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with Strongly Correlated Atoms
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We consider insulating states of spin-one bosons in optical lattices in the presence of a weak magnetic
field. For the states with more than one atom per lattice site we find a series of quantum phase transitions
between states with fixed magnetization and a canted nematic phase. In the presence of a global
confining potential, this unusual phase diagram leads to several novel phenomena, including the
formation of magnetization plateaus. We discuss how these effects can be observed using spatially
resolved spin polarization measurements.

DOI: 10.1103/PhysRevLett.93.120405 PACS numbers: 03.75.Mn, 32.80.Pj, 71.35.Lk
Far-off-resonance optical traps can confine neutral
atoms regardless of their hyperfine state [1] and open
exciting possibilities for exploring multicomponent sys-
tems of degenerate atoms [2–16]. Experimental studies of
the hyperfine spin-one manifold of 23Na atoms confined
in a single optical trap already revealed the ground state
spin structure in an external magnetic field [17], the
formation and persistence of the metastable spin domain
configurations [18], and quantum tunneling across spin
domain boundaries [19]. These phenomena have been
understood using mean-field theory [2,3,20] since in a
large trap, atoms can be considered as weakly interacting.
At the same time, theoretically predicted many-body
features of spin-one condensates, such as a spin singlet
nature of the ground state for an even number of atoms
[4], could not be observed in such experiments since the
energy difference between various spin states is inversely
proportional to the volume of the system and is extremely
small for realistic traps [5,6].

Several approaches have been suggested for creating
strongly correlated quantum states of spinor atoms in
optical lattices produced by standing wave laser fields
[7–11]. In the presence of a deep optical lattice, wave
functions of atoms are localized near the lattice potential
minima, which leads to a strong enhancement of inter-
actions between atoms [21–23] and can result in dramatic
changes in the properties of ultracold gases. It is also
important that in optical lattices one can have a small
number of atoms per lattice site (in experiments of
Ref. [22], this number was around 1–3). In an insulating
state, hopping between different sites is negligible and
each well behaves essentially as a small condensate. In
this regime, the behavior of spin-one bosons in each well
will be dominated by the strong spin-spin interactions
such as those predicted by [4]. Two component atom
mixtures in optical lattices have already been realized
in experiments of Ref. [24].

Nontrivial nature of the ground state of localized spin-
one bosons in optical lattices has been discussed previ-
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ously in [7–9]. Virtual hoppings of the atoms give rise to
spin exchange interactions between neighboring sites and
lead to several distinct insulating phases that differ in
their spin correlations. In two and three-dimensional
lattices, states with odd numbers of particles per site are
always nematic, and for states with even numbers of
particles per site, there is always a spin singlet phase,
and there may also be a first order transition into the
nematic phase. In this Letter we extend earlier analysis
and show that in a magnetic field, insulating states with
more than one atom per site undergo a series of phase
transitions between spin gapped phases with quantized
magnetization and phases with so-called canted nematic
order in which magnetization can vary continuously. The
critical properties of these phase transitions have been
recently investigated in [25]. A magnetic phase diagram
is similar to the phase diagram of the spinless boson
Hubbard model: states with quantized magnetization
are analogous to the Mott insulating phases, while the
canted nematic phase is analogous to the superfluid phase.
We also propose two kinds of experiments that can verify
the presence of such magnetization plateaus and demon-
strate the many-body nature of insulating states of spin-
one bosons in optical lattices.

An effective Hamiltonian for spin-one bosons in an
optical lattice in the presence of a magnetic field is given
by [8]
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Here, ayi� are creation operators for particles in the
lowest Bloch band localized on site i and having
spin components � � 0;	1; ni �

P
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��0ayi� ~T��0ai�0 are the number and spin operators for
site i ( ~T��0 are the usual spin matrices for spin one
particles). For each well, the collective spin of the atoms
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FIG. 1. Magnetic insulating phase of spin-one bosons in
optical lattice with an odd number of atoms per site N.
Magnetization is fixed inside the lobes but varies continuously
inside the Canted Nematic phase. The latter has an expectation
value of the nematic order parameter Qab in the plane perpen-
dicular to the direction of magnetic field. For sufficiently large
magnetic field the system becomes fully polarized with S � N
(not shown here). The insert shows the ground state magneti-
zation (per site) as a function of magnetic field for
2zN2t2=U0 � 5U2. Note that near H � 0, magnetization grows
linearly with magnetic field and quickly reaches the Ssite;z � 1
plateau.
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satisfies constraints Si � Ni, and Si � Ni is even.
Parameters t; U0 and U2 for a realistic case of a three-
dimensional cubic lattice have been obtained in [8]. The
ratio of the interaction terms in (1), U2=U0, is fixed by the
ratio of the scattering lengths and is independent of the
nature of the lattice. Scattering lengths of 23Na obtained
in Ref. [26] give U2=U0 � 0:04: In this Letter we neglect
effects of the quadratic Zeeman shift since magnetization
plateaus that we are interested in appear for magnetic
fields of the order of mGauss (assuming a typical
U2 � 0:1 kHz).

