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Abstract

We consider one-dimensional interacting Bose—Fermi mixture with equal masses of bosons and
fermions, and with equal and repulsive interactions between Bose-Fermi and Bose-Bose particles.
Such a system can be realized in current experiments with ultracold Bose-Fermi mixtures. We apply
the Bethe ansatz technique to find the exact ground state energy at zero temperature for any value of
interaction strength and density ratio between bosons and fermions. We use it to prove the absence
of the demixing, contrary to prediction of a mean-field approximation. Combining exact solution
with local density approximation in a harmonic trap, we calculate the density profiles and frequen-
cies of collective modes in various limits. In the strongly interacting regime, we predict the appear-
ance of low-lying collective oscillations which correspond to the counterflow of the two species. In
the strongly interacting regime, we use exact wavefunction to calculate the single particle correlation
functions for bosons and fermions at low temperatures under periodic boundary conditions. Fourier
transform of the correlation function is a momentum distribution, which can be measured in time-of-
flight experiments or using Bragg scattering. We derive an analytical formula, which allows to cal-
culate correlation functions at all distances numerically for a polynomial time in the system size. We
investigate numerically two strong singularities of the momentum distribution for fermions at k,and
ks+ 2k;. We show, that in strongly interacting regime correlation functions change dramatically as
temperature changes from 0 to a small temperature ~E;/y < Ej, where Ey= (mhn)*/(2m), n is the
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total density and y = mg/(#*n) > 1 is the Lieb-Liniger parameter. A strong change of the momen-
tum distribution in a small range of temperatures can be used to perform a thermometry at very
small temperatures.

© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Recent developments in cooling and trapping of cold atoms open exciting opportunities
for experimental studies of interacting systems under well controlled conditions. Current
experiments [1,2] can deal not only with single component gases, but with various atomic
mixtures. Using Feshbach [3,4] resonances and/or optical lattices [5,6] one can tune differ-
ent parameters, and drive the systems towards strongly correlated regime. The effect of
correlations is most prominent for low dimensional systems, and recent experimental real-
ization [7,8] of a strongly interacting Tonks—Girardeau (TG) gas of bosons opens new per-
spectives in experimental studies of strongly interacting systems in 1D [9]. In this article,
we investigate Bose—Fermi mixtures in 1D, using exact techniques of the Bethe ansatz.
Some of the results presented here have been reported earlier [10].

Most of the theoretical research on Bose—Fermi mixtures [11] so far has been concen-
trated on higher dimensional systems, and only recently 1D systems started attracting
attention. Several properties of such systems have been investigated so far, including phase
separation [12-14], fermion pairing [15], possibility of charge density wave (CDW) forma-
tion [16] and long-distance behavior of correlation functions [17].

A 1D interacting Bose—Fermi mixture is described by the Hamiltonian

L hz hz L ] .,
H= | dx[—o.¥o.¥,+—23.v¥ow / dx( g, PiWiw,w plwiy g, |
/0 <2mh »Y; b+2m/' s f>+ A 2gbb RIS IR VRIS SR G g
)

Here, ¥, ¥rare the boson and fermion operators; m,, my are the masses; and g, g5y are
Bose-Bose and Bose—Fermi interaction strengths. The model (1) is exactly solvable, when
(18]

mp=my,=m, g, =gy =g>0. (2)

It corresponds to the situation when masses are the same, and Bose-Bose and Bose—Fermi
interaction strengths are the same and positive. Although conditions (2) are somewhat
restrictive, the exactly solvable case is relevant to current experiments (the experimental
situation will be analyzed in detail in Section 7) and can be used to check the validity
of different approximate approaches. Model (1) under conditions (2) has been considered
in the literature before [18], but its properties have not been investigated in detail. After the
appearance of our initial report [10], two additional articles [17,19] used Bethe ansatz to
investigate the same model. We use the exact solution to calculate the ground state energy
and investigate phase separation and collective modes at zero temperature. For strongly
interacting regime, we calculate single particle correlation functions, and consider the
effects of small temperature on correlation functions and density profiles.

The article is organized as follows. In Section 2, we review the Bethe ansatz solution for
Bose—Fermi mixture and compare it to the solution for fermi mixture. In Section 3, we



2392 A. Imambekov, E. Demler | Annals of Physics 321 (2006) 2390-2437

obtain the energy numerically in the thermodynamic limit. We use it to prove the absence
of the demixing under conditions (2), contrary to prediction of a mean-field [12] approx-
imation. In Section 4, we combine exact solution with local density approximation (LDA)
in a harmonic trap, and calculate the density profiles and frequencies of collective modes in
various limits. In the strongly interacting regime, we predict the appearance of low-lying
collective oscillations which correspond to the counterflow of the two species. In Section 5,
we use exact wavefunction in the strongly interacting regime to calculate the single particle
correlation functions for bosons and fermions at zero temperature under periodic bound-
ary conditions. We derive an analytical formula, which allows to calculate correlation
functions at all distances numerically for a polynomial time in system size. In Section 6,
we extend the results of Section 5 for low temperatures. We also calculate the evolution
of the zero temperature density profile at small nonzero temperatures. We show, that in
strongly interacting regime correlation functions change dramatically as temperature is
raised from 0 to a small value. Finally in Section 7, we analyze the experimental situation
and make concluding remarks.

2. Bethe ansatz solution

In this section, we will briefly review the solution [18] of the model (1) under periodic
boundary conditions and compare it to the solution of Yang of the spin-1 interacting ferm-
ions [20,21], for the sake of completeness. More details on Yang’s solution can be found in
[22-26].

In first quantization, hamiltonian (1) can be written as

N A2

0

H:—Zﬁ“rZCZé(xl_xj)) c>0. (3)
i=1 i i<j

Here, we have assumed m = 1/2 and /i = 1, to keep contact with the literature on the sub-

ject. Later in the discussion of the collective modes, we will introduce the mass of atoms,

but it should be clear from the context whether we have assumed m = 1/2 or not. ¢ in (3) is

connected to parameters of (1) via

mg
Wavefunction is supposed to be symmetric with respect to indices i= {1, ..., M}
(bosons) and antisymmetric with respect to i={M + 1,...,N} (fermions). On the first

stage, Yang’s solution does not impose any symmetry constraint on the wavefunction.
On the second stage, periodic boundary conditions are resolved with the help of extra
Bethe ansatz. This idea has been generalized by Sutherland [27] for the case of N-fermion
species. The results presented here can be simply derived from Sutherland’s work.

In Yang’s solution, one assumes the generalized coordinate Bethe wavefunction of the
following form: for 0 < xp, <xgp, <--- <Xxp, <L

v =S [0 Pe St E= YR, (5)

where ki, ... ,ky is a set of unequal numbers, P is an arbitrary permutation from Sy and
[Q, P] is N!x N! matrix. Let us denote the columns of this matrix as N! dimensional
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vector &p. Delta function potential in (3) is equivalent to the following boundary condition
for the derivatives of the wavefunction:

0 0 0 0
— | Pvi0— (——— | P, 0 = 2¢¥P, _, 6
(axj ka> =50 <6xj @xk) =50 “Fy=x (6)
and the continuity condition reads
'{Ix/:xk-%—o = 'le,:xk—o- (7)

Suppose Q and Q' are two permutations, such that O, = O/, for k# {i,i+ 1}, and
0,=0.,,, 0. =0,,,. Similarly, P and P’ are two permutations, such that P, = P, for
k#{i,i+ 1}, and P, = E§+1, P, =P;. To satisfy (6) and (7) for xp, = xg,, independently
of other x, one has to impose two conditions for four coefficients [Q, P], [Q’, P], [Q, P'],
[OQ', P']. Using these two conditions, we can express [Q, P'], [Q', P']via [Q, P], [Q', P]. These

requirements can be simply written as a condition between &p and &Ep:

Ep =Yl Ep. (8)
Y operators are defined as
Aij 1 .
Im )
o= — Py, 9
ij 1 ¥ ;Lij 1 ¥+ ijj 1 ( )
where
ic
)\,," -
"k

and P,, is an operator acting on a vector ¢p which interchanges the elements with indices
Q; and Q,,. Using Y operators one can express any &p via &, where &y is a column for
P =identity. However, arbitrary permutation P can be represented as a combination of
neighboring transpositions by different means. Independence of the final result on a
particular choice of neighboring transpositions can be checked based on the following
Yang-Baxter relations:
abyrab

Vv =1, (10)

YRV = YOYRYL (11)
Operators Y fgf}lm exchange the momentum labels P; and P;;, while 15,-,,-+1 interchange
relative position labels Q, and Q;1;. It is convenient to define combined operator, which
exchanges both labels

ij i

— 12
yrij 1+;Lij ( )

Using this definition, periodic boundary conditions can be written as N matrix eigenvalue
equations
X j X oy XXy X o1& = €94, (13)

The procedure outlined above reduces equations for N! x N! coefficients to N eigenvalue
equations for N! dimensional vector. Imposing some symmetry on &, simplifies the system
further. If &, is antisymmetric with respect to particle permutations (fermions), then
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13,,- = —1 and €%* = 1. The system of equations is the same as for noninteracting fermions,
as expected. If &; is symmetric (bosons), Pij =1 and the system is equivalent to periodic
boundary conditions of Lieb-Liniger model [28].

If one needs to consider two-species system, &, has the symmetry of the corresponding
permutation group representation (Young tableau). Instead of solving Eq. (13), it is con-
venient to consider the similar problem in the conjugate representation. If &, is antisym-
metric with respect to both permutations of the first M indices and the rest N — M
(two-species fermions), eigenstate in conjugate representation ¢ is symmetric with respect
to first M indices and is also symmetric with respect to permutations of the rest N — M
indices. Similarly, in conjugate representation for Bose-Fermi mixture with M bosons
and N — M fermions ¢ should be chosen to be antisymmetric for permutations of M
boson indices and symmetric with respect to permutations of N — M fermion indices.
The periodic boundary conditions are (note the change of the sign in the definition of
X, compared to X;):

XX s Xy X0 X =Ml (14)
1+ P,
’ ijtij

i Tty (15)

Since N!-dimensional vector ¢ has symmetry constraints, it has Cy inequivalent compo-
nents, characterized by the positions y; of M spin-down fermions (or M bosons, respectively).
One can think of the components of the vector ¢ as of the values of the spin wavefunction,
defined on an auxiliary one-dimensional lattice of size N. CY independent values of ¢ cor-
respond to C) values of the wavefunction of M “particles” with coordinates y;, living on
this auxiliary lattice (since ¢ is symmetric for N — M fermion indices, these are considered
to be vacancies). Wavefunction should be symmetric with respect to exchange of two “par-
ticles” for two-species fermions, and antisymmetric for the case of Bose—Fermi mixture.
To preserve the terminology of the two-species fermion solution for the case of Bose—Fer-
mi mixture, later in the text, we will always refer to the wavefunction on an auxiliary lattice
as to ““spin” wavefunction, although it has a direct meaning only for two-species fermion
case.

