
Journal of Superconductivity: Incorporating Novel Magnetism, Vol. 17, No. 5, October 2004 ( C© 2004)
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In this paper we discuss decay of superfluid currents in boson lattice systems due to quantum
tunneling and thermal activation mechanisms. We derive asymptotic expressions for the de-
cay rate near the critical current in two regimes, deep in the superfluid phase and close to the
superfluid-Mott insulator transition. The broadening of the transition at the critical current
due to these decay mechanisms is more pronounced at lower dimensions. We also find that
the crossover temperature below which quantum decay dominates is experimentally acces-
sible in most cases. Finally, we discuss the dynamics of the current decay and point out the
difference between low and high currents.
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1. INTRODUCTION

Some of the most intriguing questions in low-
temperature physics concern the ways in which su-
perconductors lose their superconducting properties,
because of thermal or quantum fluctuations. Mike
Tinkham has long been fascinated with these issues,
and has done much to advance our understanding of
the subject.

An early contribution in this area was the work
of Newbower et al. on effects of fluctuations on the
superconducting transition of tin whisker crystals [1].
Experimental data were compared with theories of
thermally activated phase slips, both in the linear
regime and in the nonlinear regime of finite cur-
rent flows. More recently, Tinkham and collabora-
tors studied the loss of superconductivity in very
thin wires of MoGe, deposited on carbon nanotubes,
where quantum fluctuations are involved [2–4]. Re-
lated work from Tinkham’s laboratory, in recent
years, has elucidated the breakdown of supercon-
ductivity in ultrasmall metallic grains, measured by
the even–odd alternation of Coulomb-blockade en-
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ergies [5,6], vortex motion, and resistance in high-
temperature superconductors [7,8], and critical cur-
rents in frustrated arrays of Josephson junctions [9].

The decay of supercurrents in liquid 4He and
in Bose-Einstein condensates of ultracold atoms has
much in common with the decay of superconductiv-
ity. Concepts of flux-line motion, and of phase slips
due to thermal or quantum fluctuations, appear in
both cases. A new dimension has been added to the
subject by recent experimental advances, where cold
atoms have been trapped in a region that contains
a spatially periodic potential, produced by optical
standing waves (see for example [10]). The ability
to vary continuously the parameters of the system,
by changing the strength of the periodic potential,
as well as by varying the number of trapped atoms
and the shape of the overall confining potential, al-
lows one to explore new regimes of parameters and
to make more precise confrontations between the-
ory and experiment. In turn, these developments give
added urgency to the theoretical study of supercur-
rent decay.

In the present paper, we discuss similarities and
differences between the decay of supercurrents in su-
perconductors and systems of trapped atoms, and we
present some new results for the latter. Specifically
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we consider certain experimental procedures which
have become standard in systems of ultra cold atoms.
In the first scheme, a condensate is prepared on a lat-
tice with a specified intensity, when the lattice is sud-
denly accelerated to a finite velocity. In other words,
a moving condensate is prepared in the lattice frame,
essentially fixing the phase gradient. A similar exper-
iment in superconductors would involve threading
a flux through a closed superconducting loop. Such
sudden lattice boosts were applied by several groups
to demonstrate a dynamical instability of the super-
fluid when the imposed phase gradient exceeds π/2
per unit cell [11]. A related experiment involves tilt-
ing the lattice, thus subjecting the atoms to a lin-
ear potential. This is equivalent to imposing a con-
stant voltage on a superconductor. The technique
was used, for example, to demonstrate Bloch oscilla-
tions of a condensate [12]. In a third experimental se-
quence, one can prepare a moving condensate, then
continuously increase the depth of the lattice toward
the superfluid-Mott insulator transition.

The response of the atomic system to the per-
turbations, can be measured, by direct observation
of the time evolution. Decay of the current, for ex-
ample, is observed by repeated experiments, where
atoms are released from the trap after varying wait-
ing periods. The phase gradient in the superfluid
at the time of release may be inferred from a time
of flight measurement of the momentum distribu-
tion. This should be contrasted with superconduc-
tors, where measurements probe I–V characteristics.

