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Abstract

We consider one-dimensional interacting Bose–Fermi mixture with equal masses of bosons and
fermions, and with equal and repulsive interactions between Bose–Fermi and Bose–Bose particles.
Such a system can be realized in current experiments with ultracold Bose–Fermi mixtures. We apply
the Bethe ansatz technique to find the exact ground state energy at zero temperature for any value of
interaction strength and density ratio between bosons and fermions. We use it to prove the absence
of the demixing, contrary to prediction of a mean-field approximation. Combining exact solution
with local density approximation in a harmonic trap, we calculate the density profiles and frequen-
cies of collective modes in various limits. In the strongly interacting regime, we predict the appear-
ance of low-lying collective oscillations which correspond to the counterflow of the two species. In
the strongly interacting regime, we use exact wavefunction to calculate the single particle correlation
functions for bosons and fermions at low temperatures under periodic boundary conditions. Fourier
transform of the correlation function is a momentum distribution, which can be measured in time-of-
flight experiments or using Bragg scattering. We derive an analytical formula, which allows to cal-
culate correlation functions at all distances numerically for a polynomial time in the system size. We
investigate numerically two strong singularities of the momentum distribution for fermions at kf and
kf + 2kb. We show, that in strongly interacting regime correlation functions change dramatically as
temperature changes from 0 to a small temperature �Ef/c� Ef, where Ef = (p�hn)2/(2m), n is the
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total density and c = mg/(�h2n)� 1 is the Lieb–Liniger parameter. A strong change of the momen-
tum distribution in a small range of temperatures can be used to perform a thermometry at very
small temperatures.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

Recent developments in cooling and trapping of cold atoms open exciting opportunities
for experimental studies of interacting systems under well controlled conditions. Current
experiments [1,2] can deal not only with single component gases, but with various atomic
mixtures. Using Feshbach [3,4] resonances and/or optical lattices [5,6] one can tune differ-
ent parameters, and drive the systems towards strongly correlated regime. The effect of
correlations is most prominent for low dimensional systems, and recent experimental real-
ization [7,8] of a strongly interacting Tonks–Girardeau (TG) gas of bosons opens new per-
spectives in experimental studies of strongly interacting systems in 1D [9]. In this article,
we investigate Bose–Fermi mixtures in 1D, using exact techniques of the Bethe ansatz.
Some of the results presented here have been reported earlier [10].

Most of the theoretical research on Bose–Fermi mixtures [11] so far has been concen-
trated on higher dimensional systems, and only recently 1D systems started attracting
attention. Several properties of such systems have been investigated so far, including phase
separation [12–14], fermion pairing [15], possibility of charge density wave (CDW) forma-
tion [16] and long-distance behavior of correlation functions [17].

A 1D interacting Bose–Fermi mixture is described by the Hamiltonian

H ¼
Z L

0

dx
�h2

2mb
oxW

y
boxWb þ

�h2
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oxW

y
f oxWf

� �
þ
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y
bW
y
f Wf Wb

� �
.

ð1Þ

Here, Wb, Wf are the boson and fermion operators; mb, mf are the masses; and gbb, gbf are
Bose–Bose and Bose–Fermi interaction strengths. The model (1) is exactly solvable, when
[18]

mf ¼ mb ¼ m; gbb ¼ gbf ¼ g > 0. ð2Þ

It corresponds to the situation when masses are the same, and Bose–Bose and Bose–Fermi
interaction strengths are the same and positive. Although conditions (2) are somewhat
restrictive, the exactly solvable case is relevant to current experiments (the experimental
situation will be analyzed in detail in Section 7) and can be used to check the validity
of different approximate approaches. Model (1) under conditions (2) has been considered
in the literature before [18], but its properties have not been investigated in detail. After the
appearance of our initial report [10], two additional articles [17,19] used Bethe ansatz to
investigate the same model. We use the exact solution to calculate the ground state energy
and investigate phase separation and collective modes at zero temperature. For strongly
interacting regime, we calculate single particle correlation functions, and consider the
effects of small temperature on correlation functions and density profiles.

The article is organized as follows. In Section 2, we review the Bethe ansatz solution for
Bose–Fermi mixture and compare it to the solution for fermi mixture. In Section 3, we
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obtain the energy numerically in the thermodynamic limit. We use it to prove the absence
of the demixing under conditions (2), contrary to prediction of a mean-field [12] approx-
imation. In Section 4, we combine exact solution with local density approximation (LDA)
in a harmonic trap, and calculate the density profiles and frequencies of collective modes in
various limits. In the strongly interacting regime, we predict the appearance of low-lying
collective oscillations which correspond to the counterflow of the two species. In Section 5,
we use exact wavefunction in the strongly interacting regime to calculate the single particle
correlation functions for bosons and fermions at zero temperature under periodic bound-
ary conditions. We derive an analytical formula, which allows to calculate correlation
functions at all distances numerically for a polynomial time in system size. In Section 6,
we extend the results of Section 5 for low temperatures. We also calculate the evolution
of the zero temperature density profile at small nonzero temperatures. We show, that in
strongly interacting regime correlation functions change dramatically as temperature is
raised from 0 to a small value. Finally in Section 7, we analyze the experimental situation
and make concluding remarks.

2. Bethe ansatz solution

In this section, we will briefly review the solution [18] of the model (1) under periodic
boundary conditions and compare it to the solution of Yang of the spin- 1

2
interacting ferm-

ions [20,21], for the sake of completeness. More details on Yang’s solution can be found in
[22–26].

In first quantization, hamiltonian (1) can be written as

H ¼ �
XN

i¼1

o2

ox2
i
þ 2c

X
i<j

dðxi � xjÞ; c > 0. ð3Þ

Here, we have assumed m = 1/2 and �h = 1, to keep contact with the literature on the sub-
ject. Later in the discussion of the collective modes, we will introduce the mass of atoms,
but it should be clear from the context whether we have assumed m = 1/2 or not. c in (3) is
connected to parameters of (1) via

c ¼ mg

�h2
. ð4Þ

Wavefunction is supposed to be symmetric with respect to indices i = {1, . . . ,M}
(bosons) and antisymmetric with respect to i = {M + 1, . . . ,N} (fermions). On the first
stage, Yang’s solution does not impose any symmetry constraint on the wavefunction.
On the second stage, periodic boundary conditions are resolved with the help of extra
Bethe ansatz. This idea has been generalized by Sutherland [27] for the case of N-fermion
species. The results presented here can be simply derived from Sutherland’s work.

In Yang’s solution, one assumes the generalized coordinate Bethe wavefunction of the
following form: for 0 < xQ1

< xQ2
< � � � < xQN

< L

W ¼
X

P

½Q; P �ei
P

kPi xQi ; E ¼
X

i

k2
i ; ð5Þ

where k1, . . . ,kN is a set of unequal numbers, P is an arbitrary permutation from SN and
[Q,P] is N! · N! matrix. Let us denote the columns of this matrix as N! dimensional
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vector nP. Delta function potential in (3) is equivalent to the following boundary condition
for the derivatives of the wavefunction:

o

oxj
� o

oxk

� �
Wxj¼xkþ0 �

o

oxj
� o

oxk

� �
Wxj¼xk�0 ¼ 2cWxj¼xk ð6Þ

and the continuity condition reads

Wxj¼xkþ0 ¼ Wxj¼xk�0. ð7Þ

Suppose Q and Q 0 are two permutations, such that Qk ¼ Q0k, for k „ {i, i + 1}, and
Qi ¼ Q0iþ1, Q0i ¼ Qiþ1. Similarly, P and P 0 are two permutations, such that P k ¼ P 0k, for
k „ {i, i + 1}, and P i ¼ P 0iþ1, P 0i ¼ P iþ1. To satisfy (6) and (7) for xQi

¼ xQiþ1
independently

of other x, one has to impose two conditions for four coefficients [Q,P], [Q 0,P], [Q,P 0],
[Q 0,P 0]. Using these two conditions, we can express [Q,P 0], [Q 0,P 0] via [Q,P], [Q 0,P]. These
requirements can be simply written as a condition between nP and nP 0 :

nP 0 ¼ Y i;iþ1
P i ;P iþ1

nP . ð8Þ

Y operators are defined as

Y l;m
i;j ¼ �

kij

1þ kij
þ 1

1þ kij
P̂ lm; ð9Þ

where

kij ¼
ic

ki � kj

and P̂ lm is an operator acting on a vector nP which interchanges the elements with indices
Ql and Qm. Using Y operators one can express any nP via n0, where n0 is a column for
P = identity. However, arbitrary permutation P can be represented as a combination of
neighboring transpositions by different means. Independence of the final result on a
particular choice of neighboring transpositions can be checked based on the following
Yang–Baxter relations:

Y a;b
i;j Y a;b

j;i ¼ 1; ð10Þ
Y a;b

j;k Y b;c
i;k Y a;b

i;j ¼ Y b;c
i;j Y a;b

i;k Y b;c
j;k . ð11Þ

Operators Y i;iþ1
P i;P iþ1

exchange the momentum labels Pi and Pi+1, while P̂ i;iþ1 interchange
relative position labels Qi and Qi+1. It is convenient to define combined operator, which
exchanges both labels

X ij ¼ P̂ ijY
ij
ij ¼

1� kijP̂ ij

1þ kij
. ð12Þ

Using this definition, periodic boundary conditions can be written as N matrix eigenvalue
equations

X jþ1;jX jþ2;j � � �X N ;jX 1;j � � �X j�1;jn0 ¼ eikjLn0. ð13Þ
The procedure outlined above reduces equations for N! · N! coefficients to N eigenvalue
equations for N! dimensional vector. Imposing some symmetry on n0 simplifies the system
further. If n0 is antisymmetric with respect to particle permutations (fermions), then



2394 A. Imambekov, E. Demler / Annals of Physics 321 (2006) 2390–2437
P̂ ij ¼ �1 and eikjL ¼ 1. The system of equations is the same as for noninteracting fermions,
as expected. If n0 is symmetric (bosons), P̂ ij ¼ 1 and the system is equivalent to periodic
boundary conditions of Lieb–Liniger model [28].

If one needs to consider two-species system, n0 has the symmetry of the corresponding
permutation group representation (Young tableau). Instead of solving Eq. (13), it is con-
venient to consider the similar problem in the conjugate representation. If n0 is antisym-
metric with respect to both permutations of the first M indices and the rest N �M

(two-species fermions), eigenstate in conjugate representation u is symmetric with respect
to first M indices and is also symmetric with respect to permutations of the rest N �M

indices. Similarly, in conjugate representation for Bose–Fermi mixture with M bosons
and N �M fermions u should be chosen to be antisymmetric for permutations of M

boson indices and symmetric with respect to permutations of N �M fermion indices.
The periodic boundary conditions are (note the change of the sign in the definition of
X 0ij compared to Xij):

X 0jþ1;jX
0
jþ2;j . . . X 0N ;jX

0
1;j . . . X 0j�1;ju ¼ eikjLu; ð14Þ

X 0ij ¼
1þ kijP̂ ij

1þ kij
. ð15Þ

Since N!-dimensional vector u has symmetry constraints, it has CM
N inequivalent compo-

nents, characterized by the positions yi of M spin-down fermions (or M bosons, respectively).
One can think of the components of the vector u as of the values of the spin wavefunction,
defined on an auxiliary one-dimensional lattice of size N. CM

N independent values of u cor-
respond to CM

N values of the wavefunction of M ‘‘particles’’ with coordinates yi, living on
this auxiliary lattice (since u is symmetric for N �M fermion indices, these are considered
to be vacancies). Wavefunction should be symmetric with respect to exchange of two ‘‘par-
ticles’’ for two-species fermions, and antisymmetric for the case of Bose–Fermi mixture.
To preserve the terminology of the two-species fermion solution for the case of Bose–Fer-
mi mixture, later in the text, we will always refer to the wavefunction on an auxiliary lattice
as to ‘‘spin’’ wavefunction, although it has a direct meaning only for two-species fermion
case.

First, one can solve the problem for M = 1 [30]. In this case, there is no difference
between two-species fermions or Bose–Fermi mixture. It can be shown (detailed deriva-
tions are available in Appendix of [26]), that in this case wavefunction in conjugate repre-
sentation is

uðM ¼ 1Þ ¼ F ðK; yÞ ¼
Yy�1

j¼1

kj � Kþ ic=2

kjþ1 � K� ic=2
; ð16Þ

where new spectral parameter K satisfies the following equation:

YN
i¼1

ki � Kþ ic=2

ki � K� ic=2
¼ 1. ð17Þ

Periodic boundary conditions simplify to

eikjL ¼ kj � Kþ ic=2

kj � K� ic=2
; j ¼ f1; . . . ;Ng ð18Þ
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In an auxiliary lattice, the wavefunction of one spin-deviate (or boson) F (K,y) plays the
role similar to one-particle basis function eikx of the original coordinate Bethe ansatz, spec-
tral parameter K being the analog of the momentum k.

In the case when M > 1, Yang suggested that the solution of Eqs. (14) and (15) again
has the form of Bethe ansatz in the ‘‘spin’’ subspace: for 1 6 y1 < y2 < � � � < yM 6 N

u ¼
X

R

AðRÞ
YM
i¼1

F ðKRi ; yiÞ; ð19Þ

where K1, . . .,KM is a set of unequal numbers, R is an arbitrary permutation from SM. It
can be shown [20,26], that this ansatz solves (14) and (15) for two-species fermion system,
if

AðR0Þ
AðRÞ ¼

KRiþ1
� KRi � ic

KRiþ1
� KRi þ ic

; ð20Þ

similar to bosonic relations of Lieb–Liniger model [28]. Here, R and R 0 are two permuta-
tions from SM such that Rk ¼ R0k, for k „ {i, i + 1}, and Ri ¼ R0iþ1, R0i ¼ Riþ1. The set of K, k

has to satisfy the following set of equations:

�
YN
i¼1

ki � Ka þ ic=2

ki � Ka � ic=2
¼
YM
b¼1

Kb � Ka þ ic
Kb � Ka � ic

; a ¼ f1; . . . ;Mg; ð21Þ

eikjL ¼
YM
b¼1

kj � Kb þ ic=2

kj � Kb � ic=2
; j ¼ f1; . . . ;Ng. ð22Þ

For the Bose–Fermi mixture, u has to be antisymmetric for permutations of yi vari-
ables. This problem has actually been solved by Sutherland [27], although he was interest-
ed not in Bose–Fermi mixture, but fermion model with several species. He has shown, that
if one does not specify the symmetry of u for yi variables and applies the generalized
ansatz

u ¼
X

R

½G;R�
YM
i¼1

F ðKRi ; yGi
Þ ð23Þ

for 1 6 yG1
< yG2

< � � � < yGM
6 N , then columns of M! · M! dimensional matrix [G,R]

are related similar to (8)

nR0 ¼ Y 0i;iþ1
Ri ;Riþ1

nR. ð24Þ

Y 0 operators are defined as

Y 0l;mi;j ¼
jij þ P̂ lm

1� jij
; jij ¼

ic
Ki � Kj

. ð25Þ

For two-species fermions in conjugate representation P̂ lm ¼ 1, and it is equivalent to (20),
while for Bose–Fermi mixture in conjugate representation P̂ lm ¼ �1, and the answer is
much more simple:

Y 0l;mi;j ¼ �1. ð26Þ
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Therefore, ‘‘spin’’ part of wavefunction is constructed by total antisymmetrization of
single ‘‘spin’’ wavefunctions, similar to Slater determinant for fermionic particles:

u ¼ detðF ðKi; yjÞÞ. ð27Þ

Periodic boundary conditions for Bose–Fermi mixture are:

YN
i¼1

ki � Ka þ ic=2

ki � Ka � ic=2
¼ 1; a ¼ f1; . . . ;Mg; ð28Þ

eikjL ¼
YM
b¼1

kj � Kb þ ic=2

kj � Kb � ic=2
; j ¼ f1; . . . ;Ng. ð29Þ

One can prove that all solutions of (28) and (29) are always real, which is a major simpli-
fication for the analysis of both ground and excited states (see Appendix A).