First, one can solve the problem for M =1 [30]. In this case, there is no difference
between two-species fermions or Bose-Fermi mixture. It can be shown (detailed deriva-
tions are available in Appendix of [26]), that in this case wavefunction in conjugate repre-
sentation is

ok — A+4ic/2

oM =1)=F(A,y) = — 16
o =) =) =TT 2 =750 (16)
where new spectral parameter A satisfies the following equation:
N .
ki—A 2
+ie/2 (17)
i1 k[ —A—IC/2
Periodic boundary conditions simplify to
" ki—A4+1c/2 )
o M m AT gy (18)

Tk —A—ic/2’
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In an auxiliary lattice, the wavefunction of one spin-deviate (or boson) F(4,y) plays the
role similar to one-particle basis function e~ of the original coordinate Bethe ansatz, spec-
tral parameter A being the analog of the momentum k.

In the case when M > 1, Yang suggested that the solution of Egs. (14) and (15) again
has the form of Bethe ansatz in the “spin” subspace: for 1 < y; <y, <--- <y < N

0= > AR [[F(4n.7), (19)

where A, ..., 4;71s a set of unequal numbers, R is an arbitrary permutation from S,,. It
can be shown [20,26], that this ansatz solves (14) and (15) for two-species fermion system,
if
AR)  Ag
AR) ~ Az

AR,- —1ic
AR,' + ic’

i+1

(20)

i+1

similar to bosonic relations of Lieb—Liniger model [28]. Here, R and R’ are two permuta-
tions from S, such that R, = R, for k# {i,i+ 1},and R, = R, |, R; = R;;;. The set of A, k
has to satisfy the following set of equations:

A +IC/2 A +ic B
Hk—Ax—lc/Z HA/;—A i o={l,...,M}, (21)
ik Mk — Ag +ic/2
elk/L: %’ P 1,...7N . »
W=, —5ep { } (22)

For the Bose-Fermi mixture, ¢ has to be antisymmetric for permutations of y; vari-
ables. This problem has actually been solved by Sutherland [27], although he was interest-
ed not in Bose-Fermi mixture, but fermion model with several species. He has shown, that
if one does not specify the symmetry of ¢ for y; variables and applies the generalized
ansatz

¢ = ZGRH (Ar,,ve,) (23)

for 1 < yg <y, < <yg, <N, then columns of M!x M! dimensional matrix [G, R]
are related similar to (8)

Ew = YRkl Ere (24)
Y’ operators are defined as

ylm — Kij + Py o — 1c
LJ 1 _ Kl] ? lj AI . Al .

(25)

For two-species fermions in conjugate representation P, = 1, and it is equivalent to (20),
while for Bose-Fermi mixture in conjugate representation P;, = —1, and the answer is
much more simple:

Y= 1. (26)

Ly
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Therefore, ““spin” part of wavefunction is constructed by total antisymmetrization of
single “spin’” wavefunctions, similar to Slater determinant for fermionic particles:

¢ = det(F(4;,))). (27)
Periodic boundary conditions for Bose-Fermi mixture are:

Mok — A, +ic/2

i k,-—/l,(—ic/2_ 17 OC:{la~..,1M}7 (28)
, Mk — Ag +ic)/2

kL J B -

e ey TR CRURAE (29)

p=1

One can prove that all solutions of (28) and (29) are always real, which is a major simpli-
fication for the analysis of both ground and excited states (see Appendix A).
If one introduces function

0(k) = —2tan"'(k/c), (30)
the system (28) and (29) can be rewritten as

M
kiL =2nl; + ) 0(2k; — 24y), (31)
p=1
N
i, =Y 024, - 2k)). (32)
J=1

I; and I, are integer or half integer quantum numbers (depending on the parity of M and
N), which characterize the state. The ground state corresponds to

I ={-(N—=1)/2,=(N =3)/2,...,(N = 1)/2}. (34)
In the thermodynamic limit, one has to send M, N, L to infinity proportionally. If one

introduces density of k roots p(k) and density of A roots a(A), (28) and (29) simplifies
to two coupled integral equations

B A)dA
2np(k) =1 +/ L)dz, (35)
3 +4A—k)
0
2n(A) = / M (36)
-0 o2 —+ 4(/1 — 60)
Normalization conditions and energy are given by:

0

VL= [ ok (37)
-0
B

ML= / o(A)dA, (38)
—B
o

E/L = / K p(k)dk. (39)
-0
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These equations can be solved numerically and the results will be presented in the next
section. Numerical solution of these equations allows to investigate the possibility of phase
separation, predicted in [12]. Combined with local density approximation, it can be used to
investigate density profiles and collective oscillation modes in the external fields.

3. Numerical solution and analysis of instabilities

In this section, we will solve the system of Egs. (35)—(39) numerically, and obtain the
ground state energy as a function of interaction strength and densities. This solution will
be used to analyze the instability towards demixing [12-14].

Substituting (36) into (35), and performing analytically integration over A, one obtains
an integral equation for function p (k). Similar to Lieb and Liniger [28], it is convenient to
redefine the variables before solving this equation numerically. Let us introduce the fol-
lowing variables 4, x, y, b and a function g(x) according to:

¢ = /IQ7 w = .XQ7 k :yQ7 B= bQ7 p(Qx) = g(X) (40)

In new variables, integral equation depends on two parameters b and /4

! 27 2(b— 2(b— 2
2ra(y) =1 +/ 2Ag(x)dx 2 (tanl (b=9) a1 260 1 20 +Y)
21 2n(A+ (x—y)) A A i
2 N2 2 2
+tan-! 2(b +x)+ A lOg),2+4(b x)2 /12+4(b er)2 . (a1
A 20 =y) TR +4b—y) P +4b+x)
In new variables, (37)—(39) become
cL )
== (42)
Jo1g(x)dx
M fil (tan‘1 —2“’;*) + tan~! —2<b;x))g(x)dx )
N m ! gx)dr |
3 3 o2 dx
E=en) = Ly rede 1 FERIEY (44)
(!, gtx)ar)
Integral equation (41) can be solved numerically as a function of two parameters b and 4,
applying Simpson rule for an integral approximation on a grid x,= —1-+ (i — 1)/n,
i={1,...,2n+1}. This gives a system of 2n+ 1 linecar equations for discrete values

g(x;), which can be solved by standard methods. Using (42)—(44), one can obtain paramet-
rically three functions y(4,b), M/N = a(,b), e(A,b). After that one can numerically in-
verse two of them A(y, «) and b(y,a), and obtain function e(y, o). Resulting function is
shown in Fig. 1. When o =0, system is purely fermionic, and noninteracting. When
o =1, the system is purely bosonic, and numerically obtained energy coincides with the
result of [28]. If 7 = 0, bosons and fermions do not interact, and e(y, ) = (n°/3)(1 — o).

An interesting case, where one can analytically find the dependence of energies on rel-
ative densities is Tonks—Girardeau (TG) regime of strong interactions, y > 1. In (41) one
can neglect the dependence of the kernel on x and y, and g(x) becomes a constant g, which
satisfies an equation
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TG regime

Lieb—Liniger

weak interactions
model

Fig. 1. Energy of the ground state is given by E = e(y, ) i*N>/(2mL?), where y = mg/(7*n), and o = M/N is the
boson fraction. When « = 0, system is purely fermionic, and the energy does not depend on interactions. When
o = 1, the system is purely bosonic, and numerically obtained energy coincides with the result of Lieb and Liniger
[28]. If y = 0, bosons and fermions do not interact, and e(y, ) = (n%/3)(1 — a)>.

8g 2b 2b7
2ng=1+— P ket 4
ng +n/1 (tan 7 +/12+4b2> (45)
while (43) reads
2 2b
a==tan"' =, (46)
T A

After some algebra energy is rewritten as

n? 4 sin mo 12 sin mor 2 1
e(y,oc)z;(l—;(oc—k - )—&—?(a—i— - ))—%—0(?—3) (47)

Using exact solutions, one can analyze demixing instabilities [12—14] for repulsive Bose—
Fermi mixtures. In the absence of external potential Bose—Fermi mixture is stable, if the
compressibility matrix

Oup Oy
an/, ("m/

48
oy oy (48)
onp  Ony

is positively defined. Here, n,, is the boson density, and nyis the fermion density. p, and pr
are the Bose and Fermi chemical potentials, given by:

N? Oe Oe

#b—?(3e(%0‘)—)’a—y+(1 —“)a)» (49)
N? Oe Oe

Hf:F(k(/,oc)—ya—y—oca). (50)
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The fact that the matrix (48) is positively defined can be checked numerically for any
value of o and y, and proves that Bose-Fermi mixture with the same Bose-Fermi and
Bose—Bose interactions is stable with respect to demixing for any values of Bose and Fermi
densities. We note, that the absence of demixing for one particular value of the density has
been checked in the original article by Lai and Yang [18]. Although an exact solution is
available only under conditions (2), small deviations from these should not dramatically
change the energy e(y,«). Therefore, we expect the 1D mixtures to remain stable to demix-
ing in the vicinity of the integrable line (2) for any interaction strength. Recently, this has
been checked numerically in Quantum Monte Carlo studies for a systems of up to 14
atoms [14].