Besides the differences in the experimental ob-
servation procedures, there are unique features of
trapped atom systems which influence the physics of
supercurrent decay. First, to a very good approxima-
tion such systems can be considered perfectly clean.
Supercurrents decay only due to breaking of Galilean
invariance by the periodic potential.

A second feature that distinguishes the dynam-
ics of ultra cold atoms is their nearly perfect isola-
tion from the environment. Strictly speaking they are
always underdamped. However, we are usually in-
terested in the dynamics of a subset of the system
degrees of freedom, such as the super-current. How
much the dynamics of the the interesting variables
is damped, depends solely on the remaining system
degrees of freedom rather than on external dissipa-
tion sources. In superconductors, effects of quenched
disorder, phonons, fermion degrees of freedom, and
coupling to a substrate can complicate the situation
greatly, and the order parameter dynamics is most
frequently overdamed.

2. CRITICAL CURRENT IN THE
SUPERFLUID PHASE

Ultra cold atoms in an optical lattice, confined
to the lowest Bloch band are described by the well
known Bose-Hubbard Hamiltonan:

H = −J
∑
〈ij 〉

(a†i aj + h.c.) + U
2

∑
i

ni(ni − 1), (1)

where J and U are the hopping amplitude and the on-
site repulsive interaction, 〈ij 〉 denotes pairs of near-
est neighbor sites. Another implicit parameter in this
Hamiltonian is the average number of bosons per
site, N. In this paper we shall be primarily concerned
with the case where N is a large integer. We shall ad-
dress two separate regimes: the first is defined by the
conditions UN2 � JN � U, while the second regime
corresponds to the superfluid near the transition to a
Mott insulator (UN2 � JN ∼ U).

If the condition UN � J holds, then the inter-
actions are sufficiently strong to suppress amplitude
fluctuations of the order parameter, and (1) can be
mapped to the quantum rotor model:

H = −JN
∑
〈ij 〉

cos(ϕi − ϕj ) − U
2

∑
i

(
∂

∂ϕi

)2

(2)

The additional condition JN � U ensures that the
system is far from the superfluid-insulator transition,
and facilitates a semiclassical approximation because
fluctuations in ϕ as well as in the density, are small. In
the classical limit the boson creation and annihilation
operators can be treated as complex numbers subject
to discrete Gross-Pitaevskii equations [13]:

i
dψj

dt
= −J

∑
k∈O

ψk + U|ψj |2ψj , (3)

where the set O contains the nearest neighbors
of site j. In the quantum rotor limit UN � J the
number fluctuations can be integrated out leaving
us with only the equations of motion for the phase
φj = arg ψj :

d2φj

dt2
= −2UJN

∑
k∈O

sin(φk − φj ). (4)

Alternatively Eq. (4) immediately follows from the
Hamiltonian (2). Both Eqs. (3) and (4) can support
stationary current carrying states, ψj ∝ exp(ipxj ). A
simple linear stability analysis of (3) or (4), shows
[14,15] that these states become unstable toward
small perturbations when the phase twist exceeds a
critical value of π/2 per unit cell. The onset of this
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instability is signaled by appearance of imaginary
frequencies. This instability was recently observed
experimentally [12].

In principle, one can identify another type of
instability, characterized by appearance of negative
frequencies, in systems described by Eq. (3) [14]. In
general this occurs at a phase twist p∗ < π/2. How-
ever, in the quantum rotor limit UN � J , where we
work, the two instabilities coincide.

While the modulational instability occurs pre-
cisely at p = π/2 for JN � U, we expect that the
current can decay at smaller momenta due to either
quantum or thermal fluctuations (see also Ref. 16).
We envision the following experimental scheme to
observe this. The condensate is either boosted to a
state with a certain phase gradient or gradually ac-
celerated. Following the boost or while the system is
accelerating we probe the evolution of the phase gra-
dient. If the system is sufficiently close to the mod-
ulational instability, i.e. p is slightly below π/2, the
coherent motion of the condensate is expected to de-
cay. The larger the phase gradient, the faster this de-
cay will occur.