If one introduces function

hðkÞ ¼ �2 tan�1ðk=cÞ; ð30Þ
the system (28) and (29) can be rewritten as

kjL ¼ 2pIj þ
XM

b¼1

hð2kj � 2KbÞ; ð31Þ

2pIa ¼
XN

j¼1

hð2Ka � 2kjÞ. ð32Þ

Ij and Ia are integer or half integer quantum numbers (depending on the parity of M and
N), which characterize the state. The ground state corresponds to

Ia ¼ ðM � 1Þ=2;�ðM � 3Þ=2; . . . ; ðM � 1Þ=2g; ð33Þ
Ij ¼ f�ðN � 1Þ=2;�ðN � 3Þ=2; . . . ; ðN � 1Þ=2g. ð34Þ

In the thermodynamic limit, one has to send M, N, L to infinity proportionally. If one
introduces density of k roots q (k) and density of K roots r (K), (28) and (29) simplifies
to two coupled integral equations

2pqðkÞ ¼ 1þ
Z B

�B

4crðKÞdK

c2 þ 4ðK� kÞ2
; ð35Þ

2prðKÞ ¼
Z Q

�Q

4cqðxÞdx

c2 þ 4ðK� xÞ2
. ð36Þ

Normalization conditions and energy are given by:

N=L ¼
Z Q

�Q
qðkÞdk; ð37Þ

M=L ¼
Z B

�B
rðKÞdK; ð38Þ

E=L ¼
Z Q

�Q
k2qðkÞdk. ð39Þ
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These equations can be solved numerically and the results will be presented in the next
section. Numerical solution of these equations allows to investigate the possibility of phase
separation, predicted in [12]. Combined with local density approximation, it can be used to
investigate density profiles and collective oscillation modes in the external fields.

3. Numerical solution and analysis of instabilities

In this section, we will solve the system of Eqs. (35)–(39) numerically, and obtain the
ground state energy as a function of interaction strength and densities. This solution will
be used to analyze the instability towards demixing [12–14].

Substituting (36) into (35), and performing analytically integration over K, one obtains
an integral equation for function q (k). Similar to Lieb and Liniger [28], it is convenient to
redefine the variables before solving this equation numerically. Let us introduce the fol-
lowing variables k, x, y, b and a function g (x) according to:

c ¼ kQ; x ¼ xQ; k ¼ yQ; B ¼ bQ; qðQxÞ ¼ gðxÞ. ð40Þ
In new variables, integral equation depends on two parameters b and k

2pgðyÞ ¼1þ
Z 1

�1

2kgðxÞdx

2pðk2 þ ðx� yÞ2Þ
tan�1 2ðb� yÞ

k
þ tan�1 2ðb� xÞ

k
þ tan�1 2ðbþ yÞ

k

�

þ tan�1 2ðbþ xÞ
k

þ k
2ðx� yÞ log

k2 þ 4ðb� xÞ2

k2 þ 4ðb� yÞ2
k2 þ 4ðbþ yÞ2

k2 þ 4ðbþ xÞ2

!
. ð41Þ

In new variables, (37)–(39) become

c ¼ cL
N
¼ kR 1

�1
gðxÞdx

; ð42Þ

M
N
¼

R 1

�1
tan�1 2ðb�xÞ

k þ tan�1 2ðbþxÞ
k

� �
gðxÞdx

p
R 1

�1 gðxÞdx
; ð43Þ

E ¼ N 3

L2
eðk; bÞ ¼ N 3

L2

R 1

�1
x2gðxÞdxR 1

�1
gðxÞdx

� �3
. ð44Þ

Integral equation (41) can be solved numerically as a function of two parameters b and k,
applying Simpson rule for an integral approximation on a grid xi = �1 + (i � 1)/n,
i = {1, . . . , 2n + 1}. This gives a system of 2n + 1 linear equations for discrete values
g (xi), which can be solved by standard methods. Using (42)–(44), one can obtain paramet-
rically three functions c (k,b), M/N = a (k,b), e (k,b). After that one can numerically in-
verse two of them k (c, a) and b (c,a), and obtain function e (c,a). Resulting function is
shown in Fig. 1. When a = 0, system is purely fermionic, and noninteracting. When
a = 1, the system is purely bosonic, and numerically obtained energy coincides with the
result of [28]. If c = 0, bosons and fermions do not interact, and e (c,a) = (p2/3)(1 � a)3.

An interesting case, where one can analytically find the dependence of energies on rel-
ative densities is Tonks–Girardeau (TG) regime of strong interactions, c� 1. In (41) one
can neglect the dependence of the kernel on x and y, and g (x) becomes a constant g, which
satisfies an equation



Fig. 1. Energy of the ground state is given by E = e (c,a) �h2N3/(2mL2), where c = mg/(�h2n), and a = M/N is the
boson fraction. When a = 0, system is purely fermionic, and the energy does not depend on interactions. When
a = 1, the system is purely bosonic, and numerically obtained energy coincides with the result of Lieb and Liniger
[28]. If c = 0, bosons and fermions do not interact, and e (c,a) = (p2/3)(1 � a)3.
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2pg ¼ 1þ 8g
pk

tan�1 2b
k
þ 2bk

k2 þ 4b2

� �
ð45Þ

while (43) reads

a ¼ 2

p
tan�1 2b

k
. ð46Þ

After some algebra energy is rewritten as

eðc; aÞ ¼ p2

3
1� 4

c
aþ sin pa

p

� �
þ 12

c2
aþ sin pa

p

� �2
 !

þ O
1

c3

� �
. ð47Þ

Using exact solutions, one can analyze demixing instabilities [12–14] for repulsive Bose–
Fermi mixtures. In the absence of external potential Bose–Fermi mixture is stable, if the
compressibility matrix

olb
onb

olb
onf

olf

onb

olf

onf

2
4

3
5 ð48Þ

is positively defined. Here, nb is the boson density, and nf is the fermion density. lb and lf

are the Bose and Fermi chemical potentials, given by:

lb ¼
N 2

L2
3eðc; aÞ � c

oe
oc
þ ð1� aÞ oe

oa

� �
; ð49Þ

lf ¼
N 2

L2
3eðc; aÞ � c

oe
oc
� a

oe
oa

� �
. ð50Þ
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The fact that the matrix (48) is positively defined can be checked numerically for any
value of a and c, and proves that Bose–Fermi mixture with the same Bose–Fermi and
Bose–Bose interactions is stable with respect to demixing for any values of Bose and Fermi
densities. We note, that the absence of demixing for one particular value of the density has
been checked in the original article by Lai and Yang [18]. Although an exact solution is
available only under conditions (2), small deviations from these should not dramatically
change the energy e (c,a). Therefore, we expect the 1D mixtures to remain stable to demix-
ing in the vicinity of the integrable line (2) for any interaction strength. Recently, this has
been checked numerically in Quantum Monte Carlo studies for a systems of up to 14
atoms [14].

Note, that prediction of Das [12] about demixing at sufficiently strong interactions in
this case is incorrect, since it is based on the mean-field approximation. Indeed, the demix-
ing condition there reads

nf 6
mf g2

bf

gbb�h
2p2

. ð51Þ

For gbf = gbb and nb = nf it is equivalent to

c ¼ mg

�h2n
P

p2

2
� 4:9. ð52Þ

Clearly, this condition is incompatible with mean-field approximation, which is valid for
c [ 1.

For weakly interacting case one can use mean-field approximation to calculate energy
and chemical potentials [12,19]:

E ¼ L
g
2

n2
b þ gnbnf þ

�h2p2

2m

n3
f

3

" #
;

lb ¼ gðnb þ nf Þ; lf ¼ gnb þ
�h2p2

2m
n2

f .

ð53Þ

For the strong interactions, up to corrections of order 1/c3,

E ¼ L
�h2p2

2m
ðnf þ nbÞ3

3

" #
1� 4

c
aþ sin pa

p

� �
þ 12

c2
aþ sin pa

p

� �2
 !

; ð54Þ

lf ¼
�h2p2

2m
ðnf þ nbÞ2 1þ 1

3c
�16 aþ sin pa

p

� �
þ 4að1þ cos paÞ

� �
þ

�

þ 1

c2
aþ sin pa

p

� �
20 aþ sin pa

p

� �
� 8að1þ cos paÞ

� ��
; ð55Þ

lb ¼
�h2p2

2m
ðnf þ nbÞ2 1þ 1

3c
�16 aþ sin pa

p

� �
þ 4ða� 1Þð1þ cos paÞ

� �
þ

�

þ 1

c2
aþ sin pa

p

� �
20 aþ sin pa

p

� �
þ 8ð1� aÞð1þ cos paÞ

� ��
. ð56Þ
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4. Local density approximation and collective modes

So far our arguments have been limited to the case of periodic boundary conditions
without external confinement. This is the situation, when the many-body interacting model
(1) is exactly solvable in the mathematical sense. If one adds an external harmonic poten-
tial, model is not solvable any more. However, if external potential varies slowly enough
(precise conditions for the case of Bose gas have been formulated in [31]), one can safely
use local density approximation (LDA) to analyze the density profiles and collective
modes in a harmonic trap. In the local density approximation, one assumes that in slowly
varying external harmonic trap chemical potential changes according to

l0
bðxÞ þ

mx2
bx2

2
¼ l0

bð0Þ; l0
f ðxÞ þ

mx2
f x2

2
¼ l0

f ð0Þ. ð57Þ

Let us consider the case when external harmonic confining potential oscillator frequen-
cies are the same for bosons and fermions. We note, however, that one can also analyze the
case when xb „ xf in a similar way. We consider

xb ¼ xf ¼ x0; ð58Þ
since in this case distribution of the relative boson and fermion densities is controlled only
by interactions, and not by external potential, since external potential couples only to total
density. Eq. (57) for xb = xf = x0 imply that densities of bosons and fermions in the
region where bosons and fermions coexist are governed by

l0
f ðxÞ þ

mx2
0x2

2
¼ l0

f ð0Þ; l0
bðxÞ � l0

f ðxÞ ¼ ðnf þ nbÞ2
oe
oa
¼ l0

bð0Þ � l0
f ð0Þ. ð59Þ

One can show, that these equations cannot be simultaneously satisfied for the whole cloud,
and the mixture phase separates in an external potential given by (58). For both strong and
weak interactions bosons and fermions coexist in the central part, but the outer sections
consist of Fermi gas only. In the weakly interacting limit, this can be interpreted as an
effect of the Fermi pressure [2]: while bosons can condense to the center of the trap, Pauli
principle pushes fermions apart. As interactions get stronger, the relative distribution of
bosons and fermions changes, and Figs. 2 and 3 contrast the limits of strong and weak
bosons

fermions

x
xf-1 -0.5 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 2. Densities of Bose and Fermi gases in weakly interacting regime at zero temperature. Lieb–Liniger
parameter in the center of a trap is c0 = 0.18, overall number of bosons equals number of fermions. Total density
in the center of a trap is taken to be 1.
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Fig. 3. Densities of Bose and Fermi gases in strongly interacting regime at zero temperature. Lieb–Liniger
parameter in the center of a trap is c0� 1, overall number of bosons equals number of fermions. Total density in
the center of the trap is taken to be 1.
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interactions. For strong interactions, the fermi density shows strong non-monotonous
behavior.

When interactions are small Eqs. (53) and (59) imply that in the region of coexistence
densities are given by:

n0
bðxÞ ¼ n0

bð0Þ 1� x2

x2
b

� �
; n0

f ðxÞ ¼ n0
f ð0Þ; for x2 < x2

b. ð60Þ

Outside of the region of coexistence, density of fermions decays as the square root of
inverse parabola:

n0
bðxÞ ¼ 0; n0

f ðxÞ ¼
n0

f ð0Þffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

b
x2

f

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

x2
f

s
; for x2

b < x2 < x2
f . ð61Þ

Parameters xf and xb are given by:

x2
b ¼

2gn0
bð0Þ

mx2
0

; x2
f ¼ x2

b þ
ð�hpn0

f ð0ÞÞ
2

ðmx0Þ2
. ð62Þ

A typical graph of density distribution for weakly interacting case is shown is shown in
Fig. 2.

If effective c0 is much bigger than 1 in the center of a harmonic trap, the total density
n0 (x) follows Tonks–Girardeau density profile:

n0ðxÞ ¼ n0ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

x2
f

s
. ð63Þ

From Eqs. (47) and (59) distribution of a (x) is controlled by the following equation:

n0ðxÞ3ð1þ cosðpaðxÞÞÞ ¼ n0ð0Þ3ð1þ cosðpað0ÞÞÞ. ð64Þ
Since 1 + cos (pa(x)) is bound and n0 (x) goes to 0 near the edges of the cloud, this equation
cannot be satisfied for all x2 < x2

f , which means that only fermions will be present at the
edges of the cloud, similar to weakly interacting regime. Density distribution for equal
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number of bosons and fermions is shown in Fig. 3. The form of the profile is universal, as
long as c0� 1 and the temperature is zero. Evolution of this profile for nonzero temper-
atures is shown in Fig. 14.

Recent experiments [32] demonstrated that collective oscillations of 1D gas provide use-
ful information about interactions in the system. Here, we will numerically investigate col-
lective modes of the system, by solving hydrodynamic equations of motion. These
equations have to be solved with proper boundary conditions at the edge of the bosonic
and fermionic clouds. Within the region of coexistence of bosons and fermions, such oscil-
lations can be described by four hydrodynamic equations [36]

o

ot
dnb þ

o

ox
ðnbvbÞ ¼ 0; ð65Þ

m
o

ot
dvb þ

o

ox
lb þ V ext;b þ 1

2
mv2

b

� �
¼ 0; ð66Þ

o

ot
dnf þ

o

ox
ðnf vf Þ ¼ 0; ð67Þ

m
o

ot
dvf þ

o

ox
lf þ V ext;f þ 1

2
mv2

f

� �
¼ 0. ð68Þ

In certain cases, analytical solutions of hydrodynamic equations are available [35,36]
and provide the frequencies of collective modes. When an analytic solution is not avail-
able, the ‘‘sum rule’’ approach has been used [35–38] to obtain an upper bound for the
frequencies of collective excitations. The disadvantage of the latter approach is an ambi-
guity in the choice of multipole operator which excites a particular mode, especially for
multicomponent systems [38]. Here, we develop an efficient numerical procedure for solv-
ing hydrodynamical equations in 1D, which does not involve additional ‘‘sum rule’’
approximation.