Note, that prediction of Das [12] about demixing at sufficiently strong interactions in
this case is incorrect, since it is based on the mean-field approximation. Indeed, the demix-
ing condition there reads

2
meghyr
X 2‘ . (51)
guh'm
For g,r= gy, and n;, = n, it is equivalent to
2
mg _ T
p===>—=409. 52
)= 2 (52)
Clearly, this condition is incompatible with mean-field approximation, which is valid for

y s L
For weakly interacting case one can use mean-field approximation to calculate energy
and chemical potentials [12,19]:

W n
3t + o

E=L]3 om 3

i

L (53
/s
Hy = &lmy+ 1),y = gny + =

For the strong interactions, up to corrections of order 1/7°,

<l_i(a+sinno¢)_i_g(a_i_sinmc)z)’ (54)
Y T Y T

W 1 sin ot
W= (”f'+nb)2(1+3—y<—16<°‘+ - )+4oc(1+cosnoc))+

1 i i
L <a+s1nmc> <20<a+ smn‘oc) e +cosnoc)>), (55)
Y T T

W 2 1 sin o
= —(ns 1+—(-1 4(x—1)(1
o= 5 (ny 4 my) ( +3y< 6<oc+ - )+ (o0 —1)( +cos1roc)>+

4—)}1—2 <oc + Sinnm> <20 (oc + sinnnoc> + 8(1 — a)(1 + cos noc)) > : (56)

E=1L

ﬁ (ny +m)’
2m 3
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4. Local density approximation and collective modes

So far our arguments have been limited to the case of periodic boundary conditions
without external confinement. This is the situation, when the many-body interacting model
(1) is exactly solvable in the mathematical sense. If one adds an external harmonic poten-
tial, model is not solvable any more. However, if external potential varies slowly enough
(precise conditions for the case of Bose gas have been formulated in [31]), one can safely
use local density approximation (LDA) to analyze the density profiles and collective
modes in a harmonic trap. In the local density approximation, one assumes that in slowly
varying external harmonic trap chemical potential changes according to

maw*x? ma’x’
) + === 15(0), (@) + 5= p(0). (57)

Let us consider the case when external harmonic confining potential oscillator frequen-
cies are the same for bosons and fermions. We note, however, that one can also analyze the
case when w;, # wyin a similar way. We consider

Wp = W = Wy, (58)

since in this case distribution of the relative boson and fermion densities is controlled only
by interactions, and not by external potential, since external potential couples only to total
density. Eq. (57) for ws = wy= w, imply that densities of bosons and fermions in the
region where bosons and fermions coexist are governed by
2.2

0+ 2 4000), ) — ) = g ) e = 0) — 0). (59)
One can show, that these equations cannot be simultaneously satisfied for the whole cloud,
and the mixture phase separates in an external potential given by (58). For both strong and
weak interactions bosons and fermions coexist in the central part, but the outer sections
consist of Fermi gas only. In the weakly interacting limit, this can be interpreted as an
effect of the Fermi pressure [2]: while bosons can condense to the center of the trap, Pauli
principle pushes fermions apart. As interactions get stronger, the relative distribution of
bosons and fermions changes, and Figs. 2 and 3 contrast the limits of strong and weak

bosons

e

fermions

X¢

-1 -0.5 0.5 1

Fig. 2. Densities of Bose and Fermi gases in weakly interacting regime at zero temperature. Lieb-Liniger
parameter in the center of a trap is yo = 0.18, overall number of bosons equals number of fermions. Total density
in the center of a trap is taken to be 1.
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bosons

/

fermions

Ve

-1 -0.5 0.5 1 X¢

Fig. 3. Densities of Bose and Fermi gases in strongly interacting regime at zero temperature. Lieb—Liniger
parameter in the center of a trap is yo > 1, overall number of bosons equals number of fermions. Total density in
the center of the trap is taken to be 1.

interactions. For strong interactions, the fermi density shows strong non-monotonous
behavior.
When interactions are small Egs. (53) and (59) imply that in the region of coexistence
densities are given by:
2

n)(x) = n)(0) <1 —x—z), n?(x) = n‘(}(O)7 for x* < x7. (60)

Xp

Outside of the region of coexistence, density of fermions decays as the square root of
inverse parabola:

n}(0) x?
n)(x) =0, n»‘}(x) = fixz 1 _x_%’ for x> < x* < x?-. (61)
1-% :
¥
Parameters x, and x,, are given by:
2gn%(0 himn®(0))?
xi _ gnb( ) 2= 2 +( f( )) ) (62)

mwy TSP (ma)’
A typical graph of density distribution for weakly interacting case is shown is shown in
Fig. 2.
If effective 7, is much bigger than 1 in the center of a harmonic trap, the total density
n°(x) follows Tonks—Girardeau density profile:
)
n(x) = n°(0), /1 —=. (63)

2
Xf

From Egs. (47) and (59) distribution of a(x) is controlled by the following equation:
n’(x)* (1 4 cos(ma(x))) = n°(0)’ (1 + cos(na(0))). (64)

Since 1 + cos(ma(x)) is bound and n°(x) goes to 0 near the edges of the cloud, this equation
cannot be satisfied for all x> < x}, which means that only fermions will be present at the
edges of the cloud, similar to weakly interacting regime. Density distribution for equal
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number of bosons and fermions is shown in Fig. 3. The form of the profile is universal, as
long as y9 > 1 and the temperature is zero. Evolution of this profile for nonzero temper-
atures is shown in Fig. 14.

Recent experiments [32] demonstrated that collective oscillations of 1D gas provide use-
ful information about interactions in the system. Here, we will numerically investigate col-
lective modes of the system, by solving hydrodynamic equations of motion. These
equations have to be solved with proper boundary conditions at the edge of the bosonic
and fermionic clouds. Within the region of coexistence of bosons and fermions, such oscil-
lations can be described by four hydrodynamic equations [36]

0 0
551117 += o (npvp) =0, (65)
0 0
m@t ovp + — o (,ub + Vexes + mvb) 0, (66)
0 0
a 5}1] +a (I’lfo) 0, (67)
0
ma v+ (i + Veus +4mi?) =o0. (68)

In certain cases, analytical solutions of hydrodynamic equations are available [35,36]
and provide the frequencies of collective modes. When an analytic solution is not avail-
able, the “sum rule” approach has been used [35-38] to obtain an upper bound for the
frequencies of collective excitations. The disadvantage of the latter approach is an ambi-
guity in the choice of multipole operator which excites a particular mode, especially for
multicomponent systems [38]. Here, we develop an efficient numerical procedure for solv-
ing hydrodynamical equations in 1D, which does not involve additional “sum rule”

approximation.

While looking at low amplitude oscillations, it is sufficient to substitute
ny(x,1) = n)(x) + Sny(x)e"”, (69)
1y (x, 1)y (x, ) = 1 () 90p (x)e ) o, (70)
ny(x,1) = np(x) + ony (x)e, (71)
np(x,t)vs(x,1) —nf(x 1)dvy(x)e, (72)
fy + Vexp +imv; = const 1+ Sy, (x)e'” = const 1 + (5nb () % +ony(x) Z'Zb) el (73)

b b

L2 ot _ Oy O o

1y + Vet +3mvy = const2 + dp,(x)e'” = const2 + ( ony(x) ===+ dny(x) = )&, (74)

‘ h Y al’lb X 6nf

Here, n)(x) and n?(x) are densities obtained within local density approximation.

Linearized system of hydrodynamic equations can be written as:

o, Oy

ool (7 o[22 o]

For numerical solutions and boundary conditions it is more convenient to work with inde-
pendent functions du(x), dps(x). System of equations becomes
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oy Oy
0 ny  ny 2x) 0 )
0] [E B T 0 ) Fanw]), )
oy (x) % % 0 ny(x) oy (x)

Outside of the region of coexistence of bosons and fermions, ouy*" satisfies the following
equation:
a'uqut
e Wj,-v [nf () Vo t] (77)

All modes can be classified by their parity with respect to x — —x substitution, and will
be investigated by parity-dependent numerical procedure. We will consider equations only
in the positive half of the cloud. For even modes, one may require two additional
conditions:

Vou,(x=0)=0, Vou,(x=0)=0. (78)

For odd modes, analogous conditions are
oup(x=0) =0, ouy(x=0)=0. (79)
Boundary conditions for fermions at the edge of the bosonic cloud, x;, correspond to

the continuity of vyand du Continuity of the velocity can be obtained by integrating con-
tinuity Eq. (67) in the vicinity of x,. From Eq. (68) it is equivalent to

Vé,u?“t(x =xp+0) = Vou,(x =x, —0). (80)
The second condition can be obtained by integrating (68) in the vicinity of x;:
O™ (x = xp +0) = opp(x = x, — 0). (81)
One may see, that these conditions do not imply that 6n{"(x = x; + 0) = dns(x = x, — 0).
This can be easily illustrated by the dipole mode, where 0vs(x) = 6vp(x) = const,
ony = Vnﬁl(x), which is clearly discontinuous for profiles shown in Figs. 2 and 3.
Two additional conditions come from the absence of the bosonic(fermionic) flow at
xp(Xp):
ng(x)vb(x”x—»xb—() = 07 (82)
np(x)vr (0)], ., -0 = O- (83)
Outside of the region of coexistence, the chemical potential and density of fermions are
given by 9" ~ (n}’.“‘)z, ngtt ~ /1= (x/x,~)2, where x/is the fermionic cloud size. In dimen-
sionless variables u = x/x;, Eq. (77) can be written as

> 925 ,uo.m 6 ‘uo»ut
—_Z25 out __ 1— 2 f _ f . 84
For this equation, there exists a general nonzero solution which satisfies (83)
o™ = cos <2 arccos i). (85)
. o X

Substituting this into (80) and (81), one has to solve eigenmode equations numerically
for x < xp, with five boundary conditions (80)—(82) and (78) or (79) depending on the par-
ity. These boundary conditions are compatible, only if w is an eigenfrequency. Using four
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of these boundary conditions, the system of two second order differential equations can be
solved numerically for any w. To find a numerical solution, we choose to leave out con-
dition (82), and check later if it is satisfied to identify the eigenfrequencies.

The most precise way to check (82) numerically is based on equations of motion. For
even modes, v,(0) = 0, and integrating (65) from 0 till x;, one obtains

/Ox}] onp(x)dx = fi(nb(x =xp)0p(x = xp) — np(x = 0)vp(x = 0)) = 0. (86)

For odd modes, from Eq. (66) v,(0) =iVou,(x = 0)/(mw), and integrating (65) from 0 till
Xp, one obtains

/OXb ony(x)dx = —%(nb(x = xp)Up(x = x3) — np(x = 0)v(x = 0))

_ np(x = O)Zofz,ub(x =0) . (87)

When a numerical solution for du;(x), du(x) is available, conditions (86) or (87) can be
checked numerically using

) {3 omy () — 22 0wy () }
no(x) = (e ww

Ony Ony ony Ong

(88)

First, we apply this numerical procedure for weakly interacting regime, and the fre-
quencies of collective modes are shown in Fig. 4. When y, — 0, Bose and Fermi clouds
do not interact, and collective modes coincide with purely bosonic or fermionic modes,
with frequencies [36] o' = nwy and @’ = wy\/n(n+ 1)/2. Modes which correspond to
w/wy =1, V/3, 2, /6 are shown in Fig. 4. As interactions get stronger, Bose and Fermi
clouds get coupled, and all the modes except for Kohn dipole mode change their frequen-
cy. For Kohn dipole mode, Bose and Fermi density fluctuations are given by
ony; = Vnj(x), on, = Vnj(x). In Figs. 5-7, we show density fluctuations for three other
modes in the region of coexistence for a particular choice of parameters y, = 0.394,
xs/xr= 0.6 and equal total number of bosons and fermions. Modes for which the frequen-

"in phase" breathing mode

"out of phase" breathing mode
1.5 -~
1.25

"in phase" dipole mode

=
075 out of phase" dipole mode

0.2 0.4 0.6 0.8 1 1.2%

Fig. 4. Frequencies of collective excitations in mean-field regime versus Lieb-Liniger parameter in the center of a
trap yo. Total number of bosons equals the number of fermions. Even in mean-field regime frequency of “out of
phase” oscillations gets smaller as interactions get stronger.
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arb. units

