ~A3!,
yielding

X52
6

G 1
6

Gc
2

1

p
lnS Gc

G D . ~A10!

These earlier results forl(X) therefore yield the neede
function F(G) from Eqs.~A9! and ~A10!.

APPENDIX B: WEAK AND STRONG COUPLING
EXPANSIONS

This appendix presents discusses the expansion for
universal functionF(G) appearing in Eq.~3.6! for small and
largeG.

For smallG, a simple Feynman graph expansion of E
~3.1! can be carried out to orderG 2, with the diagrams
shown in Fig. 3. All propagators in Fig. 3 involve the ba
‘‘mass’’ R̃. A simple calculation shows that the grap
~a,b,c,e! are all absorbed by the first term on the right-ha
side of Eq.~3.6!, after substitution of Eq.~3.3!. This is a
simple example of our claim that all ‘‘tadpole’’ diagrams ca
be neglected after substitutingR for R̃. Only Fig. 3~d! con-
tributes toF(G) in Eq. ~3.6! and yields
ad

M

hy

,
a

P.
re

o,
.

-
.

14450
he

.

F~G!5
2G 2

9 E d2p

4p2E d2q

4p2E d2k

4p2

3
1

~k211!2~q211!@~p1k!211#@~p1q!211#

5
2G 2

9 E d2p

4p2 F 1

2ppAp214
lnS Ap2141p

Ap2142p
D G

3F 1

4pp~p214!
H p1

2

Ap214
lnS Ap2141p

Ap2142p
D J G .

~B1!

We evaluated the last integral numerically and obtained
~3.7!.

For largeG, the method described in Appendix C of Re
30 was used. To one loop order, the result

F~G!5
3RD

kBTU
1

1

2p
lnS R

RD
D ~B2!

is easily obtained, where, as in Ref. 30,RDGD5RG. In ob-
taining Eq.~B2!, we have to explicitly account for all tadpol
graphs, and the relationship in Eq.~2.4! of Ref. 30 between
R̃ andRD . The large momentum behavior of the expansi
aboutwa50 andwaÞ0 saddle points should be the sam
and this ensures that the ultraviolet divergences cancel
two loop order, 35 Feynman graphs appear; these w
evaluated as in Appendix C of Ref. 30, and their sum w
found to vanish. Consequently, there is no orderGD term in
F, and the result~3.9! follows.
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