While looking at low amplitude oscillations, it is sufficient to substitute

nbðx; tÞ ¼ n0
bðxÞþ dnbðxÞeixt; ð69Þ

nbðx; tÞvbðx; tÞ ¼ n0
bðxÞdvbðxÞeixt; ð70Þ

nf ðx; tÞ ¼ n0
f ðxÞþ dnf ðxÞeixt; ð71Þ

nf ðx; tÞvf ðx; tÞ ¼ n0
f ðx; tÞdvf ðxÞeixt; ð72Þ

lbþ V ext;bþ 1
2
mv2

b ¼ const1þ dlbðxÞeixt ¼ const1þ dnbðxÞ
olb

onb
þ dnf ðxÞ

olb

onb

� �
eixt; ð73Þ

lf þ V ext;f þ 1
2
mv2

f ¼ const2þ dlf ðxÞeixt ¼ const2þ dnbðxÞ
olf

onb
þ dnf ðxÞ

olf

onf

� �
eixt. ð74Þ

Here, n0
bðxÞ and n0

f ðxÞ are densities obtained within local density approximation.
Linearized system of hydrodynamic equations can be written as:

�mx2
dnbðxÞ
dnf ðxÞ

	 

¼ r

n0
bðxÞ 0

0 n0
f ðxÞ

" #
r

olb
onb

olb
onf

olf

onb

olf

onf

2
4

3
5 dnbðxÞ

dnf ðxÞ

	 
0
@

1
A

0
@

1
A. ð75Þ

For numerical solutions and boundary conditions it is more convenient to work with inde-
pendent functions dlb (x), dlf (x). System of equations becomes
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�mx2
dlbðxÞ
dlf ðxÞ

" #
¼

olb
onb

olb
onf

olf

onb

olf

onf

2
4

3
5r n0

bðxÞ 0

0 n0
f ðxÞ

" #
r

dlbðxÞ
dlf ðxÞ

" # !
. ð76Þ

Outside of the region of coexistence of bosons and fermions, dlout
f satisfies the following

equation:

�mx2dlout
f ¼

olout
f

onf
r nout

f ðxÞrdlout
f

h i
. ð77Þ

All modes can be classified by their parity with respect to x fi �x substitution, and will
be investigated by parity-dependent numerical procedure. We will consider equations only
in the positive half of the cloud. For even modes, one may require two additional
conditions:

rdlf ðx ¼ 0Þ ¼ 0; rdlbðx ¼ 0Þ ¼ 0. ð78Þ

For odd modes, analogous conditions are

dlf ðx ¼ 0Þ ¼ 0; dlbðx ¼ 0Þ ¼ 0. ð79Þ

Boundary conditions for fermions at the edge of the bosonic cloud, xb, correspond to
the continuity of vf and dlf. Continuity of the velocity can be obtained by integrating con-
tinuity Eq. (67) in the vicinity of xb. From Eq. (68) it is equivalent to

rdlout
f ðx ¼ xb þ 0Þ ¼ rdlf ðx ¼ xb � 0Þ. ð80Þ

The second condition can be obtained by integrating (68) in the vicinity of xb:

dlout
f ðx ¼ xb þ 0Þ ¼ dlf ðx ¼ xb � 0Þ. ð81Þ

One may see, that these conditions do not imply that dnout
f ðx ¼ xb þ 0Þ ¼ dnf ðx ¼ xb � 0Þ.

This can be easily illustrated by the dipole mode, where dvf (x) = dvb (x) = const,
dnf ¼ rn0

f ðxÞ, which is clearly discontinuous for profiles shown in Figs. 2 and 3.
Two additional conditions come from the absence of the bosonic(fermionic) flow at

xb(xf):

n0
bðxÞvbðxÞjx!xb�0 ¼ 0; ð82Þ

n0
f ðxÞvf ðxÞjx!xf�0 ¼ 0. ð83Þ

Outside of the region of coexistence, the chemical potential and density of fermions are

given by lout
f � ðnout

f Þ
2, nout

f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=xf Þ2

q
, where xf is the fermionic cloud size. In dimen-

sionless variables u = x/xf, Eq. (77) can be written as

�x2

x2
0

dlout
f ¼ ð1� u2Þ

o
2dlout

f

ou2
� u

odlout
f

ou
. ð84Þ

For this equation, there exists a general nonzero solution which satisfies (83)

dlout
f ¼ cos

x
x0

arccos
x
xf

� �
. ð85Þ

Substituting this into (80) and (81), one has to solve eigenmode equations numerically
for x < xb, with five boundary conditions (80)–(82) and (78) or (79) depending on the par-
ity. These boundary conditions are compatible, only if x is an eigenfrequency. Using four
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of these boundary conditions, the system of two second order differential equations can be
solved numerically for any x. To find a numerical solution, we choose to leave out con-
dition (82), and check later if it is satisfied to identify the eigenfrequencies.

The most precise way to check (82) numerically is based on equations of motion. For
even modes, vb (0) = 0, and integrating (65) from 0 till xb, one obtainsZ xb

0

dnbðxÞdx ¼ � 1

ix
ðnbðx ¼ xbÞvbðx ¼ xbÞ � nbðx ¼ 0Þvbðx ¼ 0ÞÞ ¼ 0. ð86Þ

For odd modes, from Eq. (66) vb (0) = i$dlb(x = 0)/(mx), and integrating (65) from 0 till
xb, one obtainsZ xb

0

dnbðxÞdx ¼ � 1

ix
ðnbðx ¼ xbÞvbðx ¼ xbÞ � nbðx ¼ 0Þvbðx ¼ 0ÞÞ

¼ nbðx ¼ 0Þrdlbðx ¼ 0Þ
mx2

. ð87Þ

When a numerical solution for dlb (x), dlf (x) is available, conditions (86) or (87) can be
checked numerically using

dnbðxÞ ¼
olf

onf
dlbðxÞ �

olf

onb
dlf ðxÞ

n o
olf

onf

olb
onb
� olf

onb

olb
onf

n o . ð88Þ

First, we apply this numerical procedure for weakly interacting regime, and the fre-
quencies of collective modes are shown in Fig. 4. When c0 fi 0, Bose and Fermi clouds
do not interact, and collective modes coincide with purely bosonic or fermionic modes,
with frequencies [36] xf = nx0 and xb ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ=2

p
. Modes which correspond to

x/x0 = 1,
ffiffiffi
3
p

, 2,
ffiffiffi
6
p

are shown in Fig. 4. As interactions get stronger, Bose and Fermi
clouds get coupled, and all the modes except for Kohn dipole mode change their frequen-
cy. For Kohn dipole mode, Bose and Fermi density fluctuations are given by
dnf ¼ rn0

f ðxÞ, dnb ¼ rn0
bðxÞ. In Figs. 5–7, we show density fluctuations for three other

modes in the region of coexistence for a particular choice of parameters c0 = 0.394,
xb/xf = 0.6 and equal total number of bosons and fermions. Modes for which the frequen-
0γ

ω0ω
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"in phase" breathing mode

"out of phase" breathing mode

0.2 0.4 0.6 0.8 1 1.2

0.75

1

1.25

1.5

1.75

2

2.25

"in phase" dipole mode

Fig. 4. Frequencies of collective excitations in mean-field regime versus Lieb–Liniger parameter in the center of a
trap c0. Total number of bosons equals the number of fermions. Even in mean-field regime frequency of ‘‘out of
phase’’ oscillations gets smaller as interactions get stronger.
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Fig. 6. Fermi and Bose density fluctuations of ‘‘out of phase’’ breathing mode (x/x0)2 = 2.51 for c0 = 0.394,
xb/xf = 0.6. Total number of bosons equals the number of fermions. Outside of the region of coexistence of Bose
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Fig. 7. Fermi and Bose density fluctuations of ‘‘in phase’’ breathing mode (x/x0)2 = 3.585 for c0 = 0.394,
xb/xf = 0.6. Total number of bosons equals the number of fermions. Outside of the region of coexistence of Bose
and Fermi clouds, dnf ðxÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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cy goes down due to coupling between Bose and Fermi clouds correspond to the collective
excitations with opposite signs in density fluctuations of Bose and Fermi clouds. In TG
regime these modes continuously transform into ‘‘out of phase’’ low-lying modes which
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do not change the total density. At weak interactions lowest mode is an ‘‘out of phase’’
dipole excitation, after that comes ‘‘in phase’’ Kohn dipole mode (center of mass
oscillation), ‘‘out of phase’’ even mode, ‘‘in phase’’ even mode, second ‘‘out of phase’’
odd mode.

Let us consider Tonks–Girardeau regime, when energy is well approximated by (47).
Since dependence of the energy on relative boson fraction a (x) is 1/c times smaller than
dependence on the total density, the energetic penalty for changing relative density of
bosons and fermions is small. Thus there should be low-lying modes, which correspond
to an oscillation of the relative density between bosons and fermions, while total density
is kept fixed up to 1/c corrections. In addition to these low-lying ‘‘out of phase’’ oscilla-
tions of Bose and Fermi clouds, there will be ‘‘in phase’’ density modes, which correspond
to oscillations of the total density. Since up to 1/c corrections dependence of the energy on
total density in TG regime is the same as for free noninteracting fermions, energy of these
excitations is given by Stringari and Menotti [36] x = nx0, up to small corrections of the
order of 1/c.

When c fi1, relative compressibility goes to zero as 1/c, so from Eq. (76) energy of
low-lying modes goes to zero as 1=

ffiffiffiffi
c0

p
, where c0 is a Lieb–Liniger parameter in the

center of a trap. Performing a numerical procedure outlined above, one can obtain
the dependence of the frequencies of low-lying ‘‘out of phase’’ modes on relative den-
sity of bosons and fermions. Results of these calculations are shown in Fig. 8, and are
parameterized by the overall boson fraction and c0. It turns out that the lowest lying
mode is odd, and after that the parity of collective excitations alternates signs. For
‘‘out of phase’’ modes signs of density fluctuations and velocities of boson and fermion
clouds are opposite. One can easily understand, why does the energy grow, as the
boson fraction is decreased: the size of the Bose cloud shrinks, and the ‘‘wavevector’’
of the corresponding excitation increases, leading to an increase of the frequency. One
should note that for very small overall boson fraction c0� 1 is not enough to separate
energy scales for ‘‘out of phase’’ and ‘‘in phase’’ oscillations, and also conditions for
applicability of LDA become more stringent.
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Fig. 8. Dependence of the frequency of lowest lying ‘‘out of phase’’ modes for c0� 1 on overall boson fraction a,
where c0 is the Lieb–Lininger parameter in the center of a trap. Characteristic scale of ‘‘out of phase’’ oscillations
in strongly interacting regime is x0=

ffiffiffiffi
c0

p � x0. Total density ‘‘in phase’’ modes xn = nx0 have much higher
frequency for c0� 1 and are not shown here.
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5. Zero-temperature correlation Functions in Tonks–Girardeau regime

Calculation of the collective modes in the previous section relies only on the dependence
of the energy e (c,a) on the densities of bosons and fermions. Collective modes can be used
in experiments [32,33] to check to some extent quantitatively the equation of the state of
the system [34]. However, only some part of the information about the ground state prop-
erties is encoded in the energy: indeed, the energy and collective modes of the strongly
interacting Lieb–Liniger gas are the same as for the free fermions [29,28], while the corre-
lation functions are dramatically different [39]. Single particle correlation functions can be
measured experimentally using Bragg spectroscopy [43] or time of flight measurements [8].
Generally, it is much harder to calculate the correlation functions compared to the energy
from Bethe ansatz solution. Most of the progress in this direction has been achieved for
the case of strong interactions [51]. Recently, there have been some reports [40], where
pseudofermionization method has been used to calculate correlation functions for spin-1

2

fermion Hubbard model for the intermediate interaction strengths. In this section, we will
analyze the correlation functions in the regime of strong interactions, using the factoriza-
tion of orbital and ‘‘spin’’ degrees of freedom similar to the case of spin-1

2
fermions [41,42].

Our calculations in this section are performed for the periodic boundary conditions, when
the many body problem is strictly solvable in the mathematical sense. We will obtain a rep-
resentation of correlation functions through the determinants of some matrices, with the
size of these matrices scaling linearly with the number of the particles. These determinants
can be easily evaluated numerically, and provide a straightforward way to study correla-
tion functions quantitatively at all distance scales. This determinant representation can be
generalized to nonzero temperatures, and results of this generalization will be presented in
the next section.

5.1. Factorization of ‘‘spin’’ and orbital degrees of freedom

The regime of strong interactions can be investigated in by neglecting ki compared to
Ka, c in (28) and (29). Simplified system for spectral parameters is:

�Ka þ ic=2

�Ka � ic=2

� �N

¼ 1; a ¼ f1; . . . ;Mg; ð89Þ

eikjL ¼
YM
b¼1

�Kb þ ic=2

�Kb � ic=2
; j ¼ f1; . . . ;Ng. ð90Þ

We see that ‘‘spin’’ part is decoupled from orbital degrees in the Bethe equations. Eq. (89)
for ground state ‘‘spin’’ rapidities can be resolved as

�Ka þ ic=2

�Ka � ic=2
¼ ei2pja=N ; a ¼ f1; . . . ;Mg; ð91Þ

where ja is a set of integer ‘‘spin’’ wave vectors. Since the details of calculations depend on
the parity of M and N, from now on we will assume that N is even, and M is odd. Ground
state corresponds to Ka occupying ‘‘Fermi sea’’ (�K,K), so from (91) ground state ‘‘spin’’
wave vectors are

ji ¼ f�ðM � 1Þ=2þ N=2; . . . ;N=2; . . . ; ðM � 1Þ=2þ N=2g. ð92Þ
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This choice of ‘‘spin’’ wave vectors will be justified later, in Section 6. From Eq. (90) it
follows that ground state orbital wave vectors are:

ki ¼ f�pðN � 1Þ=L; . . . ;�p=L; p=L; . . . ; pðN � 1Þ=Lg. ð93Þ
Eq. (16) for F (K,y) simplifies to

F ðKa; yiÞ ¼
�Ka þ ic=2

Ka þ ic=2

� �yi�1

¼ ei2p
N jaðyi�1Þ ð94Þ

and ‘‘spin’’ wavefunction (27) can be represented as a Slater determinant of M single
particle plane waves in ‘‘spin’’ space:

u ¼ e�i2p
N

P
ja det ei2p

N jiyj

h i
. ð95Þ

Orbital part of the wavefunction also simplifies into a Slater determinant, since all Yang
matrices Y a;b

i;j in (9) are equal to �1.
Ground state is written as a product of two Slater determinants, describing orbital and

‘‘spin’’ degrees of freedom

Wðx1; . . . ; xNÞ � det½eikixj �det ei2p
N jiyj

h i
. ð96Þ

Here, x1, . . . ,xM are coordinates of bosons, xM+1, . . . ,xN are coordinates of fermions,
and yi is the order in which the particle xi appears, if the set x1, � � � ,xN is ordered. In other
words, if

0 6 xQ1
6 xQ2

6 . . . 6 xQN
6 L; ð97Þ

then fy1; . . . ; yNg ¼ fQ�1ð1Þ; . . . ;Q�1ðNÞg. ð98Þ

First determinant depends on positions of both bosons and fermions, while the second deter-
minant depends only on relative positions of bosons y1, . . . ,yM. Normalization prefactor
will be determined later to give a correct value of the density. One can confirm that symmetry
properties of wavefunction are as required: transposition of two fermions affects only first
determinant, therefore wavefunction acquires�1 sign. Transposition of two bosons changes
signs of both first and second determinants, so wavefunction does not change.