0.5 _ Lt -

-1.5 Sn
b

Fig. 5. Fermi and Bose density fluctuations of “out of phase” dipole mode (w/wg)* = 0.757 for 7o = 0.394,
xp/xy=0.6. Total number of bosons equals the number of fermions. Outside of the region of coexistence of Bose

and Fermi clouds, én/(x) ~ ——L— cos( arccos).
’ V1=(x/x,)? @ X/

arb. units
5 Snb
X
0.1 —0-2— 073 X,
?Snf
-5
-10

Fig. 6. Fermi and Bose density fluctuations of “out of phase” breathing mode (w/wy)* = 2.51 for 7o = 0.394,
xp/xp=0.6. Total number of bosons equals the number of fermions. Outside of the region of coexistence of Bose

and Fermi clouds, én/(x) ~ ——L— cos(-2 arccosL).
g 1—(x/x;) wy Xy

arb. units
0.6
5nb
0.4
0.2
X
0.1 0.2 0 0.4 0.5 067)(f
-0.2 ==
_____ - Snf

Fig. 7. Fermi and Bose density fluctuations of “in phase” breathing mode (w/w)* = 3.585 for 7o = 0.394,
xp/xp=10.6. Total number of bosons equals the number of fermions. Outside of the region of coexistence of Bose

and Fermi clouds, on,(x) ~ ﬁ cos(2 arccos i/)

—(x/xs)? 0 X,
cy goes down due to coupling between Bose and Fermi clouds correspond to the collective
excitations with opposite signs in density fluctuations of Bose and Fermi clouds. In TG
regime these modes continuously transform into “out of phase” low-lying modes which
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do not change the total density. At weak interactions lowest mode is an “out of phase”
dipole excitation, after that comes “in phase” Kohn dipole mode (center of mass
oscillation), “out of phase” even mode, “in phase” even mode, second “out of phase”
odd mode.

Let us consider Tonks—Girardeau regime, when energy is well approximated by (47).
Since dependence of the energy on relative boson fraction o(x) is 1/y times smaller than
dependence on the total density, the energetic penalty for changing relative density of
bosons and fermions is small. Thus there should be low-lying modes, which correspond
to an oscillation of the relative density between bosons and fermions, while total density
is kept fixed up to 1/y corrections. In addition to these low-lying “out of phase” oscilla-
tions of Bose and Fermi clouds, there will be ““in phase” density modes, which correspond
to oscillations of the total density. Since up to 1/y corrections dependence of the energy on
total density in TG regime is the same as for free noninteracting fermions, energy of these
excitations is given by Stringari and Menotti [36] w = nw,, up to small corrections of the
order of 1/y.

When y — oo, relative compressibility goes to zero as 1/y, so from Eq. (76) energy of
low-lying modes goes to zero as 1/,/7,, where y, is a Lieb-Liniger parameter in the
center of a trap. Performing a numerical procedure outlined above, one can obtain
the dependence of the frequencies of low-lying “out of phase” modes on relative den-
sity of bosons and fermions. Results of these calculations are shown in Fig. 8, and are
parameterized by the overall boson fraction and y,. It turns out that the lowest lying
mode is odd, and after that the parity of collective excitations alternates signs. For
“out of phase” modes signs of density fluctuations and velocities of boson and fermion
clouds are opposite. One can easily understand, why does the energy grow, as the
boson fraction is decreased: the size of the Bose cloud shrinks, and the “wavevector”
of the corresponding excitation increases, leading to an increase of the frequency. One
should note that for very small overall boson fraction y, > 1 is not enough to separate
energy scales for “out of phase” and ‘“in phase” oscillations, and also conditions for
applicability of LDA become more stringent.

10

0.2 0.4 0.6 0.8 1 Qo

Fig. 8. Dependence of the frequency of lowest lying “out of phase’” modes for 7, > 1 on overall boson fraction a,
where 7, is the Lieb-Lininger parameter in the center of a trap. Characteristic scale of “out of phase” oscillations
in strongly interacting regime is wy/,/7y < wo. Total density “in phase” modes w, = nwy have much higher
frequency for yo>> 1 and are not shown here.
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5. Zero-temperature correlation Functions in Tonks—Girardeau regime

Calculation of the collective modes in the previous section relies only on the dependence
of the energy e(y,®) on the densities of bosons and fermions. Collective modes can be used
in experiments [32,33] to check to some extent quantitatively the equation of the state of
the system [34]. However, only some part of the information about the ground state prop-
erties is encoded in the energy: indeed, the energy and collective modes of the strongly
interacting Lieb—Liniger gas are the same as for the free fermions [29,28], while the corre-
lation functions are dramatically different [39]. Single particle correlation functions can be
measured experimentally using Bragg spectroscopy [43] or time of flight measurements [8].
Generally, it is much harder to calculate the correlation functions compared to the energy
from Bethe ansatz solution. Most of the progress in this direction has been achieved for
the case of strong interactions [51]. Recently, there have been some reports [40], where
pseudofermionization method has been used to calculate correlation functions for spin-
fermion Hubbard model for the intermediate interaction strengths. In this section, we will
analyze the correlation functions in the regime of strong interactions, using the factoriza-
tion of orbital and ““spin” degrees of freedom similar to the case of spin-% fermions [41,42].
Our calculations in this section are performed for the periodic boundary conditions, when
the many body problem is strictly solvable in the mathematical sense. We will obtain a rep-
resentation of correlation functions through the determinants of some matrices, with the
size of these matrices scaling linearly with the number of the particles. These determinants
can be easily evaluated numerically, and provide a straightforward way to study correla-
tion functions quantitatively at all distance scales. This determinant representation can be
generalized to nonzero temperatures, and results of this generalization will be presented in
the next section.

5.1. Factorization of “spin”’ and orbital degrees of freedom

The regime of strong interactions can be investigated in by neglecting k; compared to
A,, ¢ in (28) and (29). Simplified system for spectral parameters is:

—A, +ic/2\"
, L — Ay +ic/2
ik;L B P —
e gfﬂ—ic/z’ j={1,...,N}. (90)

We see that “spin” part is decoupled from orbital degrees in the Bethe equations. Eq. (89)
for ground state “spin” rapidities can be resolved as

_AOf + 10/2 _ ei2mc1/N

A ,oa={1,..., M}, (91)

where k, is a set of integer “spin”” wave vectors. Since the details of calculations depend on
the parity of M and N, from now on we will assume that N is even, and M is odd. Ground
state corresponds to A, occupying “Fermi sea” (—A, A), so from (91) ground state ““spin”
wave vectors are

Ki={-M-1)/2+N/2,...,N/2,....(M —1)/2+ N/2}. (92)
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This choice of “spin” wave vectors will be justified later, in Section 6. From Eq. (90) it
follows that ground state orbital wave vectors are:

ki={-=(N-1)/L,...,—n/L,n/L,...,n(N —1)/L}. (93)
Eq. (16) for F(A,y) simplifies to
—A,+ic/2\"
FlA, p)=|—2%_""7~ — el i—1) 4
o) = (GEes) = (94)

and “spin” wavefunction (27) can be represented as a Slater determinant of M single
particle plane waves in “spin” space:

@ = e W2 " det [ei%"’yf} : (95)

Orbital part of the wavefunction also simplifies into a Slater determinant, since all Yang
matrices Y ﬁf in (9) are equal to —1.

Ground state is written as a product of two Slater determinants, describing orbital and
“spin” degrees of freedom

P(xi,...,xy) ~ det[e"] det {ei%”"y/]. (96)
Here, x|, ..., x,, are coordinates of bosons, X441, ..., Xy are coordinates of fermions,
and y; is the order in which the particle x; appears, if the set xy, - - -, x5 is ordered. In other
words, if
ngQléxng"'ngNéLa (97)
then {y,...,»y} ={07'(1),....0"'(N)}. (98)
First determinant depends on positions of both bosons and fermions, while the second deter-
minant depends only on relative positions of bosons yy, ...,y Normalization prefactor

will be determined later to give a correct value of the density. One can confirm that symmetry
properties of wavefunction are as required: transposition of two fermions affects only first
determinant, therefore wavefunction acquires —1 sign. Transposition of two bosons changes
signs of both first and second determinants, so wavefunction does not change.

Similar factorization of wavefunction into spin and orbital degrees of freedom has been
observed in [42] for one-dimensional spin—% Hubbard model. In that case, spin wavefunc-
tion is a ground state of spin-{ antiferromagnetic Heisenberg model, and is much more
complicated compared to (95).

It might seem that “spin” degrees are now independent of orbital degrees, but this is not
true, since it is the relative position of orbital degrees which determines “‘spin” coordi-
nates. If one wants to calculate, say, Bose-Bose correlation function, one has to fix posi-
tion of x; and x| and integrate ¥ (x;,x,, . .. ,xN)'PT(x/l,xz, ...,Xy) OVEr Xy, ..., Xy. However,
there are CY inequivalent spin distributions, and integration in each subspace (97) has to
be performed separately. For spin-] fermions on a lattice in [42] this integration becomes a
summation, and it has been done numerically for up to 32 cites. This summation requires
computational resources which scale as an exponential of the number of particles. Here,
we will report a method to perform integrations for a polynomial time, which will allow
to go for larger system sizes (easily up to 100 on a desktop PC) and study correlation func-
tions much more accurately.
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5.2. Bose—Bose correlation function

Let us describe a procedure to calculate Bose-Bose correlation functions of the model.
First, we will use translational symmetry of the model to fix the positions of the first par-
ticle at points x; = 0, x| = £. Instead of writing wavefunction as a function of positions of
M bosons and N — M fermions, let us introduce a set of N ordered variables

Z={0<z1<z< - <zy< L} (99)

which describe positions of the atoms, without specification of bosonic or fermionic nature
of the particle. If any two particles exchange their positions, they are described by the same
set (99). In addition to (99) one has to introduce a permutation ¥ which specifies positions
of bosons: yy, ...,y are boson positions, and yy41, ... ,yy are fermion positions in an
auxiliary lattice: z, = x;. In this new parameterization normalized wavefunction is(normal-
ization will be derived later in this subsection)

A 1 ikiz; i%—’,‘x,y- y
W(z1,20, .. 2ni ) = NI det[e’#] det [e }( 1. (100)
Here and later, we denote a sign factor
(-1)"= ] sSien(;-»). (101)

N>i>j>1

One should note, that second determinant has a size M x M, and depends only on
Y1, - - .,y Dependence of wavefunction on ys41, ..., yy comes only through sign prefac-
tor. For each particular set of yy, ...,y there are (N — M)! different configurations of
Ym—+1» - - - >V, for which wavefunction only changes its sign depending on relative posi-

tions OfyM+1, <. 5 VN-
To calculate correlation function, we should be able to calculate a product of wavefunc-
tions at the points

x1=0, x}]=¢ Xy=x...,xy =xy. (102)
Let Z be is an ordered set for x; variables
Z={z1=0<z < - <zy <L} (103)

If we denote an ordered set for x} variables as Z’, then using (102) one can conclude that Z’
is obtained from Z by removing z; = 0, inserting an extra coordinate z/, = £, and shifting
variables which are to the left of it:

! / / / / /
7 ={0<zi=0<z=53<...<2; =2, <2, =¢< 2, =z < ...