When the spin dependent interaction (U2) is much
smaller than the Hubbard repulsion (U0), the superfluid-
insulator transition [23,27] is determined mostly by U0.
The spin gap U2 term, however, is important inside the
insulating regime, in which nontrivial spin phases appear
as a result of a competition between a spin gap, a mag-
netic field, and spin exchange interactions, induced by
fluctuations in the particle number. The magnetic phase
diagram can be most easily understood by considering the
limit of large number of atoms per site, N  1. In this
case the effective spin Hamiltonian for the insulating
state can be written as a model of quantum rotors, inter-
acting via rotationally invariant quadrupolar interaction
[8,9]:
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lective spin on site i and inherits constraints of the micro-
scopic Hamiltonian (1). In the mean-field approximation
[28,29] we replace (2) by a sum of single site
Hamiltonians

HMF;i �
U2

2
~S2i �HSzi �

zN2t2

U0

�
Qab �

1

3
�ab

�
nianib;

(3)

with z being the number of nearest neighbors, and impose
a self-consistency condition on the nematic order parame-
ter Qab � hnianibi �

1
3�ab. Magnetic phase diagrams ob-

tained by solving (3) self-consistently for the cases of odd
and even filling factors are shown in Figs. 1 and 2 (for
details, see [30]). When t � 0 the Hamiltonian (3) does
not mix different spin eigenstates. In a magnetic field, the
system has a series of level crossings between states with
different values of the spin. Each of these states has a gap
in the excitation spectrum and remains stable after turn-
ing on a finite value of t. This results in lobes of fixed
magnetization shown in Figs. 1 and 2. Only at points
where spin eigenstates come into degeneracy do exchange
interactions give rise to mixing of different spin eigen-
states, leading to a Canted Nematic phase. The latter has
an expectation value of the nematic order parameter Qab
in a plane perpendicular to the magnetic field [25]. Hence,
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it has spontaneous breaking of the symmetry of spin
rotations around the direction of magnetic field. For suf-
ficiently large magnetic field the system becomes fully
polarized with Si � N. We note that for N � 1 and N � 2
one can derive effective spin interactions that do not rely
on the large N approximation of Eq. (2) [8]. These models
give magnetic phase diagrams that are qualitatively simi-
lar to Figs. 1 and 2 [30]. We also point out that inside the
lobes of fixed magnetization and in the mean-field ap-
proximation the many-body wave functions factorize
j�i �

Q
ijSi � S; Siz � Si.

A typical experimental system has a parabolic confin-
ing potential in addition to the periodic optical lattice.
This means that the chemical potential is not uniform,
and for small t, the system breaks into insulating domains
with different integer filling factors, separated by regions
of the superfluid phase (see Refs. [23,31] for analysis of
the spinless case). Another important experimental con-
straint is that the total magnetization is fixed by the initial
state of the system. In the discussion above, we showed
that when we change magnetic field, it is energetically
favorable to adjust the magnetization in order to utilize
some of the Zeeman energy (see Figs. 1 and 2). From
Eq. (1) we observe, however, that the spin component
parallel to the applied field is conserved. For example,
if the magnetic field is along the z-axis, Stot;z �

P
iSiz is a

good quantum number of the system (spin nonconserving
interactions, such as the dipolar relaxation, are typically
small) and should not change even when Hz is changing.
For a single large trap, this feature allowed to study
magnetic properties of spinor condensate [17] at magnetic
120405-2



FIG. 3. A system of spin-one bosons in an optical lattice
confined by a parabolic potential. In the insulating regime the
cloud breaks into insulating domains with different integer
filling factors. When magnetic field gradient is applied parallel
to the long axis of the trap, magnetization plateaus develop
inside individual insulating domains.
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FIG. 2. Magnetic insulating phase in optical lattice with an
even number of atoms per site. The insert is for 2zN2t2=U0 �
2U2.
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fields for which the true ground state should be fully
polarized.