Similar factorization of wavefunction into spin and orbital degrees of freedom has been
observed in [42] for one-dimensional spin-1

2
Hubbard model. In that case, spin wavefunc-

tion is a ground state of spin-1
2

antiferromagnetic Heisenberg model, and is much more
complicated compared to (95).

It might seem that ‘‘spin’’ degrees are now independent of orbital degrees, but this is not
true, since it is the relative position of orbital degrees which determines ‘‘spin’’ coordi-
nates. If one wants to calculate, say, Bose–Bose correlation function, one has to fix posi-
tion of x1 and x01 and integrate Wðx1; x2; . . . ; xNÞWyðx01; x2; . . . ; xN Þ over x2, . . . ,xN. However,
there are CM

N inequivalent spin distributions, and integration in each subspace (97) has to
be performed separately. For spin-1

2
fermions on a lattice in [42] this integration becomes a

summation, and it has been done numerically for up to 32 cites. This summation requires
computational resources which scale as an exponential of the number of particles. Here,
we will report a method to perform integrations for a polynomial time, which will allow
to go for larger system sizes (easily up to 100 on a desktop PC) and study correlation func-
tions much more accurately.
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5.2. Bose–Bose correlation function

Let us describe a procedure to calculate Bose–Bose correlation functions of the model.
First, we will use translational symmetry of the model to fix the positions of the first par-
ticle at points x1 = 0, x01 ¼ n. Instead of writing wavefunction as a function of positions of
M bosons and N �M fermions, let us introduce a set of N ordered variables

Z ¼ f0 6 z1 6 z2 6 � � � 6 zN 6 Lg ð99Þ

which describe positions of the atoms, without specification of bosonic or fermionic nature
of the particle. If any two particles exchange their positions, they are described by the same
set (99). In addition to (99) one has to introduce a permutation ŷ which specifies positions
of bosons: y1, . . . ,yM are boson positions, and yM+1, . . . ,yN are fermion positions in an
auxiliary lattice: zyi

¼ xi. In this new parameterization normalized wavefunction is(normal-
ization will be derived later in this subsection)

Wðz1; z2; . . . ; zN ; ŷÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN �MÞ!M !LN N M

p det½eikizj � det ei2p
N jiyj

h i
ð�1Þy . ð100Þ

Here and later, we denote a sign factor

ð�1Þy ¼
Y

NPi>jP1

Signðyi � yjÞ. ð101Þ

One should note, that second determinant has a size M · M, and depends only on
y1, . . . ,yM. Dependence of wavefunction on yM+1, . . . ,yN comes only through sign prefac-
tor. For each particular set of y1, . . . ,yM there are (N �M)! different configurations of
yM+1, . . . ,yN, for which wavefunction only changes its sign depending on relative posi-
tions of yM+1, . . . ,yN.

To calculate correlation function, we should be able to calculate a product of wavefunc-
tions at the points

x1 ¼ 0; x01 ¼ n; x02 ¼ x2; . . . ; x0N ¼ xN . ð102Þ

Let Z be is an ordered set for xi variables

Z ¼ fz1 ¼ 0 6 z2 6 � � � 6 zN 6 Lg. ð103Þ

If we denote an ordered set for x0i variables as Z 0, then using (102) one can conclude that Z 0

is obtained from Z by removing z1 = 0, inserting an extra coordinate z0d ¼ n, and shifting
variables which are to the left of it:

Z 0 ¼ f0 6 z01 ¼ z2 6 z02 ¼ z3 6 . . . 6 z0d�1 ¼ zd 6 z0d ¼ n 6 z0dþ1 ¼ zdþ1 6 . . .

6 z0N ¼ zN 6 Lg. ð104Þ

‘‘Spin’’ states ŷ and ŷ 0 are connected by:

y1 ¼ 1; y01 ¼ d;

y0i ¼ yi � 1; for 1 < yi 6 d;

y0i ¼ yi; for d < yi.

ð105Þ
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Correlation function can be written as

qbð0; nÞ ¼ M
Z

Wð0; x2; . . . ; xNÞWyðn; x2; . . . ; xN Þdx2; . . . ; dxN

¼
XN

d¼1

X
ŷ

Z ð�1Þyð�1Þy
0

ðN �MÞ!ðM � 1Þ!LN N M det½eikizj �
 

	 det ei2p
N jiyj

h i
det½e�ikiz0j � det e�i2p

N jiy0j
h i!

dz2; . . . ; dzN ; ð106Þ

where integration over dzi and summation over ŷ are done subject to constraints (104) and
(105). One can observe now, that limits of integration in (104) depend only on n and d.
These limits are independent of ŷ, and function under integral factorizes into z-dependent
and ŷ-dependent parts. Similarly, summation over ŷ does not depend on precise values of n
or zi, but the dependence comes through d. Therefore, density matrix can be written as

qbð0; nÞ ¼ 1

ðN �MÞ!ðM � 1Þ!LN N M

XN

d¼1

Iðd; nÞSbðdÞ; ð107Þ

where I (d,n) is a an integral

Iðd; nÞ ¼
Z

det½eikizj � det½e�ikiz0j �dz2 � � � dzN ð108Þ

subject to constraints (104), and Sb (d) is an expectation value of a translation operator
over a symmetrized Slater determinant wavefunction

SbðdÞ ¼
X

ŷ

det ei2p
N jiyj

h i
det e�i2p

N jiy0j
h i

ð�1Þyð�1Þy
0
. ð109Þ

Normalization can be determined using the following argument: if n = 0, then only con-
tribution from d = 1 does not vanish. One can calculate I (1, 0) = NLN�1 and
Sb (1) = (N �M)!(M)!NM�1, since these follow from normalizations of orbital and ‘‘spin’’
wavefunctions. Since we want qb (0,0) = M/L, we can fix the normalization prefactor in
(100).

5.2.1. Calculation of a many-body integral I(d,n)

Let’s describe the calculation of an integral I (d,n). From now on, we will assume that
L = 1. First, since ki are equidistant wave vectors (93), one can use Vandermonde formula
to simplify the determinants:

det½eiklzj � ¼ e�ipðN�1Þðz1þ���þzN Þ det½ei2pðl�1Þzj � ¼ e�ipðN�1Þðz1þ���þzN Þ

	
Y

j1<j2

ðei2pzj2 � ei2pzj1Þ; l ¼ f1; . . . ;Ng;

det½e�iklz0j � ¼ eipðN�1Þðz0
1
þ���þz0N Þ det½e�i2pðl�1Þz0j � ¼ eipðN�1Þðz0

1
þ���þz0N Þ

	
Y

j1<j2

ðe�i2pz0j2 � e�i2pz0j1Þ; l ¼ f1; . . . ;Ng.

ð110Þ

Using this representation, the fact that z1 = 0 and (104), one can rewrite these N · N deter-
minants as a product of (N � 1) · (N � 1) determinant and a prefactor:
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det½eiklzj � ¼ e�ipðN�1Þðt1þ���þtN�1Þ det½ei2pðl�1Þtl �
YN�1

i¼1

ðei2pti � 1Þ; l ¼ f1; . . . ;N � 1g;

det½eiklz0j � ¼ ð�1Þd�1eipðN�1Þðnþt1þ���þtN�1Þ det½e�i2pðl�1Þtl �

	
YN�1

i¼1

ðe�i2pti � e�i2pnÞ; l ¼ f1; . . . ;N � 1g; ð111Þ

where we introduced N � 1 variables of integration ti, so that

ti ¼ ziþ1. ð112Þ

Factor (�1)d�1 arises since z0d ¼ n, and to write (111), we changed signs of d � 1 terms in
(110). Integration subspace is defined as

f0 6 t1 6 � � � 6 td�1 6 n 6 td 6 � � � 6 tN�1 6 1g ð113Þ

One can extend this subspace as follows:

T ¼ f0 6 t1; . . . ; td�1 6 n 6 td ; . . . ; tN�1 6 1g. ð114Þ

Indeed, expression under integral does not change, when ti < n and tj < n change their
positions (similarly for ti > n and tj > n), so this extension just adds prefactor
1/((d � 1)!(N � d)!). Finally, we have

Iðd; nÞ ¼ ð�1Þd�1eipðN�1Þn

ðd � 1Þ!ðN � dÞ!

Z
ti
T

det½ei2pðl�1Þtl � det½e�i2pðl�1Þtl �
YN�1

i¼1

ðei2pti � 1Þ

	 ðe�i2pti � e�i2pnÞdt1 . . . dtN�1. ð115Þ

At this point, we use a trick from [39], where Toeplitz determinant representation for
strongly interacting Bose gas was derived. Let us expand determinants under integrals
using permutation formula for determinants:

Iðd; nÞ ¼ ð�1Þd�1eipðN�1Þn

ðd � 1Þ!ðN � dÞ!

Z
ti
T

X
P
SN�1

X
P 0
SN�1

ð�1ÞP ð�1ÞP
0

	
YN�1

i¼1

ei2pððP i�1Þ�ðP 0i�1ÞÞtiðei2pti � 1Þðe�i2pti � e�i2pnÞdt1 � � � dtN�1

ð116Þ

From summation over P, P 0, we can go to summation over P, Q, where P 0 = QP. Also,
one can remove constraints (114) by introducing two functions

f 1ðn; tÞ ¼ ðei2pt � 1Þðe�i2pt � e�i2pnÞ for t < n; 0 otherwise,

f 2ðn; tÞ ¼ ðei2pt � 1Þðe�i2pt � e�i2pnÞ for t > n; 0 otherwise.
ð117Þ

I (d,n) becomes

ð�1Þd�1eipðN�1Þn

ðd � 1Þ!ðN � dÞ!
X

P
SN�1

X
Q
SN�1

ð�1ÞQ
Yd�1

i¼1

Z 1

0

ei2pðP i�QPi
Þti f 1ðn; tiÞdti

 !

	
YN�1

i¼d

Z 1

0

ei2pðP i�QPi
Þti f 2ðn; tiÞdti

 !
ð118Þ
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If f1 (n, t) and f2 (n, t) were the same, as in [39], expression being summed would not depend
on P, and summation over Q would give a determinant, with the same elements along
diagonals(Toeplitz determinant). In our case, for each given P the expression is P-depen-
dent, and the result does not have the Toeplitz form. However, introducing additional
‘‘phase’’ variable, one can recast the expression as an integral of some Toeplitz determi-
nant. Desired expression has the form

Iðd; nÞ ¼ ð�1Þd�1eipðN�1Þn

	
Z 2p

0

du
2p

e�iðd�1Þu
X

Q

ð�1ÞQ
YN�1

i¼1

Z 1

0

ei2pði�QiÞciðeiuf 1ðn; ciÞ þ f 2ðn; ciÞÞdci

 !
;

ð119Þ

where ci is a dummy variable of integration. Integration over u is analogous to projection
of BCS to a state with a fixed number of particles. After integration over u nonzero terms
appear, if in the expansion of the product of brackets for some d � 1 brackets f1 is chosen
instead of f2. If this choice is made at brackets with numbers P1, . . . ,Pd�1 then contribu-
tion from such a choice exactly corresponds to a term in (118). However, each choice of
brackets corresponds to (N � d)!(d � 1)! different permutations, and this cancels the same
combinatoric factor in the denominator of (118). Summation over Q is nothing but a
determinant, and finally, we have

Iðd;nÞ¼ ð�1Þd�1eipðN�1Þn
Z 2p

0

du
2p

e�iðd�1Þu det

c0ðuÞ c1ðuÞ . . . cN�2ðuÞ
c�1ðuÞ c0ðuÞ . . . cN�3ðuÞ

. . . . . . . . . . . .

c�ðN�2ÞðuÞ c�ðN�3ÞðuÞ . . . c0ðuÞ

2
6664

3
7775;

ð120Þ

where

cjðuÞ ¼
Z 1

0

eijxðeiuf 1ðn; xÞ þ f 2ðn; xÞÞdx ð121Þ

Expression in (120) without an integral over u is a generating function of I (d,n) with the
weights ei(u�p)(d�1), and integration over u extracts a particular term out of this generating
function.

What we achieved in this section is to represent a complicated N � 1 fold integral
as an integral over one phase variable, which can be done numerically in a polynomial
time over N.

5.2.2. Calculation of Sb (d)

Calculation of Sb (d) is very similar in spirit to calculation of the previous subsection.
Integration over xi corresponds to summation over yi, and n corresponds to d. Final result
is a determinant of some matrix. Due to the shift operator (105) this determinant does not
have a Toeplitz form, but it is not important for a numerical evaluation.

We need to calculate

SbðdÞ ¼
X

ŷ

det ei2p
N jiyj

h i
det e�i2p

N jiy0j
h i

ð�1Þyð�1Þy
0
; ð122Þ
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where ji is a set (92). Definition of ŷ 0 according to (105) can be rewritten as

y1 ¼ 1; y 01 ¼ d;

y0i ¼ yi þ
Signðyi � dÞ � 1

2
; i ¼ f2; . . . ;Ng;

ð123Þ

where

SignðxÞ ¼ 1; x > 0;

SignðxÞ ¼ �1; x 6 0.
ð124Þ

Sign prefactor in (122) can be rewritten as

ð�1Þyð�1Þy
0
¼
Y
i>j

Signðyi � yjÞ
Y
i>j

Signðy0i � y0jÞ ¼
YN
i¼2

Signðyi � dÞ

¼ ð�1Þd�1. ð125Þ

We see, that (122) depends only on y1, . . . ,yM, so from now on, we will consider a sum-
mation in y1, . . . ,yM variables. Summation over yM+1, . . . ,yN gives a trivial combinatorial
prefactor (N �M)! Furthermore, we can extend possible values of y1, . . . ,yM to yi = yj,
i „ j, since for such configurations first determinant in (122) is 0, and they do not change
the value of Sb (d):

ŷ ¼ f1 6 y2; y3; . . . ; yM 6 Ng. ð126Þ
Let us use the fact that ji is a set of equidistant numbers (92), and rewrite determinants

using Vandermonde formula, similar to (110):

det ei2p
N jiyj

h i
¼ ei2p

N ð�ðM�1Þ=2þN=2Þð1þ���þyM Þ det ei2p
N ðl�1Þyj

h i
¼ ei2p

N ð�ðM�1Þ=2þN=2Þð1þ���þyM Þ
Y

j1<j2

ei2p
N yj2 � ei2p

N yj1

� �
; l ¼ f1; . . . ;Mg;

det e�i2p
N jiy0j

h i
¼ e�i2p

N ð�ðM�1Þ=2þN=2Þðdþ���þy0M Þ det ei2p
N ðl�1Þy0j

h i
¼ e�i2p

N ð�ðM�1Þ=2þN=2Þðdþ���þy0M Þ
Y

j1<j2

ei2p
N y0j2 � ei2p

N y0j1

� �
; l ¼ f1; . . . ;Mg.