<zy=zy < L} (104)

“Spin” states y and y’ are connected by:

ylzl’yllzd’
Vi=y,—1, forl<y, <d, (105)
Yi=y;, ford<y,.
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Correlation function can be written as

p"(0,¢) = M/ P(0,x2,...,x8) P (E x2,...,xy)dxa, . .., dxy
— ZN: Z / ( l)y/ det[eik,zj]
s (N — M T )INT

x det [ei%[""yf} det[e %] det [ ‘TF"”’}Ddzz, oo, dzy, (106)

where integration over dz; and summation over y are done subject to constraints (104) and
(105). One can observe now, that limits of integration in (104) depend only on ¢ and d.
These limits are independent of y, and function under integral factorizes into z-dependent
and y-dependent parts. Similarly, summation over y does not depend on precise values of ¢
or z;, but the dependence comes through d. Therefore, density matrix can be written as

1 N
b _ b
P08 = i = i 2 /(@95 @), (107)
where I(d,¢) is a an integral
1(d,¢) = / det[e’™] detfe *“]dz, - - - dzy (108)

subject to constraints (104), and Sb(d) is an expectation value of a translation operator
over a symmetrized Slater determinant wavefunction

/

— 128y, =5 [ 1y (=1
;det{e 7] det [ F] (~1)(~1) (109)

Normalization can be determined using the following argument: if £ =0, then only con-
tribution from d=1 does not vanish. One can calculate I(1,0)=NL""' and
SP(1)y=(N — M)(M)INM~! | since these follow from normalizations of orbital and “spin”
wavefunctions. Since we want p”(0,0) = M/L, we can fix the normalization prefactor in
(100).

5.2.1. Calculation of a many-body integral 1(d, &)

Let’s describe the calculation of an integral /(d, £). From now on, we will assume that
L = 1. First, since k; are equidistant wave vectors (93), one can use Vandermonde formula
to simplify the determinants:

det[eiklz,-] _ efin(Nfl)(zl+w+z,\r) det[ iZn(lfl)z,-] — efin(Nfl)(zlerJer)
% H(eianjz _ 12nz,|) | = {1 }7
Jj1<j2
det[e—ik]z}] — ei n(N—1)( z etz det[ —i2n(l— 1) ] ein(N*l)(Z,l+"'+Z,/x'> (110)
« H(Cﬂzmﬂ _ 712nz ) ] = {1 }
jl<j2

Using this representation, the fact that z; = 0 and (104), one can rewrite these N x N deter-
minants as a product of (N — 1) x (N — 1) determinant and a prefactor:
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N—-1

det[eik,zj»} — e imN=D)(t++ty1) det[eizn(l—l)t,] H(eiZnt, _ 1)7 ] = {17 ...,N— 1}7
i=1

det[eik’if} _ (_1 dflein(N—l)(cj+z1+---+tN,1) det[e—iZn(l—l)t/]

N-1

x [Je™ —e™), 1={1,....N -1}, (111)

where we introduced N — 1 variables of integration ¢;, so that

ti=zi. (112)
Factor (—1)?"! arises since Z, = ¢, and to write (111), we changed signs of d — 1 terms in
(110). Integration subspace is defined as

0<t < <t SES< <<y < 1 (113)
One can extend this subspace as follows:

T={0<t,....,001 <EL tyy...,ty1 < 1} (114)

Indeed, expression under integral does not change, when #; <¢ and ¢; < ¢ change their
positions (similarly for #;>¢ and ;> ¢), so this extension just adds prefactor
1/((d — DN — d))). Finally, we have

N-1

](d é) _ (_l)d leln (N~ / det i2n(1-1) t,] det —i2n(l-1) t1 H 2nt;
= -
x (e72m e"z"g)dtl iy (115)

At this point, we use a trick from [39], where Toeplitz determinant representation for
strongly interacting Bose gas was derived. Let us expand determinants under integrals
using permutation formula for determinants:

_ 1) Teinv-1)¢ B o
100 = v—ai | X X 0D

iCT PCSy_1 P'CSy_1 (1 16)

N-1
« H eizn((Pi*1>*(Pl/-*l))t[(eiznt/‘ _ 1)(e—iZnt,» _ e—ich'j)dtl codty
i=1

From summation over P, P’, we can go to summation over P, Q, where P’ = QP. Also,
one can remove constraints (114) by introducing two functions

FUED = (e —1)(e™?™ —e ™) fort< ¢, 0 otherwise, (117)
FHE) = (€7 —1)(e™™ —e ™) fort>¢, 0 otherwise.

1(d, &) becomes

(d 1)1 IRN Z Z (_1)Q<1_[/0 elZn(P Op,) t,f (5 t) >

PCSx 1 OCSn-1

(H PO 22 1 ) (118)
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If /1 (&, 1) and /2 (&, 1) were the same, as in [39], expression being summed would not depend
on P, and summation over Q would give a determinant, with the same elements along
diagonals(Toeplitz determinant). In our case, for each given P the expression is P-depen-
dent, and the result does not have the Toeplitz form. However, introducing additional
“phase” variable, one can recast the expression as an integral of some Toeplitz determi-
nant. Desired expression has the form

1d,) = (~1)/ e 1:

do i, o171 [ ot )i (i
<[ Speen @(—n [T [ e m@r e+ feae ).
(119)

where ¢; is a dummy variable of integration. Integration over ¢ is analogous to projection
of BCS to a state with a fixed number of particles. After integration over ¢ nonzero terms
appear, if in the expansion of the product of brackets for some d — 1 brackets /' is chosen
instead of fz. If this choice is made at brackets with numbers Py, ..., P, ; then contribu-
tion from such a choice exactly corresponds to a term in (118). However, each choice of
brackets corresponds to (N — d)!(d — 1)! different permutations, and this cancels the same
combinatoric factor in the denominator of (118). Summation over Q is nothing but a
determinant, and finally, we have

o) ci(o) e enoa(o)

. . (™do . _ ... CN_
I(d,é):(—l)dileln(]v_l)‘:/o %e_ma’_l)wdet c l(q)) CO(QD) CN 3(@) ,

c-v-2)(@) c—v-3(@) ... colo)
(120)

4@:Aw%www+ﬁ@mm (121)

Expression in (120) without an integral over ¢ is a generating function of I(d, &) with the
weights el(»"™~1 and integration over ¢ extracts a particular term out of this generating
function.

What we achieved in this section is to represent a complicated N — 1 fold integral
as an integral over one phase variable, which can be done numerically in a polynomial
time over N.

5.2.2. Calculation of S” (d)

Calculation of S”(d) is very similar in spirit to calculation of the previous subsection.
Integration over x; corresponds to summation over y;, and & corresponds to d. Final result
is a determinant of some matrix. Due to the shift operator (105) this determinant does not
have a Toeplitz form, but it is not important for a numerical evaluation.

We need to calculate

/

S'(d) =Y det [e—y] det [e*ii—’r"ﬁy?} (—1)'(=1)", (122)
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where «; is a set (92). Definition of §’ according to (105) can be rewritten as

y1:17 yi:d,

i —d)—1 123
y;:yi+SIgn(y+d), i={2,...,N}, (123)
where
Si =1, >0,
ien(x) g (124)
Sign(x) = -1, x<0.
Sign prefactor in (122) can be rewritten as
N
(=1 (=1)" = [ [ Sign(v; —»)) [ [ Sien(] - ) = | [ Sign(v; -
i>j i>j i=2
= (=) (125)

We see, that (122) depends only on yy, ...,y so from now on, we will consider a sum-
mation in yy, ...,y variables. Summation over y/11, - - .,y gives a trivial combinatorial
prefactor (N — M)! Furthermore, we can extend possible values of yi, ...,y to y;=y;,
i #j, since for such configurations first determinant in (122) is 0, and they do not change
the value of S”(d):

y= {1 Y2, V35V N} (126)

Let us use the fact that «; is a set of equidistant numbers (92), and rewrite determinants
using Vandermonde formula, similar to (110):

det [ei%w,} — B (M=1)/24N/2) (14+4+31) ot [e -1y, }

— o (M=1)/24N/2) (1 4+3) H (ewyﬂ _ elwyﬂ) [={1,....M},
jl<j2

det {e—i%my’/} — o FH-(M=D)/2eN/2)(d+4+7) Jet {ei%(/—l)y;}
= gD/ TT (e%‘;z - ei%"yil), 1={1,...,M}.
J1<j2
(127)

For simplicity of notations later, let us introduce #; = yi1, £; =y, i=1{1,... .M — 1}.
Analogously to (111), we extract a determinant of (M — 1)><(M — 1) matrix out of
Vandermonde product:

det |:ei%x,-yj:| — R (M=1)/24N/2) (1411 +1p1 1)
M—

xdet['—f e }H(Hf—ei?v”), I={1,....M 1},

det [efi%“my’,} — o B M=)/ 24N ) (d 41,41, )

(128)

S

-1

x det [e_i%<l_l)’;] (e*i%" — efi%d), I={l,...,.M —1}.