The other regime we shall address, is that of the
superfiuid close to the quantum phase transition to
a Mott insulator at commensurate filling (i.e. JN ∼
U, and for simplicity we still assume that N � 1).
Now the phase fluctuations are large, and (2) can-
not be treated semiclassically. However, one can use
the semiclassical description after coarse graining the
system. Since the coherence length ξ diverges at the
transition, one can use a continuum description of the
static and dynamic properties of the condensate. At
commensurate filling the appropriate quantum ac-
tion written in terms of the superfiuid order parame-
ter reads [17,18]:

S = C
∫

ddx dt

{∣∣∣∣dψ

dt

∣∣∣∣
2

− |∇ψ|2 + |ψ|2 − 1
2
|ψ|4

}
, (5)

where length is measured in units of ξ and time in
units of ξ/c, with c the sound velocity, C is a numeri-
cal prefactor. The bare parameters ξ, c, and C can be
found using a mean-field approximation [19]. For the
cubic d-dimensional lattice they read:

ξ = 1√
2d(1 − u)

, c = 2JN
√

2d,

C = 1
2(2d)d/2

(1 − u)
3−d

2 , (6)

where we introduced the dimensionless interaction
u = U/Uc with Uc = 8JNd being the critical interac-

tion strength in the mean field approximation. The
action (5) correctly describes low-energy dynamics of
the system in the vicinity of the phase transition, only
if the couplings ξ, c, Uc, and C are properly renormal-
ized. While in three dimensions the effects of such
renormalization should be weak, in two- and espe-
cially one-dimensional cases they strongly modify the
couplings and the critical exponents. The bare mean
field parameters can then be used only as an esti-
mate. Note that the dimensionless part of the ac-
tion (5) is general, and so are the conclusions we
reach in this paper, once the renormalized, rather
than mean field parameters are used. The action (5) is
obviously extremized by stationary current-carrying
states: ψp(x) =

√
1 − (pξ)2 eipxξ. It is easy to check

[19] that these states are stable with respect to small
fluctuations for p < pc = 1/(ξ

√
3). Since ξ diverges at

the phase transition, the critical phase twist vanishes
at that point as it should.

A possible experimental procedure to measure
the decay rate at low currents follows. A condensate
with a specified phase gradient is prepared in a weak
lattice (small u). Then, the lattice potential is grad-
ually increased in time, driving the system closer to
the Mott phase. This, in turn, results in the increase
of the correlation length ξ and in decrease of the criti-
cal momentum pc. As pc approaches p the superfluid
current is expected to decay either due to quantum
or thermal fluctuations.

3. DECAY OF THE SUPERFLUID CURRENT

In this section we describe how the superfluid
current decays in a lattice when p is below pc. We
shall consider first the Gross-Pitaevskii regime JN �
U in the quantum rotor limit UN � J and then turn
to the situation in the vicinity of the superfluid insu-
lator transition JN ∼ U. In each case we shall address
the effects of both quantum and thermal fluctuations.

3.1. Gross-Pitaevskii Regime

3.1.1. Quantum Decay

The action corresponding to the quantum rotor
model (2) is given by

S=
∫

dτ


∑

j

1
2U

(
dφj

dτ

)2

−
∑
〈j ,j ′〉

2JN cos(φj − φj ′)


 ,

(7)
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or after the rescaling τ → τ/
√

UNJ :

S = (JN/U)1/2s, (8)

where

s =
∫

dτ


∑

j

1
2

(
dφj

dτ

)2

−
∑
〈j ,j ′〉

2 cos(φj − φj ′)


 . (9)

To leading order in
√

U/JN, which plays the role of
the effective Planck’s constant for this problem [20],
the tunneling rate depends on the action Sb, associ-
ated with the bounce solution of the classical equa-
tions of motion in the inverted potential [21]:

� ∝ e−Sb, (10)

Clearly the action should vanish at p = π/2, since at
this point the spectrum becomes unstable and the
tunneling barrier disappears. Deep in the superfluid
regime U/JN  1, the tunneling is effective only if p
is close to π/2, where the product s(JN/U)1/2 is not
too large. In this case one can make further progress
in calculating the tunneling action by expanding (9)
up to cubic terms in phase differences φj − φj ′ :

s ≈
∑
j ,k

∫
dτ

[
1
2

(
dφj k

dτ

)2

+ cos(p)(φj +1,k − φj ,k)2

+ (φj ,k+1 − φj ,k)2 − 1
3

(φj +1,k − φj ,k)3

]
. (11)