Away around spin conservation has been demonstrated
in [17] and relies on applying spatially varying magnetic
fields and performing Stern-Gerlach imaging. Here we
extend these ideas and suggest an approach to experimen-
tal observation of the magnetization plateaus discussed
above. The idea of our first experiment is shown in Fig. 3.
We consider a strongly anisotropic trap in which a mag-
netic field gradient is applied parallel to the long axis of
the system. When there is a magnetic field gradient par-
allel to the long axis, there should also be gradients in the
transverse directions (both ~r ~H and ~r� ~H should be
zero). We assume that the size of the condensate in the
transverse directions is small enough that we can neglect
the effects of the magnetic field in transverse directions.
However, the size of the condensate should be larger than
the optical lattice period in any direction, so that we can
consider it as a three-dimensional system. As we dis-
cussed before, the uniform part of the magnetic field
has no effect on the state of the system, so in our dis-
cussion we set it to zero. To be concrete, we assume that
the largest insulating domain at the center of the trap has
a filling factor N � 6 and that our system has been
prepared to have Stot;z � 0. In a nonuniform magnetic
field, different parts of the N � 6 domain minimize their
energy for different values of magnetization. When the
field gradient is sufficiently large and tunneling is small
enough, the locally favored magnetization changes in a
steplike fashion from Ssite;z � �6 (per site) on the left to
Ssite;z � 6 on the right. Such state is also consistent with
the spin conservation, since Stot;z remains zero. So, the
configuration that minimizes the energy has plateaus in
the spatial profile of magnetization, with spin polariza-
tions (per atom) Satom;z � �1;�2=3;�1=3; 0; 1=3; 2=3; 1,
as shown in Fig. 3. Each plateau has a length of the order
of 2U2=jrHj. The appearance of spin plateaus in a non-
uniform magnetic field is analogous to the domain struc-
ture of condensates in optical lattices in the presence of a
nonuniform global confining potential that was discussed
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before [23,31]. In the latter case, the total density is fixed
by the number of atoms in the trap, but insulating phases
with different integer filling factors exist due to the con-
fining potential. To detect the magnetization plateaus
shown in Fig. 3, one needs to image different parts of
the trap separately, measuring spin polarization per atom
as a function of the position: hSatom;zi � �n� �
n��=�n� � n0 � n��, where n	; n0 are the local densities
of atoms with � � 	1 and 0, respectively. This quantity
can be most easily measured in Stern-Gerlach time-of-
flight experiments. If a small gradient of magnetic field is
applied during expansion, clouds with different spin com-
ponents spatially separate, and one can measure the num-
ber of atoms with different spin components using light
scattering.

To illustrate system parameters needed to realize this
experiment we consider a cigar shaped condensate of
sizes 400� 10� 10 �m. For an optical lattice created
with � � 985 nm lasers and 4� 105 atoms in a conden-
sate, we get the maximum density of six atoms per well in
the center of the trap. To observe five plateaus in this
setup, one would need magnetic field gradients
�100 mG=cm and a spatial resolution of 30 �m. These
parameters have already been achieved in experiments of
Ref. [17]. Inside the insulating phase the characteristic
time scale for spin relaxation between different wells is
set by the exchange interactions �ex � �hU0=�Nt�2. For
t � 0:1 khz and U0 � 2 khz we find times of the order
of hundreds of milliseconds. So, if a magnetic field
gradient is applied in the insulating regime, one needs
to wait at least that long for magnetic plateaus to develop.
Experimentally it may be more efficient to apply mag-
netic field gradient when the system is in the superfluid
regime and then take the system to the insulating state by
slowly reducing t.

We now discuss our second ‘‘spin decoration’’ approach
to experimental detection of spin gap effects in the in-
sulating regime of spin-one bosons. The idea of this
method is that when a system is prepared with a nonzero
120405-3



FIG. 4. A system of spin-one bosons with a nonzero total
magnetization in an optical lattice (no external magnetic field).
Magnetization gets distributed among regions with odd filling
factors and is pushed out of the regions with even fillings.
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magnetization in the absence of magnetic field gradients,
magnetization gets distributed nonuniformly among in-
sulating domains with different filling factors. Spin po-
larization appears predominantly in domains with odd
numbers of atoms per site and is pushed out of the regions
with even fillings. To justify this conjecture we propose
the following argument. In the regime, when tunneling is
small (zN2t2=U0 � U2), there is a crucial difference in
spin susceptibility between odd and even phases. For even
domains, one needs to pay an energy 3U2 to break a
singlet state and have Ssite;z � 2. For odd sites the lowest
energy state already has S � 1, and energy cost to polar-
ize existing spins is of the order of zN2t2=U0. Therefore,
externally imposed nonzero magnetization will be redis-
tributed in odd insulating domains. For small magneti-
zation per site, energy goes as

Eodd�N; Ssite;z� �
1

2�odd�N�
S2site;z; (4)

where �odd�N� is a spin susceptibility of the sites with odd
filling factor N. If �odd�N� was the same for all N, then
magnetization would be distributed uniformly among all
odd domains. In reality, �odd�N� decreases with increas-
ing N, so we expect larger magnetization for insulating
domains with smaller numbers of atoms. Quadratic de-
pendence in (4) ensures, however, that all domains with
odd filing factors acquire finite magnetization. So, in
experiments we expect to find a picture of alternating
even and odd domains, in which odd domains have finite
magnetization and even domains have none (see Fig. 4).
This picture is valid until all odd regions have magneti-
zation Ssite;z � 1. For the experimental setup discussed
earlier, this corresponds to hSatom;zi & 0:1. By performing
spatially resolved measurements of spin polarization, one
should be able to observe such a modulated structure of
magnetization.

In summary, we discussed insulating states of spin-one
bosons in optical lattices in the presence of a magnetic
field. For systems with more than one particle per site we
demonstrated the existence of a series of phase transitions
between phases with fixed magnetization and the canted
nematic phase in which magnetization can vary continu-
ously. We considered experimental signatures of this
120405-4
novel magnetic phase diagram, including formation of
magnetization plateaus in the presence of a magnetic field
gradient and a modulated spin density in nonuniform
systems with nonzero total magnetization.
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