I

I
_
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At this point, we need to represent the subspace of summation (126) as a sum over M
inequivalent partitions, similar to representation (107):

Y (N = M) (M —1)!
S’(d) = ( sh(d,r), (129)
; (r =DM —r)!
where S”(d,r) is a result of summation in the T, subspace:
T,={l<t,....t,1 <d<t,....,tyy) <N} (130)

Note, that S” (d,r) =0 for r > d, since in this case two of 7y, ... ,7._; should coincide, and
wavefunction becomes 0. Calculation of S”(d, r) is very similar to calculation of I(&,d). Let
us expand the determinants (128) using permutationS‘

Sb(d,l”) ( l)d 1617¢‘( (M=1)/24+N/2)(r Z Z

PCSy-1 P'CSyy

(Ze ((P=1)ti—(Pi=1)(5-1)) (e 2y ei%) (e—i%(t,—1) _ e-i%d))
! ( i 2 2: 2 2 2
% S (PI=D=(P—1))t (eiA—’ftf _ eiﬁ) (e—iﬁ’,‘t,- _ e—ijT}‘d) (131)
ti=d+1

1

”

ﬂ,’:]

pales
From summation over P, P’, we can go to summation over P, Q, where P’ = QP. Also,
one can analytically perform summation over ¢; in each of the brackets, since it is a com-
bination of geometrical progressions (this is analogous to integration over #; variables in
previous subsection):

r—1
Sb(d, I") — (_1)6’*]eizyT’,‘(—(Mfl)/Zﬁ»N/Z)(rfd) Z Z (_I)Q Hcl(dy QP,’PI
i=1

PCSy—1 OCSy-1

M-1
X (d,0p, P, 132
Py
where
i=d .
Md, j, 1) = - iU (ei;v—i‘d _ ei%) (e—i%(t—l) _ e—iz,v—’,‘d)7
t=1

(133)

2m(; i j2n 2 _i2n
d J, E el,\ lt(elA,d _ elN) (e i _ e 1Nd)

t=d+1

are independent of r. At this point, we can use the “phase” variable integration trick to get
rid of summation over P, and then represent summation over Q as a determinant:

2n
$'(d.r) = (= DI = (1) IeFC vz [T b
0

27t
c(y, 1,1) c(y,2,1) c(y,M—1,1)
« det c(¥,1,2) c(¥,2,2) c(y,M —1,2) ’
c, I, M—1) c(y,2,M—-1) ... c(y,M—1,M—-1)

(134)
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where

c(Y,j.1) =e"c(d.j, 1) +(d.j, ]). (135)
We can analytically perform summation over r in (129), since the determinant and ¢ (1,/,/)
are independent of r:

!)!S”(d P = (N = M)I(M _1)!(_1):1’—1efi%v”(f(Mfl)/2+N/2)(d71)

el (E(—(M—1)/24N/2) ) (r— 1))

=
v, 1,1) c(y,2,1) ... ely,M—1,1)
,1,2) c(¥,2,2) ... cly,M—1,2)

W1, M—1) c(W,2,M—1) ... c(y,M—1,M—1)

(136)
Expansion of the determinant (136) in a series over ey has terms up to e!™~D¥:
M—1 )
det(y) = > fre™. (137)
n=0
Summation over r and integration over ¥ lead to
2n dlp
B(—(M—1)/24+N/2) =) (r—1)
/0 o ;e det(y)
Y RS SS e )/24N/2)
_ (= (M=1)/24N/2)—) (r—D)+ign _ —(M=1)/24N/2)n
_/0 P > Zlﬁe Zfe
2n
= det ﬁ(f(Mfl)/2+N/2) . (138)
Finally, if we introduce a notation g = 2rn(—(M — 1)/2 + N/2)/N,
Sh(d) _ (N _ M)'(M _ 1>!(_1)dflefi%"(—(Mfl)/2+N/2)(d—l)
C(lﬂo,l,l) 0(1/107271) C(lpmM_lal)
1,2 2,2 M—1,2
x det C(Wm ) ) C(‘//Oa ’ ) c(‘ﬁm ’ ) (139)
c(Wo, 1, M —1) c(p,2,M—1) ... c(Yy,M—1,M—1)

5.3. Fermi—Fermi correlation function

Calculation of fermionic correlation function closely reminds the calculation of Bose—
Bose correlation function, so we will be sufficiently sketchy in our derivation. First, one
splits integration into integration over orbital coordinates z; from the set
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Z={0<z1 <z < - <zy <L} (140)

and summation over “‘spin’ variables. Integration over orbital variables is absolutely iden-
tical to the Bose—Bose case, the difference comes only from “spin” part S (d):

0.8 = (N_M)/ W (x1,x2,- -, 0) P (x1,x, ., E)dxy .y
. v _1>y/ ikiz; 2
- ; 2 / ( Dy detler] det [e 'y/}

=1 j

x det[e det —ipar >

N
1(d, &)S' (d 141
T (V- M—l IMILN N ; ¢ (141)
where I(d, ) is given by (120), and
d) =" det [ew} det [e [ ~igpy } (—1)(=1)". (142)
y
In (142), y’ and y are related by
, , Sign(y, —d)—1 .
=1, y,=d, yi:yi+w+, i={1,...,N—1}. (143)

Similar to (125) sign prefactor can be rewritten as
N=1
—1y =] sien(y;—y) [ [ Sien(y, - ) = (=)' [ Sign(d —y,) = (-1)*"".
i>j i>j j=1
(144)
We see, that (142) depends only on yy, ...,y so from now on, we will consider a sum-
mation in yy, ...,y variables. Summation over y,i1, ...,y y_ gives a trivial combinato-
rial prefactor (N — M — 1)!. Furthermore, we can extend possible values of yq, ...,y to

Yi=Y;, i #], since for such configurations first determinant in (142) is 0, and they do not
change the value of §'(d):

y={2<y. > SN} (145)

We can to represent the subspace of summation (145) as a sum of M + 1 inequivalent
partitions, similar to representation (129)

M+1
e (N-M-DIM)
§'(d) ; DM —r (.7), (146)
where §/(d,r) is a result of summation in the 7, subspace:

T,={2<t,....t, 1 Ld <t,,...,tyy <N} (147)

Product of two determinants in (142) is rewritten as
det [ei%fx,yj} det [efig\_vxiy;} — - (M=1)/24N/2)(r-1) et [elvu 1y, }

x det {e-ii—”’-”ﬂ, [={1,....M}. (148)
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We can expand the determinants (148) using permutations:

Sf(d, F) = (71)d—lei%v_’,‘(—(M—l)/ZJrN/Z)(r—l) Z Z (-

PCSM P/CSM

x”<ze - >H<Ze >> (149)

i=1 i=r ti=d+1

From summation over P, P’, we can go to summation over P, Q, where P’ = QP. Also,
one can analytically perform summation over ¢; in each of the brackets, since it is a
geometrical progression.

r—1
Sf(d, r) = (_1)dflei%(—(M—l)/2+N/2)(r—l) Z Z (—l)Q Hclf(d’ QPpPi)
i=1

PCSy OCSu

x HC;(('LQPNPI')? (150)

(151)
¢(d.j1) =Y WU

t=d+1
are independent of r. At this point, we can use the “phase” variable integration trick to get

rid of summation over P, and then represent summation over Q as a determinant:

2n
S'(d,r) = (r — DI(M — 7 + 1))(—1)? " RC0-D268/2)0-) / dY i
0

27t
cf(lpvhl) Cf(lﬁ7271) Cf(lp,M,l) (152)
« det C'f(lﬁ,l,Z) C‘/(l//,z,Z) Cf(lﬁ,M, 2) ’
c.f'(l//71>M) Cf(lﬁ,Z,M) cf(lpaM7M)
where
C.f(lp7j7 ) = e"//cf(d7j7 l) + C?’(dajv l)' (153)

We can analytically perform summation over r in (146), since the form of the determinant
and c¢s(y,j,/) are independent of r, and r-dependent combinatorial prefactor cancels:

f‘f (N =M —1)!M!

— (r—H\(M —r—l—l)
2n dy Qi GF(—(M—1)/24N /2)—y) (M+1) _ |

: /0 o e< H—(M—1)/2N/2)—) _ ]

(W, L) er(W,2,1) oo (Y, ML

(0, 1,2)  er(¥,2,2) ... (Y, M,2)

S'(d) = S(d,r) = (N —M — (M) (=1)*"

(154)

~—

x det

Cf(‘//vlvM) C‘f(lﬁ,2,M) Cf(‘//aM’M)
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Analogously to the case of bosons, integration over iy is equivalent to substitution
Vo =2m(—(M — 1)/2 + N/2)/N to the determinant, and the final expression is

§'(d) = (N — M — ){(M)(-1)""

Cf(lp()vlvl) Cf(lp()vzvl) Cf(lp()val)
« d Cf('ﬁo,lﬂ) Cf('ﬁo,2>2) Cf(lpOaM72) (155)
et .
Cf'(wovlvM) Cf’(WOvva) Cf'(wO’MvM)

5.4. Numerical evaluation of correlation functions and Luttinger parameters

Using results of the previous sections, one can evaluate correlation functions on a ring
numerically and extract both long-range and short range behavior of correlation func-
tions. Calculation of all determinants requires polynomial time in their size, and systems
of up to N =100 atoms can be easily investigated on a desktop PC. Fourier transform of
correlation function is an occupation number n(k), which can be measured directly in
time-of-flight experiments [8] or using Bragg spectroscopy [43]. Recently, long-distance
correlation functions of the model under consideration have been investigated based on
conformal field theory (CFT) arguments [17]. Our determinant representations for strong-
ly interacting mixture can be used to obtain these correlation functions at all distances,
and compare their large distance asymptotic behavior with predictions of CFT.

In Fig. 9, we show numerically evaluated Bose-Bose correlation function for M = 15,
N = 30. Since we used periodic boundary conditions, correlation function is periodic in &.
To extract universal long-distance correlation functions from our calculation, one has to
fit the numerical results using general Luttinger liquid asymptotic behavior. In the thermo-
dynamic limit long-range behavior is

p(0, &) ~ [&] 7R (156)

where K, is a bosonic Luttinger Liquid parameter. This formula is valid, if & is bigger then
any non-universal short-range scale of the model. In our case, such short-range scale is

p"(0.8)

o,

1

0.8

0.2 0.4 0.6 0.8 171

Fig. 9. Normalized Bose-Bose correlation function on a circle as a function of the distance ¢ (here n, is Bose
density). Due to periodic boundary conditions correlation function is periodic with a period L, where L is the size
of the system. Numerical evaluation is done for M = 15, N = 30.



A. Imambekov, E. Demler | Annals of Physics 321 (2006) 2390-2437 2419

given by the interbosonic distance, which is L/M. For a finite size system, general argu-
ments of conformal invariance [44,45] imply that correlation function has the form

1
p°(0,¢) N 1K) (157)
|smf
We fitted numerically obtained correlation functions with (157), and results coincide
with the formula

1
(a—17 =1
obtained in [17] based on CFT arguments. One can see subleading oscillations in the
numerical evaluation, but their quantitative analysis would require more numerical effort.

Fourier transform of p®(0, &) is a monotonously decreasing function, which has a singu-
larity at k = 0, governed by Luttinger liquid parameter Kj:

n (k) ~ k|~ for k — 0. (159)

K, = (158)

Fermionic correlation functions can also be obtained using the results of the previous
section, and space dependence of a typical correlation function is presented in Fig. 10.
Oscillations are reminiscent of Friedel oscillations of the ideal fermi gas. Their large dis-
tance decay is controlled by Luttinger liquid behavior.