Here we explicitly split the site index into longitu-
dinal (j ) and transverse (k) components. Also, for
convenience, we shifted the phase φj ,k → φj ,k + pj so
that the metastable state now corresponds to φj ,k =
0. Note that at p → π/2 only longitudinal modes be-
come soft, due to the prefactor cos p in front of the
quadratic term in the action. This implies that we
can safely apply a continuum approximation for the
phases along the transverse directions. Then instead
of (11) we derive:

s ≈
∑

j

∫
dτdd−1x

[
1
2

(
dφj

dτ

)2

+
(

dφj

dx

)2

+ cos(p)(φj +1 − φj )2 − 1
3

(φj +1 − φj )3

]
. (12)

In this equation x denotes transverse coordinates
which reside in a d − 1 dimensional space. Upon
rescaling

φ = cos(p)φ̃, τ = τ̃√
cos(p)

, x = x̃
√

2√
cos p

, (13)

the action (12) simplifies further:

s ≈ (π/2 − p)
6−d

2 sd, (14)

where

s̃d = 2
d−1

2

∑
j

∫
ddξ

[
1
2

(
dφ̃j

dξ

)2

+ (φ̃j − φ̃j +1)2

− 1
3

(φ̃j − φ̃j +1)3

]
(15)

is just a number, which is determined only by the
dimensionality d. We will provide its detailed vari-
ational derivation elsewhere [19] and here just quote
the results: s̃1 ≈ 7, s̃2 ≈ 25, s̃3 ≈ 90. From the scaling
(13) it is obvious that the characteristic transverse di-
mension of the instanton x scales as (π/2 − p)−1/2 �
1, justifying the continuum approximation. Above
d = 6 the tunneling action would experience a dis-
continuous jump at p = π/2. However, since we deal
with d ≤ 3, the action always continuously vanishes
at p → π/2. In this way we derive the asymptotic de-
cay rate of a uniform current state near the modula-
tion instability:

� ∝ exp
[
−s̃d(JN/U)1/2(π/2 − p)

6−d
2

]
(16)

3.1.2. Thermal Decay

To calculate the exponent characterizing the
thermal decay rate, one has to compute the dif-
ference of energies of the metastable state and
the saddle-point which separates two adjacent
metastable minima [22–24]. Both saddle-point and
metastable configurations are the stationary solu-
tions of the equations of motion (4):∑

k∈O

sin(φk − φj ) = 0. (17)

The metastable state corresponds to the uniform
phase twist: φj ,k = jp. The saddle-point state relevant
for the current decay can be easily found in one di-
mension:

φj =
{

p ′j , j < 0

π + p ′(j − 2), j ≥ 1,
(18)

where p ′ ≈ p − (π − 2p)/M if we use periodic
boundary conditions for the system with M sites. The
energy difference between the two states in the limit
M → ∞ is

	E = 2JN(2 cos p − sin p(π − 2p)). (19)
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Correspondingly, the decay rate is proportional to

� ∝ e−β	E = e−2JNβ(2 cos p−(π−2p) sin p). (20)

In particular when p → π/2 we have:

� ∝ e− 4
3 NJβ(π/2−p)3

. (21)

In higher dimensions we cannot find the energy of the
saddle-point explicitly for all values of p. However, in
analogy with the quantum case, at p close to π/2 we
can expand the energy functional up to cubic terms
in phase differences.

Ed ≈ JN
∑

j

∫
dd−1x

[ (
dφj

dx

)2

+ cos(p)

× (φj +1 − φj )2 − 1
3

(φj +1 − φj )3

]
, (22)

where φj (x) is the nontrivial solution of the cor-
responding Euler-Lagrange equations vanishing at
x → ∞. We again shifted the phase φj → φj + pj .
After rescaling φj = cos(p)φ̃j and x = x̃

√
2/

√
cos p

we find:

Ed ≈ JN 2
d−1

2 (pc − p)
7−d

d

∑
j

∫
dd−1x̃

[
1
2

(
dφ̃j

dx̃

)2

+ (φ̃j +1 − φ̃j )2 − 1
3

(φ̃j +1 − φ̃j )3

]
. (23)