ð127Þ
For simplicity of notations later, let us introduce ti = yi+1, t0i ¼ y0iþ1, i = {1, . . . ,M � 1}.
Analogously to (111), we extract a determinant of (M � 1) · (M � 1) matrix out of
Vandermonde product:

det ei2p
N jiyj

h i
¼ ei2p

N ð�ðM�1Þ=2þN=2Þð1þt1���þtM�1Þ

	 det ei2p
N ðl�1Þtj

h iYM�1

i¼1

ei2p
N ti � ei2p

N 1
� �

; l ¼ f1; . . . ;M � 1g;

det e�i2p
N jiy0j

h i
¼ e�i2p

N ð�ðM�1Þ=2þN=2Þðdþt0
1
���þt0M�1

Þ

	 det e�i2p
N ðl�1Þt0j

h iYM�1

i¼1

e�i2p
N ti � e�i2p

N d
� �

; l ¼ f1; . . . ;M � 1g.

ð128Þ
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At this point, we need to represent the subspace of summation (126) as a sum over M

inequivalent partitions, similar to representation (107):

SbðdÞ ¼
XM

r¼1

ðN �MÞ!ðM � 1Þ!
ðr � 1Þ!ðM � rÞ! Sbðd; rÞ; ð129Þ

where Sb (d, r) is a result of summation in the Tr subspace:

T r ¼ f1 6 t1; . . . ; tr�1 6 d < tr; . . . ; tM�1 6 Ng. ð130Þ
Note, that Sb (d, r) = 0 for r > d, since in this case two of t1, . . . , tr�1 should coincide, and
wavefunction becomes 0. Calculation of Sb (d, r) is very similar to calculation of I (n,d). Let
us expand the determinants (128) using permutations:

Sbðd; rÞ ¼ ð�1Þd�1ei2p
N ð�ðM�1Þ=2þN=2Þðr�dÞ

X
P
SM�1

X
P 0
SM�1

ð�1ÞP ð�1ÞP
0

	
Yr�1

i¼1

Xd

ti¼1

ei2p
N ððP 0i�1Þti�ðP i�1Þðti�1ÞÞ ei2p

N ti � ei2p
N

� �
e�i2p

N ðti�1Þ � e�i2p
N d

� � !

	
YM�1

i¼r

XN

ti¼dþ1

ei2p
N ððP 0i�1Þ�ðP i�1ÞÞti ei2p

N ti � ei2p
N

� �
e�i2p

N ti � e�i2p
N d

� � !
ð131Þ

From summation over P, P 0, we can go to summation over P, Q, where P 0 = QP. Also,
one can analytically perform summation over ti in each of the brackets, since it is a com-
bination of geometrical progressions (this is analogous to integration over ti variables in
previous subsection):

Sbðd; rÞ ¼ ð�1Þd�1ei2p
N ð�ðM�1Þ=2þN=2Þðr�dÞ

X
P
SM�1

X
Q
SM�1

ð�1ÞQ
Yr�1

i¼1

c1ðd;QP i
; P iÞ

	
YM�1

i¼r

c2ðd;QP i
; P iÞ; ð132Þ

where

c1ðd; j; lÞ ¼ ei2p
N ðl�1Þ

Xt¼d

t¼1

ei2p
N ðj�lÞt ei2p

N d � ei2p
N

� �
e�i2p

N ðt�1Þ � e�i2p
N d

� �
;

c2ðd; j; lÞ ¼
Xt¼N

t¼dþ1

ei2p
N ðj�lÞt ei2p

N d � ei2p
N

� �
e�i2p

N t � e�i2p
N d

� � ð133Þ

are independent of r. At this point, we can use the ‘‘phase’’ variable integration trick to get
rid of summation over P, and then represent summation over Q as a determinant:

Sbðd; rÞ ¼ ðr � 1Þ!ðM � rÞ!ð�1Þd�1ei2p
N ð�ðM�1Þ=2þN=2Þðr�dÞ

Z 2p

0

dw
2p

e�iðr�1Þw

	 det

cðw; 1; 1Þ cðw; 2; 1Þ . . . cðw;M � 1; 1Þ
cðw; 1; 2Þ cðw; 2; 2Þ . . . cðw;M � 1; 2Þ

. . . . . . . . . . . .

cðw; 1;M � 1Þ cðw; 2;M � 1Þ . . . cðw;M � 1;M � 1Þ

2
6664

3
7775;
ð134Þ
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where

cðw; j; lÞ ¼ eiwc1ðd; j; lÞ þ c2ðd; j; lÞ. ð135Þ
We can analytically perform summation over r in (129), since the determinant and c (w, j, l)
are independent of r:

SbðdÞ¼
XM

r¼1

ðN �MÞ!ðM �1Þ!
ðr�1Þ!ðM � rÞ! Sbðd;rÞ¼ ðN �MÞ!ðM�1Þ!ð�1Þd�1e�i2p

N ð�ðM�1Þ=2þN=2Þðd�1Þ

	
Z 2p

0

dw
2p

XM

r¼1

eið2p
N ð�ðM�1Þ=2þN=2Þ�wÞðr�1Þ

 !

	det

cðw;1;1Þ cðw;2;1Þ . . . cðw;M�1;1Þ
cðw;1;2Þ cðw;2;2Þ . . . cðw;M�1;2Þ

. . . . . . . . . . . .

cðw;1;M�1Þ cðw;2;M �1Þ . . . cðw;M�1;M�1Þ

2
6664

3
7775.

ð136Þ
Expansion of the determinant (136) in a series over eiw has terms up to ei(M�1)w:

detðwÞ ¼
XM�1

n¼0

fneinw. ð137Þ

Summation over r and integration over w lead to

Z 2p

0

dw
2p

XM

r¼1

eið2p
N ð�ðM�1Þ=2þN=2Þ�wÞðr�1Þ

 !
detðwÞ

¼
Z 2p

0

dw
2p

XM�1

n¼0

XM

r¼1

fneið2p
N ð�ðM�1Þ=2þN=2Þ�wÞðr�1Þþiwn ¼

XM�1

n¼0

fnei2p
N ð�ðM�1Þ=2þN=2Þn

¼ det
2p
N
ð�ðM � 1Þ=2þ N=2Þ

� �
. ð138Þ

Finally, if we introduce a notation w0 = 2p(�(M � 1)/2 + N/2)/N,

SbðdÞ ¼ ðN �MÞ!ðM � 1Þ!ð�1Þd�1e�i2p
N ð�ðM�1Þ=2þN=2Þðd�1Þ

	 det

cðw0; 1; 1Þ cðw0; 2; 1Þ . . . cðw0;M � 1; 1Þ
cðw0; 1; 2Þ cðw0; 2; 2Þ . . . cðw0;M � 1; 2Þ

. . . . . . . . . . . .

cðw0; 1;M � 1Þ cðw0; 2;M � 1Þ . . . cðw0;M � 1;M � 1Þ

2
6664

3
7775. ð139Þ
5.3. Fermi–Fermi correlation function

Calculation of fermionic correlation function closely reminds the calculation of Bose–
Bose correlation function, so we will be sufficiently sketchy in our derivation. First, one
splits integration into integration over orbital coordinates zi from the set
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Z ¼ f0 6 z1 6 z2 6 � � � 6 zN 6 Lg ð140Þ
and summation over ‘‘spin’’ variables. Integration over orbital variables is absolutely iden-
tical to the Bose–Bose case, the difference comes only from ‘‘spin’’ part Sf (d):

qf ð0; nÞ ¼ ðN �MÞ
Z

Wðx1; x2; . . . ; 0ÞWyðx1; x2; . . . ; nÞdx1 . . . dxN�1

¼
XN

d¼1

X
ŷ

Z ð�1Þyð�1Þy
0

ðN �M � 1Þ!M !LN N M det½eikizj �det ei2p
N jiyj

h i 

	 det½e�ikiz0j � det e�i2p
N jiy0j

h i!
dz2 . . . dzN

¼ 1

ðN �M � 1Þ!M !LN NM

XN

d¼1

Iðd; nÞSf ðdÞ; ð141Þ

where I (d,n) is given by (120), and

Sf ðdÞ ¼
X

ŷ

det ei2p
N jiyj

h i
det e�i2p

N jiy0j
h i

ð�1Þyð�1Þy
0
. ð142Þ

In (142), ŷ 0 and ŷ are related by

yN ¼ 1; y 0N ¼ d; y0i ¼ yi þ
Signðyi � dÞ � 1

2
; i ¼ f1; . . . ;N � 1g. ð143Þ

Similar to (125) sign prefactor can be rewritten as

ð�1Þyð�1Þy
0
¼
Y
i>j

Signðyi� yjÞ
Y
i>j

Signðy0i� y0jÞ¼ ð�1ÞN�1
YN�1

j¼1

Signðd� yjÞ¼ ð�1Þd�1.

ð144Þ
We see, that (142) depends only on y1, . . . ,yM, so from now on, we will consider a sum-

mation in y1, . . . ,yM variables. Summation over yM+1, . . . ,yN�1 gives a trivial combinato-
rial prefactor (N �M � 1)!. Furthermore, we can extend possible values of y1, . . . ,yM to
yi = yj, i „ j, since for such configurations first determinant in (142) is 0, and they do not
change the value of Sf (d):

ŷ ¼ f2 6 y1; y2; . . . ; yM 6 Ng. ð145Þ
We can to represent the subspace of summation (145) as a sum of M + 1 inequivalent

partitions, similar to representation (129)

Sf ðdÞ ¼
XMþ1

r¼1

ðN �M � 1Þ!ðMÞ!
ðr � 1Þ!ðM � r þ 1Þ! Sf ðd; rÞ; ð146Þ

where Sf (d, r) is a result of summation in the Tr subspace:

T r ¼ f2 6 t1; . . . ; tr�1 6 d < tr; . . . ; tM 6 Ng. ð147Þ
Product of two determinants in (142) is rewritten as

det ei2p
N jiyj

h i
det e�i2p

N jiy0j
h i

¼ ei2p
N ð�ðM�1Þ=2þN=2Þðr�1Þ det ei2p

N ðl�1Þyj

h i
	 det e�i2p

N ðl�1Þy0j
h i

; l ¼ f1; . . . ;Mg. ð148Þ
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We can expand the determinants (148) using permutations:

Sf ðd; rÞ ¼ ð�1Þd�1ei2p
N ð�ðM�1Þ=2þN=2Þðr�1Þ

X
P
SM

X
P 0
SM

ð�1ÞP ð�1ÞP
0

	
Yr�1

i¼1

Xd

ti¼2

ei2p
N ððP 0i�1Þti�ðP i�1Þðti�1ÞÞ

 !YM
i¼r

XN

ti¼dþ1

ei2p
N ððP 0i�1Þ�ðP i�1ÞÞti

 !
. ð149Þ

From summation over P, P 0, we can go to summation over P, Q, where P 0 = QP. Also,
one can analytically perform summation over ti in each of the brackets, since it is a
geometrical progression.

Sf ðd; rÞ ¼ ð�1Þd�1ei2p
N ð�ðM�1Þ=2þN=2Þðr�1Þ

X
P
SM

X
Q
SM

ð�1ÞQ
Yr�1

i¼1

c1
f ðd;QP i

; P iÞ

	
YM
i¼r

c2
f ðd;QP i

; P iÞ; ð150Þ

where

c1
f ðd; j; lÞ ¼ ei2p

N ðl�1Þ
Xt¼d

t¼2

ei2p
N ðj�lÞt;

c2
f ðd; j; lÞ ¼

Xt¼N

t¼dþ1

ei2p
N ðj�lÞt

ð151Þ

are independent of r. At this point, we can use the ‘‘phase’’ variable integration trick to get
rid of summation over P, and then represent summation over Q as a determinant:

Sf ðd; rÞ ¼ ðr � 1Þ!ðM � r þ 1Þ!ð�1Þd�1ei2p
N ð�ðM�1Þ=2þN=2Þðr�1Þ

Z 2p

0

dw
2p

e�iðr�1Þw

	 det

cf ðw; 1; 1Þ cf ðw; 2; 1Þ . . . cf ðw;M ; 1Þ
cf ðw; 1; 2Þ cf ðw; 2; 2Þ . . . cf ðw;M ; 2Þ

. . . . . . . . . . . .

cf ðw; 1;MÞ cf ðw; 2;MÞ . . . cf ðw;M ;MÞ

2
6664

3
7775;

ð152Þ

where

cf ðw; j; lÞ ¼ eiwc1
f ðd; j; lÞ þ c2

f ðd; j; lÞ. ð153Þ

We can analytically perform summation over r in (146), since the form of the determinant
and cf (w, j, l) are independent of r, and r-dependent combinatorial prefactor cancels:

Sf ðdÞ ¼
XMþ1

r¼1

ðN �M � 1Þ!M !

ðr � 1Þ!ðM � r þ 1Þ! Sf ðd; rÞ ¼ ðN �M � 1Þ!ðMÞ!ð�1Þd�1

	
Z 2p

0

dw
2p

eið2p
N ð�ðM�1Þ=2þN=2Þ�wÞðMþ1Þ � 1

eið2p
N ð�ðM�1Þ=2þN=2Þ�wÞ � 1

	 det

cf ðw; 1; 1Þ cf ðw; 2; 1Þ . . . cf ðw;M ; 1Þ
cf ðw; 1; 2Þ cf ðw; 2; 2Þ . . . cf ðw;M ; 2Þ

. . . . . . . . . . . .

cf ðw; 1;MÞ cf ðw; 2;MÞ . . . cf ðw;M ;MÞ

2
6664

3
7775.

ð154Þ
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Analogously to the case of bosons, integration over w is equivalent to substitution
w0 = 2p(�(M � 1)/2 + N/2)/N to the determinant, and the final expression is

Sf ðdÞ ¼ ðN �M � 1Þ!ðMÞ!ð�1Þd�1

	 det

cf ðw0; 1; 1Þ cf ðw0; 2; 1Þ . . . cf ðw0;M ; 1Þ
cf ðw0; 1; 2Þ cf ðw0; 2; 2Þ . . . cf ðw0;M ; 2Þ

. . . . . . . . . . . .

cf ðw0; 1;MÞ cf ðw0; 2;MÞ . . . cf ðw0;M ;MÞ

2
6664

3
7775.

ð155Þ
5.4. Numerical evaluation of correlation functions and Luttinger parameters

Using results of the previous sections, one can evaluate correlation functions on a ring
numerically and extract both long-range and short range behavior of correlation func-
tions. Calculation of all determinants requires polynomial time in their size, and systems
of up to N = 100 atoms can be easily investigated on a desktop PC. Fourier transform of
correlation function is an occupation number n (k), which can be measured directly in
time-of-flight experiments [8] or using Bragg spectroscopy [43]. Recently, long-distance
correlation functions of the model under consideration have been investigated based on
conformal field theory (CFT) arguments [17]. Our determinant representations for strong-
ly interacting mixture can be used to obtain these correlation functions at all distances,
and compare their large distance asymptotic behavior with predictions of CFT.