One can investigate Fourier transform of the correlation function, which is an occupa-
tion number, and results for different boson fractions are shown in Figs. 11-13. In Fig. 11,
densities of bosons and fermions are almost equal. Fermi step at k, gets smeared out by
interactions, but relative change of occupation number as k, is crossed is significant. As
boson fraction is decreasing, the discontinuity appears at k,+ 2k;,, and it gets stronger
as M/N decreases (see Figs. 12 and 13). The presence of this discontinuity has been pre-
dicted in [17], based on CFT arguments, and here we quantify the strength of the effect.
One should note, that discontinuity at k,+ 2k, is a direct signature of the interactions
and its detection can serve as an unambiguous verification of our theory.

g
0.02__9704 0.06 10.08 0.1 T

Fig. 10. Normalized Fermi—Fermi correlation function on a circle as a function of the distance ¢ (here nyis fermi
density and L is the size of the system). Oscillations are reminiscent of Friedel oscillations of the ideal fermi gas,
and their large distance decay is controlled by Luttinger liquid behavior. Numerical evaluation is done for
M =51, N=100.
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n'(k)
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PN w0y

~ >

kL
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Fig. 11. Fourier transform of the Fermi-Fermi correlation function for M = 51, N = 100. Fermi step at k, gets
smeared out by interactions, but relative change of occupation number as k/ is crossed is significant.

f
n (k)
0.
0.
0.
0.
kL
20 40 60 80 100 21

Fig. 12. Fourier transform of the Fermi—Fermi correlation function for M = 31, N = 100. Fermi step at k, gets
smeared out by interactions, and additional discontinuity appears at k,+ 2k,.

n'(k)
0.
0.
0.
0.
KL
20 40 60 80 100 2w

Fig. 13. Fourier transform of the Fermi-Fermi correlation function for M =11, N = 100. Discontinuity at
ky+ 2ky gets stronger as M/N decreases.

6. Low temperature behavior in Tonks—Girardeau regime

In the previous sections, we considered density profiles and developed an algorithm to
calculate the correlation functions of the ground state of the Bose—Fermi hamiltonian (1)



A. Imambekov, E. Demler | Annals of Physics 321 (2006) 2390-2437 2421

0.2 0.4 0.6 0.8 1

Fig. 14. Evolution of the fermionic density profile in the strongly interacting regime as the function of
temperature. Four graphs correspond to temperatures 0.0IE_‘} /705 0.2E9 /705 E(}/yo, and IOE(}/)’O. Here, y, is the
Lieb-Liniger parameter in the center of the trap, x,is the size of the fermionic trap, and E(,’ = (nfing)* /(2m), where
ng is the total density in the center of the trap. Overall number of bosons equals the number of fermions. Non
monotonous behavior of the fermi density profile persists up to 7' ~ Eﬂ /7o- The total density profile does not
change considerably in this range of the temperatures, and is given by n(x) = n° /1 —x?/x}.

in the strongly interacting regime. An important question, which is very relevant experi-
mentally, is the effect of finite temperatures. In principle, one can use techniques of the
thermodynamic Bethe ansatz [23] to obtain free energy at nonzero temperatures as the
function of interaction strength and densities. Combined with local density approxima-
tion, it can be used to calculate density profiles for any interaction strength. In this section,
we will limit our discussion to effects of small nonzero temperatures T < Ep= (nfin)*/(2m)
only for strongly interacting regime. We will show the evolution of the density profile (see
Fig. 14) in a harmonic trap and calculate the correlation functions under periodic bound-
ary conditions. The effect of nonzero temperatures on correlation functions is particularly
interesting for strongly interacting multicomponent systems (as has been emphasized for
the case of Bose-Bose and Fermi-Fermi mixtures in [47]), due to considerable change
of the momentum distribution in the very narrow range of the temperatures of the order
of E//y. For the case of Bose-Bose or Fermi-Fermi mixture it was possible [47] to obtain
correlation functions only in the two limiting cases T < E//y and E//y < T < E;. For
Bose—Fermi mixture, we are able to calculate correlation functions for any ratio between
E/y and T <« Ey(see Fig. 15). By adding an imaginary part to T, the procedure presented
in this section can be also easily generalized for non equal time correlations.

6.1. Low energy excitations in Tonks—Girardeau regime

As has been discussed in Section 3, for y > 1 there are two energy scales in the problem:
the first energy scale is the fermi energy of orbital motion E;= (n/in)*/(2m), while the sec-
ond is the “spin wave” (relative density oscillation) energy E,/y. The second energy scale is
present only in strongly interacting multicomponent systems, as has been emphasized ear-
lier [46,47]. Density profiles and correlation functions we have considered earlier are valid
in the regime, when temperature is smaller than both of these energy scales:

T <Esf/y < Ey. (160)
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f
n (k) T=0

e

1%
5 10 15 20 25 30 2n

Fig. 15. Fourier transform of the Fermi—Fermi correlation function for M = 15, N = 30. Four graphs correspond

to temperatures 0, 0.1 “;ﬂ 0.5 @ and 5 ﬂﬂ In the range of the temperatures ~E;/y < Eyfermi correlation function

changes considerably due to transition from true ground state to ““spin disordered” regime. In “‘spin disordered”
fermi singularity at k, gets completely smeared out by thermal “spin™ excitations.

However, interesting phenomena [46-49] can be analyzed in the “spin disordered”
regime, when

Eify < T < Ey. (161)

This regime has attracted lots of attention recently in the context of electrons in 1d quan-
tum wires [46,48,49]. In “spin disordered” regime, “spin’ degrees of freedom are com-
pletely disordered, while orbital degrees are not affected much. From the point of view
of orbital degrees, this is still a low-temperature regime, since 7 < E. The energy of
the system does not change too much, while momentum distribution changes dramatically
as temperature changes from 0 to the order of several E/y. “Spin disordered” regime exists
only for multicomponent systems and a crossover from true ground state to “spin disor-
dered” regime provides a unique opportunity to study the effects of low temperatures on a
highly correlated strongly interacting system. “Spin disordered” limit is likely to be
reached first in the experiments, and a significant change of the density profile and of
the momentum distribution as regime (160) is reached can be used as a way to calibrate
the temperatures much smaller than E.

Only two limiting cases (160) and (161) have been investigated for spin-1 fermion and
boson mixtures, since in these cases “spin” wavefunctions are related to eigenstates of
spin-} Heisenberg hamiltonian, and have a complicated structure. In the case of Bose-Fer-
mi mixture, “spin’” wavefunctions correspond to noninteracting fermionized single-spin
excitations, and one can calculate correlation functions in the whole low-temperature
limit, investigating crossover from true ground state to “spin disordered” limit:

Er[y,T < Ej. (162)

In the following calculations, we will neglect the influence of nonzero temperature on
orbital degrees, and will always assume that orbital degrees are not excited. This assump-
tion will affect the results only at distances, at which the correlation functions are already
very small due to effects of spin excitations.

In the zeroth order in 1/y expansion, energies of all spin states are degenerate, and solu-
tions of Bethe equations are given by
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(:j“—izg)}v:l, a={1,..., M}, (163)
eibit H Aﬂ*izg j={1,....N}. (164)

In the next order in 1/y expansion, both k; and A; acquire corrections of the order of 1 /7.
Since energy depends only on p(k), we need to calculate corrections to p (k) in the leading
order. According to (35), to calculate 1/y correction to p(k), one can use A; in the zeroth
order, given by (163):

M 4c

1
2np(k) =1 165
Rl = 147D (165)

is independent of k in the first order of 1/y expansion. If we define “spin” wave vectors
according to

A L .
an IC/2 _ el2n;cx/N,
—1ic/2

energy of the state with “spin” wave vectors k; in 1/y order is given by

2 N? 4 M 27k
B =5 (N;Z(l s )) (167)

Allowed values for “spin” wave vectors are

K={i;c{l,...,N},x; <« for i < j}. (168)

a={1,....M} (166)

The number of “spin” excitations (we will call them magnons from now on) is fixed to be
the number of bosons, and different “spin’” wave vectors cannot coincide. Hence, magnons
have a fermionic statistics. The effect of nonzero temperatures is to average the correla-
tions over the different sets of possible x; from (168).

According to (167) in the first order in 1/y expansion magnons do not interact with each
other, and the total energy is the sum of separate magnon energies. Magnon energy spec-
trum is

4n* N? 21K 4E 2nk
— | S i | 1
e(k) = 3 (cos N ) 3 (cos N ) (169)

Lowest state corresponds to k = N/2, and as the number of magnons increases, “spin”
wave vectors x near N/2 start being occupied—(169) proves the choice (92) for the true
ground state at zero temperature.

6.2. Density profiles

In this subsection, we will analyze the behavior of the strongly interacting mixture in a
harmonic trap at low temperatures. Similar to Section 4, we consider the case

Wp = W = Wy. (170)

According to (59), within the region of the coexistence densities are governed by equations
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maix?
) + TS = 200), () — () = 1(0) — K(0). (71)
Similar to the case of 7'= 0, total density is given by (63):
2
n°(x) = n°(0), /1 -2 (172)
S

and has a weak temperature dependence. On the other hand, relative density is controlled
by solutions of the second equation (171), and its dependence on temperature is quite
strong. It turns out, that in strongly interacting regime p;, — i, can be easily calculated
using formulas from the previous subsection. yi, — firis the change of the free energy, when
one boson is added and one fermion is removed from the mixture. On the language of the
magnons this corresponds to an addition of one magnon. Therefore, one obtains

Wy — luj = Wy (173)

where p,, is the chemical potential of the magnons with energy spectrum (169). As has
been noted earlier, magnons obey fermionic statistics (only one magnon can occupy each
state) and do not interact, so one can use Fermi distribution for their occupation number.
Chemical potential for magnons u,, as a function of o and 7 can be obtained numerically
from the normalization condition for the total number of magnons, which reads

2n
o= / ! dk (174)
0

hTHeosk ) 41 2T

After that, one can use LDA to obtain the density profiles. In Fig. 14, we show the density
of fermions for the case, when total number of bosons equals total number of fermions.
One sees, that density profile changes considerably at the temperatures of the order of
E}/7,, where E} and pq are the Fermi energy and Lieb-Liniger parameter in the center
of the trap. For E} /7, < T < E} boson fraction o is uniform along the trap. As temper-
ature is lowered, more bosons condense towards the center of the trap, and fermionic den-
sity behaves non-monotonously as a function of the distance form the center of the trap.