Note that the integral in the expression above coin-
cides with s̃d−1 up to a number 2

d−2
2 . So we immedi-

ately conclude that

Ed ≈ s̃d−1JN
√

2(π/2 − p)
7−d

2 . (24)

Note that the activation energy characterizing
the thermal decay vanishes faster than the tunnel-
ing action as p → π/2. It implies that thermal fluc-
tuations become increasingly important and domi-
nate the decay of superfluid current as the system
approaches the dynamical instability. Comparing the
ratio Ed/T and the tunneling action in (16) we obtain
the crossover temperature:

T∗ ≈ c
(

s̃d−1

s̃d

) √
π/2 − p (25)

at which the quantum and thermal decay rates coin-
cide. Here c = √

2UJN is the sound speed in equilib-
rium (i.e. p = 0). Alternatively, we can fix the tem-
perature to obtain the momentum crossover scale p�

at which thermal and quantum decay rates coincide:

π/2 − p∗ ≈
(

s̃d

s̃d−1

)2 (
T
c

)2

. (26)

At phase gradients larger than p∗, thermal decay
dominates. The tunneling action in (16), at this value
of momentum is given by

S∗
d = s̃d

(
s̃d

s̃d−1

)6−d
√

JN
U

(
T
c

)6−d

. (27)

If S∗
d � 1, then at the crossover momentum the cur-

rent decay is exponentially suppressed and will be
nonzero only at p closer to π/2. Then the thermally
activated phase slips will dominate the decay process
and quantum tunneling can be ignored. In the oppo-
site limit S∗

d  1 the current will decay at p < p∗ due
to quantum process and the temperature effects are
unimportant. The characteristic crossover tempera-
ture separating quantum and thermal decay regimes
is thus:

Tq ≈ Ac s̃
− 7−d

6−d
d s̃d−1

(
U
JN

) 1
2(6−d)

, (28)

where A is a numerical constant of the order of one.
Note that for all relevant dimensions d ≤ 3 the last
multiplier is always of the order of one because of the
small exponent 1/(12 − 2d). Therefore, the crossover
temperature Tq is of the order of the sound velocity
(or equivalently, the Josephson energy).

4. CURRENT DECAY IN THE VICINITY
OF THE MOTT TRANSITION

Let us now address decay of supercurrents in
the regime where JN ∼ U and large integer filling N.
As we already argued, in the vicinity of the Mott-
insulator phase transition the correlation length ξ be-
comes large compared to the lattice constant. One
can therefore use a continuum description of the
problem (5). The relativistic dynamics of (5) is a spe-
cial feature of the commensurate transition. Ordi-
nary superfluids are described by a similar action, but
with a kinetic term including first time derivative.

The Euler Lagrange-equations derived from (5)
admit stationary current carrying solutions of the
form

ψ =
√

1 − (pξ)2eipξx, (29)

We emphasize again that x is measured in units
of the correlation length ξ. The current state be-
comes unstable at p > pc = 1/(ξ

√
3). Below pc, the

current can still decay due to quantum or thermal
fluctuations.
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For the thermal decay, only the static part of the
action needs to be considered. Then there is no dif-
ference between our problem and the current decay
in ordinary superfluids described by the Ginzburg-
Landau free energy. In particular, in the context
of super-conducting wires, the exponent character-
izing the current decay rate in one dimension was
computed by Langer and Ambegaokar [23], and the
prefactor setting the time scale was later found by
McCumber and Halperin [24]. In three dimensions,
the asymptotic behavior of the corresponding expo-
nent at p → 0 was obtained by Langer and Fisher
[25]. However, here we are interested in the opposite
limit p → pc.

For both the thermal and the quantum cases we
will use the scaling approach, successfully applied
above for the quantum phase model in the Gross-
Pitaevskii regime. We expand the action to cubic or-
der in the amplitude (η) and phase (φ) fluctuations,
about the metastable minimum, and integrate out the
gapped amplitude mode. After the rescaling:

x → x

2 31/4
√

ξ
√

pc − p
, z → z

6ξ(pc − p)
,

φ → φ33/4 : 2
√

ξ
√

pc − p (30)

the action to leading order in pc − p becomes:

S = C39/4−d : 2dξ5/2−d(pc − p)5/2−d
∫

dz dx(∇φ)2

+ (
∂2

xφ
)2 − (∂xφ)3 ≈ Ad(1 − u)1/4(pc − p)5/2−d

(31)

where z denotes all the transverse coordinates rel-
ative to the current direction, including time. ∇ =
(∂z, ∂x) is the gradient in d + 1 dimensions. Accord-
ingly, the quantum decay rate is given by �Q ∝
exp(−Ad(1 − u)1/4(pc − p)5/2−d). A variational cal-
culation [19], yields A1 ≈ 18.4 and A2 ≈ 8.4. As be-
fore, to calculate the thermal decay rate one simply
has to substitute d → d − 1, so that

�T(d) ∝

exp
(

−JN
T

(2d)−3/4(1 − u)1/4Ad−1(pc − p)7/2−d
)

.

(32)

In the one-dimensional case the relevant constant
A0 ≈ 12.56. It is interesting to contrast these results
with the asymptotic decay rate (16), found in the
Gross-Pitaevskii regime. First we observe that the
tunneling action close to the Mott insulator vanishes

as a smaller power of pc − p. Moreover, for d = 3,
the scaling hypothesis for the quantum decay rate
breaks down, suggesting that S is discontinuous at
the critical current and is dominated by fluctuations
of a finite (rather than diverging as p → pc) length
scale. We therefore expect, that in three dimensions
at zero temperature, the instability marks a sharp lo-
calization transition. At finite T, thermal fluctuations
broaden this transition, because the activation energy
barrier vanishes at pc for d < 7/2.

The quantum-to-thermal crossover for a given
dimensionless interaction and phase gradient is
found by comparing the two decay rates. In one and
two dimensions we find

T∗(p) = JN
(2d)3/4

Ad−1

Ad
(pc − p). (33)

In three dimensions T∗ = 0 because the quantum de-
cay is effectively suppressed. As discussed above for
the quantum rotor model, there is a more useful, p-
independent, crossover temperature scale. Using the
same arguments as in the Gross-Pitaevskii limit, we
can find the temperature separating the quantum and
thermal decay regimes in one and two dimensions:

Tq ∼ JNAd−1A
− 7−2d

5−2d
d (1 − u)− 1

10−4d . (34)

We see that near the Mott transition the crossover
temperature strongly depends on interaction u. Thus
as u → 1, in one and two dimensions Tq → ∞, and
therefore the quantum decay always dominates over
the thermal. In particular, in two dimensions we find
Tq ∼ 0.03 JN/

√
1 − u, and in the one-dimensional

case Tq ∼ 0.1JN/(1 − u)1/6; i.e., the crossover tem-
perature is very high and the thermal decay is unim-
portant.

5. DYNAMICS OF THE CURRENT DECAY

We have seen that except for one case, corre-
sponding to the three-dimensional relativistic model
at T = 0, there is no sharp transition between the
superfluid current-carrying state and the insulating
state with no current. Indeed, in all other cases the
tunneling action and the energy barrier vanish con-
tinuously as the system approaches the modulation
instability. Thus, instead of a sharp transition bound-
ary we can define a broad crossover region, defined
roughly by 1 < Sd < 3, which separates the super-
fluid phase with a relatively slow current decay and
the insulating phase with a fast decay. The fact that
the transition is broad does not imply, however, that
within a single experiment a gradual current decay
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will be detected as the system is slowly tuned through
the crossover region. The tunneling and thermal de-
cay rate define a probability of creating a single phase
slip per lattice site. The subsequent evolution, after a
single phase slip has been created, can take one of
two general routes. In the overdamped scenario, the
phase slip rapidly dissipates its energy into phonon
(Bogoliubov) modes and brings the system to the
next metastable minimum with slightly lower current.
In the second, underdamped scenario, the phase slip
continues to unwind, triggering complete decay of
the current in a single step.