In Fig. 9, we show numerically evaluated Bose–Bose correlation function for M = 15,
N = 30. Since we used periodic boundary conditions, correlation function is periodic in n.
To extract universal long-distance correlation functions from our calculation, one has to
fit the numerical results using general Luttinger liquid asymptotic behavior. In the thermo-
dynamic limit long-range behavior is

qbð0; nÞ � jnj�1=ð2KbÞ; ð156Þ
where Kb is a bosonic Luttinger Liquid parameter. This formula is valid, if n is bigger then
any non-universal short-range scale of the model. In our case, such short-range scale is
ξ
L

(0,  )ξ
n
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ρb
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Fig. 9. Normalized Bose–Bose correlation function on a circle as a function of the distance n (here nb is Bose
density). Due to periodic boundary conditions correlation function is periodic with a period L, where L is the size
of the system. Numerical evaluation is done for M = 15, N = 30.
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given by the interbosonic distance, which is L/M. For a finite size system, general argu-
ments of conformal invariance [44,45] imply that correlation function has the form

qbð0; nÞ � 1

sin pn
L

�� ��1=ð2KbÞ
. ð157Þ

We fitted numerically obtained correlation functions with (157), and results coincide
with the formula

Kb ¼
1

ða� 1Þ2 � 1
; ð158Þ

obtained in [17] based on CFT arguments. One can see subleading oscillations in the
numerical evaluation, but their quantitative analysis would require more numerical effort.
Fourier transform of qb(0, n) is a monotonously decreasing function, which has a singu-
larity at k = 0, governed by Luttinger liquid parameter Kb:

nbðkÞ � jkj�1þ1=ð2KbÞ for k ! 0. ð159Þ
Fermionic correlation functions can also be obtained using the results of the previous

section, and space dependence of a typical correlation function is presented in Fig. 10.
Oscillations are reminiscent of Friedel oscillations of the ideal fermi gas. Their large dis-
tance decay is controlled by Luttinger liquid behavior.

One can investigate Fourier transform of the correlation function, which is an occupa-
tion number, and results for different boson fractions are shown in Figs. 11–13. In Fig. 11,
densities of bosons and fermions are almost equal. Fermi step at kf gets smeared out by
interactions, but relative change of occupation number as kf is crossed is significant. As
boson fraction is decreasing, the discontinuity appears at kf + 2kb, and it gets stronger
as M/N decreases (see Figs. 12 and 13). The presence of this discontinuity has been pre-
dicted in [17], based on CFT arguments, and here we quantify the strength of the effect.
One should note, that discontinuity at kf + 2kb is a direct signature of the interactions
and its detection can serve as an unambiguous verification of our theory.
ξ
L

(0,  )ξρ
n

f

f
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Fig. 10. Normalized Fermi–Fermi correlation function on a circle as a function of the distance n (here nf is fermi
density and L is the size of the system). Oscillations are reminiscent of Friedel oscillations of the ideal fermi gas,
and their large distance decay is controlled by Luttinger liquid behavior. Numerical evaluation is done for
M = 51, N = 100.
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Fig. 11. Fourier transform of the Fermi–Fermi correlation function for M = 51, N = 100. Fermi step at kf gets
smeared out by interactions, but relative change of occupation number as kf is crossed is significant.
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Fig. 12. Fourier transform of the Fermi–Fermi correlation function for M = 31, N = 100. Fermi step at kf gets
smeared out by interactions, and additional discontinuity appears at kf + 2kb.
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Fig. 13. Fourier transform of the Fermi–Fermi correlation function for M = 11, N = 100. Discontinuity at
kf + 2kb gets stronger as M/N decreases.
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6. Low temperature behavior in Tonks–Girardeau regime

In the previous sections, we considered density profiles and developed an algorithm to
calculate the correlation functions of the ground state of the Bose–Fermi hamiltonian (1)
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in the strongly interacting regime. An important question, which is very relevant experi-
mentally, is the effect of finite temperatures. In principle, one can use techniques of the
thermodynamic Bethe ansatz [23] to obtain free energy at nonzero temperatures as the
function of interaction strength and densities. Combined with local density approxima-
tion, it can be used to calculate density profiles for any interaction strength. In this section,
we will limit our discussion to effects of small nonzero temperatures T� Ef = (p�hn)2/(2m)
only for strongly interacting regime. We will show the evolution of the density profile (see
Fig. 14) in a harmonic trap and calculate the correlation functions under periodic bound-
ary conditions. The effect of nonzero temperatures on correlation functions is particularly
interesting for strongly interacting multicomponent systems (as has been emphasized for
the case of Bose–Bose and Fermi–Fermi mixtures in [47]), due to considerable change
of the momentum distribution in the very narrow range of the temperatures of the order
of Ef/c. For the case of Bose–Bose or Fermi–Fermi mixture it was possible [47] to obtain
correlation functions only in the two limiting cases T� Ef/c and Ef/c� T� Ef. For
Bose–Fermi mixture, we are able to calculate correlation functions for any ratio between
Ef/c and T� Ef (see Fig. 15). By adding an imaginary part to T, the procedure presented
in this section can be also easily generalized for non equal time correlations.

6.1. Low energy excitations in Tonks–Girardeau regime

As has been discussed in Section 3, for c� 1 there are two energy scales in the problem:
the first energy scale is the fermi energy of orbital motion Ef = (p�hn)2/(2m), while the sec-
ond is the ‘‘spin wave’’ (relative density oscillation) energy Ef/c. The second energy scale is
present only in strongly interacting multicomponent systems, as has been emphasized ear-
lier [46,47]. Density profiles and correlation functions we have considered earlier are valid
in the regime, when temperature is smaller than both of these energy scales:

T � Ef =c� Ef . ð160Þ
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However, interesting phenomena [46–49] can be analyzed in the ‘‘spin disordered’’
regime, when

Ef=c� T � Ef . ð161Þ
This regime has attracted lots of attention recently in the context of electrons in 1d quan-
tum wires [46,48,49]. In ‘‘spin disordered’’ regime, ‘‘spin’’ degrees of freedom are com-
pletely disordered, while orbital degrees are not affected much. From the point of view
of orbital degrees, this is still a low-temperature regime, since T� Ef. The energy of
the system does not change too much, while momentum distribution changes dramatically
as temperature changes from 0 to the order of several Ef/c. ‘‘Spin disordered’’ regime exists
only for multicomponent systems and a crossover from true ground state to ‘‘spin disor-
dered’’ regime provides a unique opportunity to study the effects of low temperatures on a
highly correlated strongly interacting system. ‘‘Spin disordered’’ limit is likely to be
reached first in the experiments, and a significant change of the density profile and of
the momentum distribution as regime (160) is reached can be used as a way to calibrate
the temperatures much smaller than Ef.

Only two limiting cases (160) and (161) have been investigated for spin- 1
2

fermion and
boson mixtures, since in these cases ‘‘spin’’ wavefunctions are related to eigenstates of
spin-1

2
Heisenberg hamiltonian, and have a complicated structure. In the case of Bose–Fer-

mi mixture, ‘‘spin’’ wavefunctions correspond to noninteracting fermionized single-spin
excitations, and one can calculate correlation functions in the whole low-temperature
limit, investigating crossover from true ground state to ‘‘spin disordered’’ limit:

Ef=c; T � Ef . ð162Þ
In the following calculations, we will neglect the influence of nonzero temperature on

orbital degrees, and will always assume that orbital degrees are not excited. This assump-
tion will affect the results only at distances, at which the correlation functions are already
very small due to effects of spin excitations.

In the zeroth order in 1/c expansion, energies of all spin states are degenerate, and solu-
tions of Bethe equations are given by
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�Ka þ ic=2

�Ka � ic=2

� �N

¼ 1; a ¼ f1; . . . ;Mg; ð163Þ

eikjL ¼
YM
b¼1

�Kb þ ic=2

�Kb � ic=2
; j ¼ f1; . . . ;Ng. ð164Þ

In the next order in 1/c expansion, both kj and Ki acquire corrections of the order of 1/c.
Since energy depends only on q (k), we need to calculate corrections to q (k) in the leading
order. According to (35), to calculate 1/c correction to q (k), one can use Ki in the zeroth
order, given by (163):

2pqðkÞ ¼ 1þ 1

L

XM

i¼1

4c

4K2
i þ c2

ð165Þ

is independent of k in the first order of 1/c expansion. If we define ‘‘spin’’ wave vectors
according to

�Ka þ ic=2

�Ka � ic=2
¼ ei2pja=N ; a ¼ f1; . . . ;Mg ð166Þ

energy of the state with ‘‘spin’’ wave vectors ji in 1/c order is given by

Eðc; jiÞ ¼
p2

3

N 2

L2
N � 4

c

XM

i¼1

1� cos
2pji

N

� � !
. ð167Þ

Allowed values for ‘‘spin’’ wave vectors are

K̂ ¼ fji 
 f1; . . . ;Ng; ji < jj for i < jg. ð168Þ
The number of ‘‘spin’’ excitations (we will call them magnons from now on) is fixed to be
the number of bosons, and different ‘‘spin’’ wave vectors cannot coincide. Hence, magnons
have a fermionic statistics. The effect of nonzero temperatures is to average the correla-
tions over the different sets of possible ji from (168).

According to (167) in the first order in 1/c expansion magnons do not interact with each
other, and the total energy is the sum of separate magnon energies. Magnon energy spec-
trum is

�ðjÞ ¼ 4p2

3c
N 2

L2
cos

2pj
N
� 1

� �
¼ 4Ef

3c
cos

2pj
N
� 1

� �
. ð169Þ

Lowest state corresponds to j = N/2, and as the number of magnons increases, ‘‘spin’’
wave vectors j near N/2 start being occupied—(169) proves the choice (92) for the true
ground state at zero temperature.

6.2. Density profiles

In this subsection, we will analyze the behavior of the strongly interacting mixture in a
harmonic trap at low temperatures. Similar to Section 4, we consider the case

xb ¼ xf ¼ x0. ð170Þ
According to (59), within the region of the coexistence densities are governed by equations
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l0
f ðxÞ þ

mx2
0x2

2
¼ l0

f ð0Þ; l0
bðxÞ � l0

f ðxÞ ¼ l0
bð0Þ � l0

f ð0Þ. ð171Þ

Similar to the case of T = 0, total density is given by (63):

n0ðxÞ ¼ n0ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

x2
f

s
ð172Þ

and has a weak temperature dependence. On the other hand, relative density is controlled
by solutions of the second equation (171), and its dependence on temperature is quite
strong. It turns out, that in strongly interacting regime lb � lf can be easily calculated
using formulas from the previous subsection. lb � lf is the change of the free energy, when
one boson is added and one fermion is removed from the mixture. On the language of the
magnons this corresponds to an addition of one magnon. Therefore, one obtains

lb � lf ¼ lm; ð173Þ

where lm is the chemical potential of the magnons with energy spectrum (169). As has
been noted earlier, magnons obey fermionic statistics (only one magnon can occupy each
state) and do not interact, so one can use Fermi distribution for their occupation number.
Chemical potential for magnons lm as a function of a and T can be obtained numerically
from the normalization condition for the total number of magnons, which reads

a ¼
Z 2p

0

1

e
1
Tð

4Ef
3c ðcos k�1Þ�lmÞ þ 1

dk
2p

. ð174Þ

After that, one can use LDA to obtain the density profiles. In Fig. 14, we show the density
of fermions for the case, when total number of bosons equals total number of fermions.
One sees, that density profile changes considerably at the temperatures of the order of
E0

f =c0, where E0
f and c0 are the Fermi energy and Lieb–Liniger parameter in the center

of the trap. For E0
f=c0 � T � E0

f boson fraction a is uniform along the trap. As temper-
ature is lowered, more bosons condense towards the center of the trap, and fermionic den-
sity behaves non-monotonously as a function of the distance form the center of the trap.

6.3. Fermi–Fermi correlations

From now on, we will consider the periodic boundary conditions, when the many body
problem is strictly solvable in the mathematical sense. We will first describe the calculation
of fermi correlations, since it is simpler than calculation of Bose correlations. To calculate
temperature averaged correlation functions, we should be able to calculate

qf ð0; n; T Þ ¼

P
ji
K̂

e�
P

i
�ðjiÞ=T ðN �MÞ

R
Wðj1; . . . ;jM ; x1; x2; . . . ; 0ÞWyðj1; . . . ;jM ; x1; x2 . . . ; nÞdx1 . . . dxN�1

P
ji
K̂

e�
P

i
�ðjiÞ=T

.

ð175Þ

Denominator in (175) is a partition function of noninteracting fermions in a micro canon-
ical ensemble. It can be written as

Z ¼
X
ji
K̂

e�
P

i
�ðjiÞ=T ¼

Z 2p

0

e�iMh dh
2p

YN
j¼1

ð1þ eihe��ðjÞ=T Þ ð176Þ
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Numerator can be simplified using the factorization of ‘‘spin’’ and orbital parts, similar to
(141):

qf ð0;n;T Þ¼ 1

Z
1

ðN �M�1Þ!M !LN NM

XN

d¼1

X
ji
K̂

e�
P

i
�ðjiÞ=T Sf ðj1; . . . ;jM ;dÞIðd;n;j1; . . . ;jM Þ.

ð177Þ
Here, Sf (j1, . . . ,jM; d) is an expression (142) for an arbitrary choice of ji belonging to
(168):

Sf ðj1; . . . ; jM ; dÞ ¼
X

ŷ

det ei2p
N jiyj

h i
det e�i2p

N jiy0j
h i

ð�1Þyð�1Þy
0
. ð178Þ

I (d,n; j1, . . . ,jM) is an integral (108), which dependence on j1, . . . ,jM comes only
through boundary conditions (164). If

PM
i¼1ji mod N ¼ D, where D = {1, . . . ,N � 1},

then the set of ki which minimizes kinetic energy is uniquely defined:

2p
L
ð�N=2þ D=NÞ; 2p

L
ð�N=2þ 1þ D=NÞ; . . . ;

2p
L
ðN=2� 1þ D=NÞ

� 
. ð179Þ

If D = 0, then there are two degenerate sets of ki, and each of them should be taken with a
weight 1/2. Taking this into account, I (d,n; j1, . . . ,jM) can be expressed as

Iðd; n; j1; . . . ; jMÞ ¼ Iðd; nÞ
XN

D¼0

1� dN ðDÞ
2

� �
dN D�

XM

i¼1

ji

 !
e�ðD�

N
2Þ

2pi
N n; ð180Þ

where

dN ðxÞ ¼
1; if x mod N ¼ 0;

0; otherwise,

�
ð181Þ

dN (x) can be represented as a Fourier sum,

dN ðxÞ ¼
1

N

XN�1

p¼0

e
2pi
N px. ð182Þ

Taking this into account, correlation function (177) is rewritten as

qf ð0; n; T Þ ¼ 1

Z
1

ðN �M � 1Þ!M !LN N Mþ1

XN

d¼1

Iðd; nÞ

	
XN

D¼0

1� dN ðDÞ
2

� �
e�ðD�

N
2Þ

2pi
N n
XN�1

p¼0

e
2pi
N pDSf ðd; p; T Þ; ð183Þ

where

Sf ðd; p; T Þ ¼
X
ji
K̂

e
�
P

i

ð2pi
N pjiþ�ðjiÞ=T Þ

Sf ðj1; . . . ; jM ; dÞ. ð184Þ

Calculation of Sf (j1, . . . ,jM; d) closely reminds a calculation of Sf (d) in Section 5.3, so
we will present only a brief derivation.

Sf ðj1; . . . ; jM ; dÞ ¼
XMþ1

r¼1

ðN �M � 1Þ!ðMÞ!
ðr � 1Þ!ðM � r þ 1Þ! Sf ðj1; . . . ; jM ; d; rÞ; ð185Þ
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where Sf (j1, . . . ,jM; d, r) is a product of two determinants:

Sf ðj1; . . . ; jM ; d; rÞ ¼ ð�1Þd�1
X

P
SM

X
P 0
SM

ð�1ÞP ð�1ÞP
0

	
Yr�1

i¼1

Xd

ti¼2

e
i2p

N ðjP 0
i
ti�jPi ðti�1ÞÞ

 !YM
i¼r

XN

ti¼dþ1

e
i2p

N ðjP 0
i
�jPi Þti

 !
. ð186Þ

From summation over P, P 0, we can go to summation over P, Q, where P 0 = QP. Also,
one can analytically perform summation over ti in each of the brackets, since it is a
geometrical progression.

Sf ðj1; . . . ; jM ; d; rÞ ¼ ð�1Þd�1
X

P
SM

X
Q
SM

ð�1ÞQ
Yr�1

i¼1

g1
f ðd; jQPi

; jP iÞ
YM
i¼r

g2
f ðd; jQPi

; jP iÞ;

ð187Þ
where

g1
f ðd; j; lÞ ¼ ei2p

N l
Xt¼d

t¼2

ei2p
N ðj�lÞt;

g2
f ðd; j; lÞ ¼

Xt¼N

t¼dþ1

ei2p
N ðj�lÞt

ð188Þ

are independent of r. We can use the ‘‘phase’’ variable integration trick to get rid of
summation over P, and then represent summation over Q as a determinant:

Sf ðj1; . . . ; jM ; d; rÞ ¼ ðr � 1Þ!ðM � r þ 1Þ!ð�1Þd�1

Z 2p

0

dw
2p

e�iðr�1Þw

	 det

gf ðw;j1; j1Þ gf ðw; j1; j2Þ . . . gf ðw; j1; jMÞ
gf ðw;j2; j1Þ gf ðw; j2; j2Þ . . . gf ðw; j2; jMÞ

. . . . . . . . . . . .

gf ðw; jM ; j1Þ gf ðw; jM ; j2Þ . . . gf ðw; jM ; jMÞ

2
6664

3
7775;

ð189Þ
where

gf ðw; j; lÞ ¼ eiwg1
f ðd; j; lÞ þ g2

f ðd; j; lÞ. ð190Þ

We can analytically perform summation over r, since the form of the determinant and
gf(w, j, l) are independent of r, and combinatorial prefactor cancels in (187). Similar to
(139), we represent summation over r and integration over w as a substitution w0 = 0,
and obtain the following result:

Sf ðj1; . . . ; jM ; dÞ ¼ ðN �M � 1Þ!M !ð�1Þd�1

	 det

gf ð0;j1; j1Þ gf ð0; j1; j2Þ . . . gf ð0; j1; jMÞ
gf ð0;j2; j1Þ gf ð0; j2; j2Þ . . . gf ð0; j2; jMÞ
. . . . . . . . . . . .

gf ð0;jM ; j1Þ gf ð0; jM ; j2Þ . . . gf ð0; jM ; jMÞ

2
6664

3
7775.

ð191Þ
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To calculate Sf (d;p;T), we have to sum (191) for different choices of ji with ji dependent
prefactor. One can take these prefactors into by multiplying each row in (191) by

f ðjiÞ ¼ e�ð
2pi
N pjiþ�ðjiÞ=T Þ; ð192Þ

since only one term from each row appears in the expansion of the determinant:

Sf ðd;p;T Þ¼ ðN �M�1Þ!M !ð�1Þd�1
XN

j1¼1

. . .
XN

jM¼1

	det

f ðj1Þgf ð0;j1;j1Þ f ðj1Þgf ð0;j1;j2Þ . . . f ðj1Þgf ð0;j1;jMÞ
f ðj2Þgf ð0;j2;j1Þ f ðj2Þgf ð0;j2;j2Þ . . . f ðj2Þgf ð0;j2;jMÞ

. . . . . . . . . . . .

f ðjMÞgf ð0;jM ;j1Þ f ðjMÞgf ð0;jM ;j2Þ . . . f ðjMÞgf ð0;jM ;jMÞ

2
6664

3
7775.

ð193Þ

Summations over ji in (193) can be performed analytically, since each choice of ji is a term
in the expansion of the Fredholm determinant [50]. The desired expression has the form:

Sf ðd;p;T Þ¼ðN�M�1Þ!M !ð�1Þd�1

Z 2p

0

dh
2p

e�iðN�MÞh

	det

eihþf ð1Þgf ð0;1;1Þ f ð1Þgf ð0;1;2Þ . . . f ð1Þgf ð0;1;NÞ
f ð2Þgf ð0;2;1Þ eihþf ð2Þgf ð0;2;2Þ . . . f ð2Þgf ð0;2;NÞ

. . . . . . . . . . ..

f ðNÞgf ð0;N ;1Þ f ðNÞgf ð0;N ;2Þ . . . eihþf ðNÞgf ð0;N ;NÞ

2
6664

3
7775.

ð194Þ

Integration over h extracts terms from the determinant which have ei(N�M)h dependence.
Such terms appear, when N �M eih elements in the expansion of the determinant are tak-
en along the diagonal. If eih are chosen in the rows except for j1, . . . ,jM, then contribution
from such choice of eih is a minor which equals f (j1), . . . , f (jM)Sf(j1, . . . ,jM; d). Thus
evaluation of the prefactor in the ei(N�M)h dependence of the determinant corresponds
to summation of f (j1) . . . f (jM)Sf(j1, . . . ,jM; d) over possible sets of ji.

Finally, substituting (194) into (183), one can evaluate numerically Fermi–Fermi corre-
lation functions for any temperature and ratio between boson and fermion density in low
temperature limit.

In Fig. 15, we show numerically evaluated Fermi–Fermi correlation function for
M = 15, N = 30 and several temperatures, ranging from T = 0 to T ¼ 5

4Ef

3c . At this low
temperature region Fermi–Fermi correlation function changes considerably due to transi-
tion from true ground state to ‘‘spin disordered’’ regime. In ‘‘spin disordered’’ regime fer-
mi singularity at kf gets completely smeared out by thermal ‘‘spin’’ excitations.

6.4. Bose–Bose correlation function

Bose–Bose correlation functions also change as T goes up. However, since for T = 0
nb (k) does not have any interesting structure except for singularity at k = 0, the effects
of nonzero temperatures will not be as dramatic as for fermi correlations. We present here
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the results mainly for the sake of completeness. Calculations in this subsection are similar
to what has been done in the previous subsection. Correlation function can be written
as

qbð0; n; T Þ ¼

P
ji
K̂

e�
P

i
�ðjiÞ=T M

R
Wðj1; . . . ;jM ; 0; x2; . . . ; xN ÞWyðj1; . . . ;jM ; n; x2 . . . ; xN Þdx2 . . . dxN

P
ji
K̂

e�
P

i
�ðjiÞ=T

.

ð195Þ

Similar to (183), this can be written as

qbð0; n; T Þ ¼ 1

Z
1

ðN �MÞ!ðM � 1Þ!LN NMþ1

XN

d¼1

Iðd; nÞ

	
XN

D¼0

1� dN ðDÞ
2

� �
e�ðD�

N
2Þ

2pi
N n
XN�1

p¼0

e
2pi
N pDSbðd; p; T Þ; ð196Þ

where

Sbðd; p; T Þ ¼
X
ji
K̂

e�
P

i
ð2pi

N pjiþ�ðjiÞ=T ÞSbðj1; . . . ; jM ; dÞ. ð197Þ

Here, Sb(j1, . . . ,jM; d) is an expression (122) for an arbitrary choice of ji belonging to
(168):

Sbðj1; . . . ; jM ; dÞ ¼
X

ŷ

det ei2p
N jiyj

h i
det e�i2p

N jiy0j
h i

ð�1Þyð�1Þy
0
. ð198Þ

Similar to (129), it can be written as

Sbðj1; . . . ; jM ; dÞ ¼
XM

r¼1

ðN �MÞ!ðM � 1Þ!
ðr � 1Þ!ðM � rÞ! Sbðj1; . . . ; jM ; d; rÞ; ð199Þ

where Sb(j1, . . . ,jM;d, r) is a result of the summation of (198) in the following subspace:

f1 6 y2; . . . ; yr 6 d < yrþ1; . . . ; yM 6 Ng. ð200Þ

We can expand determinants of (198) using permutations:

Sbðj1; . . . ; jM ; d; rÞ ¼ ð�1Þd�1
X

P
SM

X
P 0
SM

ð�1ÞP ð�1ÞP
0
e

i2p
N ðjP 0

1
1�jP1

dÞ

	
Yr

i¼2

Xd

yi¼2

e
i2p
N ðjP 0

i
yi�jPi ðyi�1ÞÞ

 ! YM
i¼rþ1

XN

yi¼dþ1

e
i2p

N ðjP 0
i
�jPi Þyi

 !
. ð201Þ

From summation over P, P 0, we can go to summation over P, Q, where P 0 = QP. Also,
one can analytically perform summation over yi in each of the brackets, since it is a
geometrical progression. Compared to the case of fermions, there are three types of the
brackets:
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Sf ðj1; . . . ; jM ; d; rÞ ¼ ð�1Þd�1
X

P
SM

X
Q
SM

ð�1ÞQg0
bðd; jQP1

; jP 1
Þ

	
Yr

i¼2

g1
bðd; jQPi

; jP iÞ
YM
i¼r

g2
bðd; jQPi

; jP iÞ; ð202Þ

where

g0
bðd; j; lÞ ¼ ei2p

N ðj1�ldÞ;

g1
bðd; j; lÞ ¼ ei2p

N l
Xt¼d

t¼2

ei2p
N ðj�lÞt;

g2
bðd; j; lÞ ¼

Xt¼N

t¼dþ1

ei2p
N ðj�lÞt.

ð203Þ

We can use ‘‘phase integration’’ trick to represent (202) as an integral of some determi-
nant, but there will be two phase variables, since there are three types of inequivalent
brackets:

Sbðj1; . . . ;jM ;d; rÞ ¼ ðr� 1Þ!ðM � rÞ!ð�1Þd�1

Z 2p

0

e�iðr�1Þw dw
2p

Z 2p

0

d/
2p

e�i/

	det

gbðw;/;j1;j1Þ gbðw;/;j1;j2Þ . . . gbðw;/;j1;jMÞ
gbðw;/;j2;j1Þ gbðw;/;j2;j2Þ . . . gbðw;/;j2;jMÞ

. . . . . . . . . . . .

gbðw;/;jM ;j1Þ gbðw;/;jM ;j2Þ . . . gbðw;/;jM ;jMÞ

2
6664

3
7775;

ð204Þ
where

gbðw;/; j; lÞ ¼ ei/g0
bðd; j; lÞ þ eiwg1

bðd; j; lÞ þ g2
bðd; j; lÞ. ð205Þ

After integration over /, determinant in (204) has terms up to ei(M�1)w, therefore integra-
tion over w and summation according to (199) are equivalent to substitution w0 = 0:

Sbðj1; . . . ;jM ; dÞ ¼ ðN �MÞ!ðM � 1Þ!ð�1Þd�1

Z 2p

0

d/
2p

e�i/

	 det

gbð0;/;j1;j1Þ gbð0;/;j1;j2Þ . . . gbð0;/;j1;jMÞ
gbð0;/;j2;j1Þ gbð0;/;j2;j2Þ . . . gbð0;/;j2;jMÞ

. . . . . . . . . . . .

gbð0;/;jM ;j1Þ gbð0;/;jM ;j2Þ . . . gbð0;/;jM ;jMÞ

2
6664

3
7775.

ð206Þ

Integral over / can be simplified further, since the determinant in (206) has a form
A0 + A1ei/. The form above follows from the fact that a part of the matrix which depends
on ei/ has a rank 1 and the formula for the determinant of the sum of the matrices (see
page 221 of [51]). Let’s for a moment introduce a notation z = ei/. Integration over / with
a weigh e�iu extracts the term A1, which can be alternatively written as a difference



2430 A. Imambekov, E. Demler / Annals of Physics 321 (2006) 2390–2437
between two determinants, one when z = 1 and the other when z = 0 (gf (w, j, l) is given by
(190))

Sbðj1; . . . ; jM ; dÞ ¼ ðN �MÞ!ðM � 1Þ!ð�1Þd�1

	 det

gbð0; 0; j1; j1Þ gbð0; 0; j1; j2Þ . . . gbð0; 0; j1; jMÞ
gbð0; 0; j2; j1Þ gbð0; 0; j2; j2Þ . . . gbð0; 0; j2; jMÞ

. . . . . . . . . . . .

gbð0; 0; jM ; j1Þ gbð0; 0; jM ; j2Þ . . . gbð0; 0; jM ; jMÞ

2
6664

3
7775

� ðN �MÞ!ðM � 1Þ!ð�1Þd�1

	 det

gf ð0; j1; j1Þ gf ð0; j1; j2Þ . . . gf ð0; j1; jMÞ
gf ð0; j2; j1Þ gf ð0; j2; j2Þ . . . gf ð0; j2; jMÞ

. . . . . . . . . . . .

gf ð0; jM ; j1Þ gf ð0; jM ; j2Þ . . . gf ð0; jM ; jMÞ

2
6664

3
7775.

ð207Þ
We note, that a similar trick is explained on the page 609 of [52]. After that, summation

over different ji can be performed similar to the case of fermions:

Sbðd;p;T Þ ¼ ðN �MÞ!ðM � 1Þ!ð�1Þd�1

Z 2p

0

dh
2p

e�iðN�MÞh

	det

eihþ f ð1Þgbð0;0;1;1Þ f ð1Þgbð0;0;1;2Þ . . . f ð1Þgbð0;0;1;NÞ
f ð2Þgbð0;0;2;1Þ eihþ f ð2Þgbð0;0;2;2Þ . . . f ð2Þgbð0;0;2;NÞ

. . . . . . . . . . . .

f ðNÞgbð0;0;N ;1Þ f ðNÞgbð0;0;N ;2Þ . . . eihþ f ðNÞgbð0;0;N ;NÞ

2
6664

3
7775

�N �M
M

Sf ðd;p;T Þ;

ð208Þ

where Sf (d;p;T) is defined in (194).

7. Experimental considerations and conclusions

In this section, we will consider in detail possible ways to realize the system under inves-
tigation in experiments with cold atoms.