In a closed system, i.e. with no coupling to the
environment, these two regimes are well defined be-
cause the damping of the phase slip comes from the
internal degrees of freedom, which are completely
described by the equations of motion. Furthermore,
near the critical current, whether the phase slip was
thermally activated or induced by quantum tunnel-
ing, should make little difference for the dynamics
that follow. This is because the energy barrier is very
small, so the classically allowed motion following the
tunneling event starts very close to the metsatable
maximum, where it would start following thermal ac-
tivation. To see what type of decay modes are re-
alized in the Gross-Pitaevskii regime, we solve the
classical equations of motion (3) numerically. We
start from a uniform current state in a periodic lat-
tice. To allow for current decay we add small fluc-
tuations to the initial values of the classical fields
ψj (t = 0). This mimics the effect of thermal fluctu-
ations. In Fig. 1 we plot the computed current versus
time for a one-dimensional array of M = 200 sites.
Initially the system is assumed to be noninteracting
(U = 0) and prepared in an eigenstate with a given
phase gradient p (specifically we consider p = 2π/5
and p = π/10). Then, the interaction is gradually in-
creased in time reaching a constant value, and we
follow the time evolution of the current. It is clear
from the figure that the phase slips in the smaller
current case (p = π/10) are overdamped leading to
gradual decay. There are initially 10-phase twists in
the system, and indeed, it is evident that each phase
slip decreases the current by roughly 10%. On the
other hand for the larger current (p = 2π/5) a sin-
gle phase slip generates immediate current decay in
the whole sample consistent with the underdamped
regime. We will not attempt here to find the precise
boundary between the two scenarios. However, we
stress that near the instability the system is always in
the underdamped regime. We checked that a simi-
lar overdamped to underdamped crossover occurs in

Fig. 1. Current (scaled to 1 at t = 0) versus time for a one-
dimensional periodic array of 200 sites with two different initial
phase gradianets. The evolution is determined solving equations
of motion (3) with constant hopping amplitude J = 1 and interac-
tion increasing in time U = 0.01 tanh 0.01t for p = 2π/5 and U =
tanh 0.01 t for p = π/10. To get the current decay we add small
fluctuations to the initial values of the classical fields ψj (t = 0).

other spatial dimensions. So if p is not too small, then
in a given experimental run, one will always see a
sharp transition from the superfluid to the insulating
regime. However the precise point, where the current
decays will vary from run to run. The broadened tran-
sition below the critical current, which was the sub-
ject of this paper, will be evident from accumulated
statistics of the point where the rapid decay occurred.
On the other hand, in the absence of any fluctuations
the transition would seem very sharp, and always oc-
curs at p = π/2.

We did not carry out a similar numerical analysis
for small currents close to the Mott transition. There
are some reasons to anticipate that the decay will be
overdamped in this case even close to the critical cur-
rent. In particular, because the size of the phase slip
in this case is large, it should be able to easily dissi-
pate energy into phonon modes.

It is worth mentioning, that if the motion of
phase slips is underdamped, then in a truly infinite
system the current state is always unstable. Indeed
the probability of a phase slip in the whole system is
proportional to its size M. If a single phase slip trig-
gers the current decay in the whole sample, then ob-
viously a state with a uniform phase gradient cannot
exist. However, in finite size systems these effects are
not so crucial, because the decay probability depends
exponentially on the couplings and current, but only
linearly on the system size.
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6. CONCLUSIONS

The modulational instability can be observed ei-
ther by accelerating the condensate or by increas-
ing the lattice potential and driving the system closer
to the Mott transition, while the condensate is in
motion. We showed that because of quantum or
thermal effects, the current decays before the sys-
tem becomes classically unstable. Therefore instead
of a sharp transition, there is a crossover region
where the decay rate grows from being exponen-
tially small to large. The crossover region becomes
narrower either deep in the superfluid regime (i.e.
JN � U) or in higher dimensions. In particular, in the
three-dimensional case we always expect a very sharp
boundary separating the regions with very weak and
very strong decay rates.

We found that deep in the superfluid regime the
crossover temperature separating quantum and ther-
mal decay is of the order of plasma frequency in
all dimensions. At small currents, close to the Mott
phase, the decay occurs predominantly through ther-
mal fluctuations in three dimensions and through
quantum tunneling in one and two dimensions. In
the two-dimensional case the quantum tunneling be-
comes appreciable only at extremely low tempera-
tures or very close to the Mott transition.

We argue that both overdamped and under-
damped dynamics of the current decay can be real-
ized in these systems. The underdamped regime cor-
responds to high currents close to p = π/2, while at
low currents the dynamics is overdamped.
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