An array of one-dimensional tubes of cold atoms along x direction has been realized
experimentally using strong optical lattices in two dimensions [7–9,32,53] y and z. The
large number of tubes provides a good imaging quality, but the number of atoms and
the ratio between Bose and Fermi particle numbers varies from tube to tube, and may
complicate the interpretation of the experiments (one of the ways to fix the ratio between
Bose and Fermi numbers for all tubes will be discussed later). In addition, due to harmonic
confinement along the axis of the tube, Bose and Fermi densities vary within each tube,
which causes non-homogeneous broadening of the momentum distribution. Alternatively,
single copies of one-dimensional mixtures with constant densities along the axis can be
realized in micro traps on a chip [54], or using cold atoms in a 1d box potential [55]. Here,
we will mostly concentrate on a realization of 1d system using strong 2D optical lattice in y

and z directions.
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First of the conditions (2), mb = mf, is approximately satisfied for isotopes of the atoms,
and one can expect our theory to be valid with high accuracy for them. Some of the
promising candidates are 39(41)K � 40K [56], 171Yb + 172Yb [57], and 86(84)Rb � 87(85)Rb

[58]. Different isotopes of potassium have already been cooled to quantum degeneracy
[1,60] by sympathetic cooling with Rb. There is another way to satisfy the first condition
of (2) using already available degenerate mixtures [1]. If one uses an additional optical lat-
tice along the x direction with filling factors much smaller than one, then (1) is an effective
Hamiltonian describing this system with the effective masses determined by the tunneling,
similar to a recent realization of Tonks–Girardeau gas for bosons [8]. Finally, we note that
one can realize experimentally the model, which has the same energy eigenvalues as (1),
using a mixture of two bosonic atoms (see next paragraph). If one chooses two magnetic
sublevels of the same atom, equality of masses will be satisfied automatically.

Second of the conditions (2), gbb = gbf > 0, can also be satisfied in current experiments,
using a combination of several approaches. First, one can use Feshbach resonances to con-
trol the interactions: this is particularly straightforward for Li � Na of K � Rb mixtures,
where resonances have already been observed experimentally [4,3]. Second, we point out
that it is sufficient to have equal (positive) signs for the two scattering lengths, but not nec-
essarily their magnitudes. Well away from confinement induced resonances [59], 1D inter-
actions are given by gbb = 2�hxb^abb, gbf ¼ 2�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xb?xf?
p

abf , where xb^, xf^ are radial
confinement frequencies, and abb, abf are 3D scattering lengths. For a fixed value of
abb/abf, one can always choose the detuning of the optical lattice laser frequencies in such
a way that gbb = gbf. After that, one can vary the intensity of the y, z optical lattice beams
and change g, while always being on the integrable line of the phase diagram. Combina-
tion of these two approaches to control 1D interactions gives a lot of freedom for exper-
imental realization of equal one-dimensional interactions. Finally, lets describe how to
realize the bosonic model, which has the same eigenvalues as the model (1). Bosonic sys-
tem is characterized by 3 interaction parameters, g11, g22, g12. If one tunes g11 to +1, then
bosons of type 1 get ‘‘fermionized’’ within the same type, and the model will be equivalent
in terms of energy spectrum, density profiles and collective modes to (1). Note, however,
that single-particle correlation functions will be different, and the results of Sections 5 and
6 (except for 6.2) are not applicable. This general equivalence between Bose–Bose and
Bose–Fermi models is valid for any ratio between g22 and g12. One can push this result
even further, by tuning g22 to +1. In this case, eigenstates of (1) are equivalent to spin
�1/2 fermi system [20,21,61], and some predictions for those systems can be applied for
bosons.

Detection of the properties of the system may be hindered by the fact, that both
number of atoms and relative fraction of bosons a vary from tube to tube. However,
one can use Feshbach resonances to fix the boson fraction to be a = 1/2 in each tube
[64]. To do this, one can use Feshbach resonance for Bose–Fermi scattering to adiabat-
ically create molecules before loading the mixture in strong y, z optical lattice. If one
gets rid of unpaired atoms at this stage, switches on y, z optical lattice, and adiabat-
ically dissociates the molecules, boson fraction will be fixed in each tube to be a = 1/2.
Most of our figures have been calculated for this particular boson fraction. Our results
in harmonic traps are presented as functions of c0 = mg/(�h2n0), where n0 is a total den-
sity in the center of a one-dimensional trap, and c0 is the Lieb–Liniger [28] parameter
in the center of the trap. c0� 1 corresponds to a strongly interacting regime. n0 varies
from tube to tube, and to be able to compare theoretical predictions precisely with
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experiments, one should be able to have an optical access to regions where variation of
n0 is small.

Most of our experimental predictions, except for those in Section 6, deal with zero tem-
perature case. Experimentally, one needs to verify the quantum degeneracy of the gases in
1D regime. A possible way to identify the onset of quantum degeneracy is based on density
profiles [2]. In Figs. 2 and 3, we show the density profiles at zero temperature for weak and
strong interactions, when the harmonic confinement frequency x0 is the same for bosons
and fermions. In both cases, only central part is occupied by bosons, and outer shells con-
sist of fermions only. In addition, for the strong interactions fermi density develops a
strong peak at the edge of bosonic cloud. When the interactions are not strong
(c0 [ 1), one can estimate the temperature at which quantum effects become important
for ground state density profile to be of the order of N�hx0, where N is the total number
of atoms in a tube. In the strongly interacting regime (c0� 1), however, situation is very
different. There are two temperature scales in the problem: E0

f ¼ ðp�hn0Þ2=ð2mÞ, and
E0

f =c0 � E0
f . As the temperature goes up from 0 to � E0

f=c0, density profile changes as
shown in Fig. 14, and the peak in the fermion density disappears. However, total density
profile does not change much as long as T � E0

f . This effect can be qualitatively under-
stood as the demonstration of the ‘‘fermionization’’ of the Bose–Fermi cloud, as will be
explained in the next paragraph.

First, lets consider the case without a harmonic potential. When interactions are strong,
bosons tend to avoid fermions and other bosons. Whenever coordinates of any two par-
ticles coincide, wavefunction is close to 0. Effectively, the gas is mutually ‘‘fermionized’’,
and the ground state energy of the system is close to the ground state energy of the pure
noninteracting fermi gas with a density equal to the total density of bosons and fermions.
Dependence of the energy on the relative density (or boson fraction a) appears only in the
next order in 1/c expansion, and two first terms in this expansion are given by (54). Since
dependence of the energy on boson fraction a is c� 1 times smaller than dependence on
total density, the ‘‘quantum degeneracy’’ temperature for relative density excitations is
also c times smaller than quantum degeneracy temperature for fermions with density n,
hence it is �Ef/c. When harmonic trap is present at T = 0, relative density distributes itself
to minimize the total energy. As temperature becomes of the order of several E0

f=c0, almost
all relative density modes get excited, and boson fraction becomes uniform along the trap.
Total density modes are still not excited, since their quantum degeneracy temperature is
E0

f , and therefore the total density profile does not change much. Temperature E0
f=c0, is

important not only for density distribution, but also for correlation functions, as will be
discussed later.

Knowledge of the exact dependence of the energy as the function of densities and inter-
actions allows to investigate not only the static properties, but also dynamic behavior. In
Section 4, we developed a two-fluid hydrodynamic approach to calculate the frequencies
of collective oscillations. In the strongly interacting limit we predict the appearance of
low-lying modes, with a frequency scaling as � x0=

ffiffiffiffi
c0

p
. These modes correspond to

‘‘out of phase’’ oscillations of Bose and Fermi clouds that keep the total density approx-
imately constant. These modes can be understood as follows: due to fermionization effects
discussed in previous paragraph, for c0� 1 the energetic penalty for changing the relative
density of bosons and fermions is small, and hence it does not cost too much energy to
create ‘‘out of phase’’ oscillations that do not change the total density. Dependence of
the frequencies of low-lying oscillations with small quantum numbers on overall boson
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fraction in a tube is shown in Fig. 8. In addition to low lying ‘‘out of phase’’ oscillations,
the cloud has ‘‘in phase’’ oscillations, with the frequencies xn = nx0, similar to Tonks–
Girardeau gas of bosons [36]. These modes have frequencies considerably higher than
‘‘out of phase’’ modes, and are not shown in Fig. 8. One can excite any of these excitations
by adding a perturbation of the matching frequency, similar to what has been done to
bosons in [32]. A different manifestation of the slow ‘‘out of phase’’ dynamics can be
observed looking at the evolution of density perturbations: initial perturbation will split
into fast ‘‘in phase’’ part, moving at fermi velocity, and slow ‘‘out of phase’’ part. This
is similar to ‘‘spin-charge separation’’, proposed for fermi [61] or Bose [62] spin-1

2
mixtures.

When interactions are not strong (c0 [ 1), one can obtain frequencies of all modes using
mean-field energy. Fig. 4 shows the dependence of frequencies for equal number of bosons
and fermions (a = 1/2) on c0. Even in mean-field regime frequency of ‘‘out of phase’’ oscil-
lations gets smaller as interactions get stronger. Already for c0 � 1 results for c0� 1
extrapolate mean-field results very well.

Finally, lets discuss theoretically the most interesting and sensitive measure of the cor-
relations, single particle correlation function, considered in Sections 5 and 6. Fourier
transform of the single particle correlation function is an occupation number, and it
can be measured experimentally using Bragg spectroscopy [43] or time of flight measure-
ments [8]. We can calculate these correlation functions in strongly interacting regime under
periodic boundary conditions for any temperatures. At zero temperature Bose momentum
distribution has a singularity (159) at k = 0 reminiscent of BEC in higher dimensions, and
its strength is controlled by Luttinger liquid parameter Kb, which depends only on boson
fraction for strong interactions. For fermions, momentum distribution has a lot of inter-
esting features. At zero temperature, several momentum distributions are presented in
Figs. 11–13. One sees, that due to strong interactions, fermi step at kf gets smeared out
even at T = 0, and nf (k) is considerably different from 0 at wave vectors far away from
kf. However, total change of nf (k) as one crosses kf is quite large. In addition, nf (k) devel-
ops an extra singularity [17] at kf + 2kb, and the strength of this singularity is higher for
small boson fractions. As the temperature rises, momentum distribution changes consid-
erably in the region of low temperatures of the order of Ef/c, and its evolution as a func-
tion of temperature is shown in Fig. 15. For Ef/c� T� Ef, one enters so called ‘‘spin
disordered’’ regime [46,47], where singularity at kf gets completely washed out, and for
equal densities of bosons and fermions momentum distribution gets almost twice as wide
compared to T � E0

f =c. A strong change of the momentum distribution in a small range of
temperatures can be used to perform a thermometry at very small temperatures. To verify
experimentally exact numerical correlation functions one needs to work with systems at
constant densities along x direction. Such constant density can be achieved in experiments
with micro traps [54], or in 2D arrays of tubes, if one makes a very shallow harmonic con-
finement, and creates strong box-like impenetrable potential at the sides of the tubes with
the help of additional lasers. If the system is in harmonic trap, lots of the features of cor-
relations themselves (i.e., singularity at kf + 2kb) get washed out due to averaging over
inhomogeneous density profile [63]. However, the averaged correlation function still shows
significant change in the region of temperatures of the order of E0

f=c0, and the results for
T � E0

f=c0 and E0
f=c0 � T � E0

f are shown in Fig. 16. The point where Nf (k) has a dis-
continuous derivative for T = 0 corresponds to the fermi wave vector for the maximal den-
sity of fermions (at the edge of the bosonic cloud). For comparison, we also show Nf (k) for
the same number of fermions in the same trap for noninteracting case.
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noninteracting fermions (dashed). Overall number of bosons in a trap equals the total number of fermions, n0 is
the total density in the center of the trap, E0

f ¼ ðp�hn0Þ2=ð2mÞ, c0� 1 is the Lieb–Liniger parameter in the center of
the trap, and 2xf is the total size of the cloud. In the range of the temperatures � E0

f =c0 fermi correlation function
changes considerably due to transition from true ground state to ‘‘spin disordered’’ regime.
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In conclusion, we presented a model for interacting Bose–Fermi mixture in 1D,
which is exactly solvable by Bethe ansatz technique. We obtained the energy numerical-
ly in the thermodynamic limit, and used it to prove the absence of the demixing under
conditions (2), contrary to prediction of a mean-field approximation. Combining exact
solution with local density approximation (LDA) in a harmonic trap, we calculated the
density profiles and frequencies of collective modes in various limits. In the strongly
interacting regime, we predicted the appearance of low-lying collective oscillations which
correspond to the counterflow of the two species. In the strongly interacting regime, we
used exact wavefunction to calculate the single particle correlation functions for bosons
and fermions at zero temperature under periodic boundary conditions. We derived an
analytical formula, which allows to calculate correlation functions at all distances
numerically for a polynomial time in system size. We investigated numerically two
strong singularities of the momentum distribution for fermions at kf and kf + 2kb.
We extended the results for correlation functions for low temperatures, and calculated
correlation functions in the crossover regime from T = 0 to ‘‘spin disordered’’ regime.
We also calculated the evolution of the density profile in a harmonic trap at small non-
zero temperatures. We showed, that in strongly interacting regime correlation functions
change dramatically as temperature changes from 0 to a small temperature �Ef/c� Ef,
where Ef = (p�hn)2/(2m), n is the total density and c is the Lieb–Liniger parameter. Final-
ly, we analyzed the experimental situation, proposed several ways to implement the
exactly solvable hamiltonian and combined the results for correlation functions with
LDA.
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Appendix A

In this appendix, we will prove that all solutions of Eqs. (28) and (29)

YN
i¼1

ki � Ka þ ic=2

ki � Ka � ic=2
¼ 1; a ¼ f1; . . . ;Mg; ðA:1Þ

eikjL ¼
YM
b¼1

kj � Kb þ ic=2

kj � Kb � ic=2
; j ¼ f1; . . . ;Ng ðA:2Þ

are always real. This is a major simplification for the analysis of the excited states com-
pared to spin-1

2
fermion systems, where one has to consider complex solutions [22].

Suppose that solutions of (A.1) and (A.2) are complex numbers, such that

inf Imkj ¼ k� 6 sup Im kj ¼ kþ; ðA:3Þ
inf ImKa ¼ K� 6 sup Im Ka ¼ Kþ. ðA:4Þ

We need to prove that k� = k+ = K� = K+ = 0.
First, lets prove that

k� 6 K�; ðA:5Þ
Kþ 6 kþ. ðA:6Þ

Suppose that (A.5) is not valid, i.e.,

9 a : Im kj � Im Ka > 08j. ðA:7Þ
Then

kj � Ka þ ic=2

kj � Ka þ ic=2

����
���� > 18j ðA:8Þ

and absolute value of the l.h.s. of Eq. (A.1) is bigger than 1, which contradicts the equa-
tion. Eq. (A.6) can be proven similarly.

Now, lets prove that

kþ 6 0; ðA:9Þ
k� P 0. ðA:10Þ

These equations together with (A.5) and (A.6) would imply k� = k+ = K� = K+ = 0.
Suppose that (A.9) is not valid, i.e., $ j:Im kj = k+ > 0. From (A.6) it follows that:

Im kj � Im Kb P 08b; ðA:11Þ
therefore

kj � Kb þ ic=2

kj � Kb þ ic=2

����
���� P 18b ðA:12Þ

and absolute value of the r.h.s. of Eq. (A.2) is not smaller than 1. On the other hand, by
assumption l.h.s. of this equation is smaller than 1:

jeikjLj ¼ e�kþL < 1. ðA:13Þ

Contradiction proves the validity of (A.9), and (A.10) can be proven similarly.
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