6.3. Fermi—Fermi correlations

From now on, we will consider the periodic boundary conditions, when the many body
problem is strictly solvable in the mathematical sense. We will first describe the calculation
of fermi correlations, since it is simpler than calculation of Bose correlations. To calculate
temperature averaged correlation functions, we should be able to calculate

) e’zyd"‘)/T(N—M)f’I’(K],...,KM:xl,xz,...,0)‘[’"(1{1,...,KM;xl,xz...,é)dxl coadxyo
,0,‘(07 é7 T) _ K CK

E e—zlc(m)/?‘

Kick

(175)

Denominator in (175) is a partition function of noninteracting fermions in a micro canon-
ical ensemble. It can be written as

=D elwn)/T o ingo 40 - i0 ,—e(x)/T
Z=Y e Xt :/0 e Zg(uee ) (176)

Kick
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Numerator can be simplified using the factorization of “spin” and orbital parts, similar to
(141):

. — 1 e(xi)/T f . .

pf(O,é,T)—Z(N M—l)'M'LNNMZZe S (i1, ks d)I(d E K K.
(177)
Here, S/(k, ...,k d) is an expression (142) for an arbitrary choice of x; belonging to

(168):
S (k1. kad) = Y det [e—y} det [ —} (—1)"(-1)" (178)

y

I(d,&; xy,...,Kp) 1s an integral (108), which dependence on ki, ...,k comes only

through boundary conditions (164). If Z (ki mod N = D, where D {1,...,N—1},
then the set of k; which minimizes kinetic energy is uniquely defined:

2 2n 2
{ L“( N/2+D/N), 2 (=N/2+1+D/N),... ,T“(N/z ~1 +D/N)}. (179)
If D = 0, then there are two degenerate sets of k;, and each of them should be taken with a
weight 1/2. Taking this into account, I(d,&; ki, ..., k) can be expressed as
ul 5]\/( ’\' 2mi =
I(d, &y, ) =1(d, 6 1= ZK, 2l (180)
D=0
where
I, f xmod N=0
0 =<7 ’ 181
w(x) { 0, otherwise, (181)
On(x) can be represented as a Fourier sum,
1 N-1 o
on(x) = Z ev, (182)
p=0
Taking this into account, correlation function (177) is rewritten as
1 1 N
o £y — &
P0G T) = N i = DN Zl(d :
N 5[\/( Zm el
x ) <1 - ) PDFN e Fe0SI (d; p; T), (183)
D=0 p=0
where
3 pk,+f K)/T) .
S/ (d;p; T Ze 2. S (K1, ... Ky d). (184)
mCK
Calculation of §'(k1, ..., ks d) closely reminds a calculation of §/(d) in Section 5.3, so
we will present only a brief derivation.
M+1
N-M-1D\(M) .
S (w1, id) = ( )'(M) S (k1. Ky, ), (185)

— (r— DM —r+1)!
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where S (K1, - .- K d, ) 1s a product of two determinants:
: d 1
S (k1. ks d,r) = Z Z
PCSy P'CSy
— IT KP/L Kp; (ti—1)) i N iz\—’,‘(;cprfxp.)t;
x Z II( D ™™ ™). (186)
i=1 = i=r \tj=d+1

From summation over P, P’, we can go to summation over P, Q, where P’ = QP. Also,
one can analytically perform summation over #; in each of the brackets, since it is a
geometrical progression.

S (k1,. .. Kk d,r) = (—l)df1 Z Z QHg} (d, Koy, > Kp, Hgf (d, KQP,KP)

PCSy OCSu i 11
(187)
where y
'y (d,j, 1) = el Z ei%_ﬂ(,_l),’
; (188)
d 1 Z iU~

are independent of r. We can use the “phase’ variable integration trick to get rid of
summation over P, and then represent summation over Q as a determinant:

d
Sf(Kl,...,KM;d,F)Z(V—l)!(M—V+1)!(—1) /o ZZ i1y
gf(l//vKlyKl) gf(l//,Kl,Kz) gf(lﬁaKl,KM)
« det g (Wi, k) g (Wka,k2) oo g (K, kn) ’
gf(wvaaKl) gf(W,KMsz) gf(l//»KMyKM)
(189)
where
W, 1) =evgi(d,j, 1)+ g} (d,j, 1) (190)

We can analytically perform summation over r, since the form of the determinant and
g(p.j,1) are independent of r, and combinatorial prefactor cancels in (187). Similar to
(139), we represent summation over r and integration over y as a substitution 1y =0,
and obtain the following result:

S (ky, ..k d) = (N — M — 1)IM(=1)"

g 0,x1,11)  g(0,Kk1,6) ... &(0,K1,Ky)
70, 15, 7(0, 15, .o g0, Ky,

« det g (0,12, 1) g (0,12,K2) g/ (0,12, 1)
gf(()?KMvKl) gf(o7KM7K2) gf(07KM7KM)

(191)
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To calculate S’ (d; p; T), we have to sum (191) for different choices of x; with «; dependent
prefactor. One can take these prefactors into by multiplying each row in (191) by
fl)=e —(Fipre;+e( (k)/T) (192)

since only one term from each row appears in the expansion of the determinant:

Mz

S/ (d;p;T) = (N —M —1)!M(— ‘“XN:
)&/ (0,k1,%2) .. f(r1)g (0,51, 50)
)& (0,52,) ... f(12)g" (0,52, K1)

Sf1)g (0,x1,%1)  f(
S(r2)g" (0,52,%1)  f(

=

kg

x det &
Fea)g” (0,x0r,51) f(rear)g” (0,5ar,52) - f(kear) @ (0,01, Ker)

(193)

Summations over x; in (193) can be performed analytically, since each choice of «; is a term
in the expansion of the Fredholm determinant [50]. The desired expression has the form:

r A0 iian
S/ (d;p;T) = (N =M — 1)IMI(—1)"
0

21't
4+ (g (0,1,1)  f(1)g/(0,1,2) ... f(1)g/(0,1,N)
f(2)g'(0,2,1)  €+£(2)g/(0,2,2) ...  f(2)g/(0,2,N)

x det

f(N)g'(ON,1)  f(N)g/(O,N,2) ... e"+f(N)g/(0,N,N)
(194)

Integration over 0 extracts terms from the determinant which have ¢~ ~*? dependence.

Such terms appear, when N — M ¢’ elements in the expansion of the determinant are tak-
en along the diagonal. If ¢!’ are chosen in the rows except for ky, ..., Ky, then contribution
from such choice of ¢! is a minor which equals f(x), ... .f(kx)S(k1, ... .k d). Thus
evaluation of the prefactor in the e~ dependence of the determinant corresponds
to summation of f(x;) .. .f(KM)Sf(Kl, ..., Ky d) over possible sets of ;.

Finally, substituting (194) into (183), one can evaluate numerically Fermi—Fermi corre-
lation functions for any temperature and ratio between boson and fermion density in low
temperature limit.

In Fig. 15, we show numerically evaluated Fermi—Fermi correlation function for

=15, N =30 and several temperatures, ranging from 7=0 to 7 = 54E’ At this low
temperature region Fermi-Fermi correlation function changes cons1derab1y due to transi-
tion from true ground state to “spin disordered” regime. In “spin disordered” regime fer-
mi singularity at ky gets completely smeared out by thermal “spin” excitations.

6.4. Bose—Bose correlation function
Bose-Bose correlation functions also change as 7" goes up. However, since for 7= 0

n” (k) does not have any interesting structure except for singularity at k =0, the effects
of nonzero temperatures will not be as dramatic as for fermi correlations. We present here
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the results mainly for the sake of completeness. Calculations in this subsection are similar
to what has been done in the previous subsection. Correlation function can be written
as

Z efzif(”’)/TM j 'P(Kl,. . .7KM;0,X27. .. 7XN)II/T(K17. . .7KM;5,)C2 ‘e ,XN)dJCz . ..de

b £, _ )c,-Ck
p(07g7T)_ ZCZFK)/T
Kick
(195)
Similar to (183), this can be written as
H0,6T) =1 1 3 1@,9)
P =7 N = M) — DI 2
.l Sn(D i N 20
<y (1 _ ol )>e(DA7)ZT'C PSP (d; p; T), (196)
D=0 2 —0
2
where
"(d;p; T Ze @t Ngbe iy d). (197)
K,CK
Here, S’(ky, ...,k d) is an expression (122) for an arbitrary choice of k; belonging to
(168):
S (i i) = det [e—y} det [e*ii—“‘fy’f} (—1)'(=1)". (198)
y
Similar to (129), it can be written as
- M—1)!
SP(k1,. .. Ky d) ; ] E\/I—r)? SP(k1, ... Ky d, ), (199)

where S%(ky, ... ,Kk;d,r) is a result of the summation of (198) in the following subspace:

{109, A< Ty <N, (200)

We can expand determinants of (198) using permutations:

22k —Kp
Sb(Kh...,KM;d,}”) _ (_1)d71 Z Z (_I)P(_I)P'e/\r( Pll 1d)

PCSu P'CSu
r d M N
53— cp, (v,-1) 25—, )
X E e’ H E e L (201)
i=2 \y;=2 i=r+1 \y;=d+1

From summation over P, P’, we can go to summation over P, Q, where P’ = QP. Also,
one can analytically perform summation over y; in each of the brackets, since it is a
geometrical progression. Compared to the case of fermions, there are three types of the
brackets:
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Sf(Kla AR KM;d,I") = (_l)dil Z Z (_I)Qgg(da KQ,D1 ) KPl)

PCSy OCSu

r

M
X gflz (da KQPI- ) KP,) H gﬁ (d7 KQP,.7 KPi)’ (202)

i=2 i=r
where
g(d, j, 1) = Fu-t),
t=d

(d J7 l) _ 271 eilzv"(/?l)t’
—

gi(d,j, 1) Ze‘V*.

t=d+1

(203)

We can use ““phase integration” trick to represent (202) as an integral of some determi-
nant, but there will be two phase variables, since there are three types of inequivalent
brackets:

5 P d znd
S”(Klv“-aKM§dv”):(l’—1)!(M—r)!(—l)d 1/0 e—l(r—l)lf/% 2f —ig

gb(wad)aKhKl) gb(w7¢7K17K2) .- g (wa¢7K17KM)
gb(lpﬂd)aK%Kl) gb(lp7¢7K2>K2) gb(lpvd)ﬂchM)

x det )
gb(w7¢7KM7Kl) gh(lp7¢aKMaK2) gb(l//vcl);KMvKM)
(204)
where
& W, ¢,j,1) =egy(d,j. 1) +eVgy(d, j, 1) + g (d, ], 1). (205)

After integration over ¢, determinant in (204) has terms up to e~V therefore integra-
tion over ¥ and summation according to (199) are equivalent to substitution yy = 0:

Sb(Kl,...,KM;d):(N_M)[(M_1)!(_1)d—1/ d¢ e it
0

21'c
gb(ovd)a’cla’cl) gb(03¢aKl;K2) gb(07¢aKlaKM)
b0 (0 ... g0
% det g°(0,¢,12,x1)  g°(0,¢,12,12) 2°(0, ¢, 12, Kur)
gb(ovd)vKMvKl) gb(07¢vKM7K2) gb(01¢7KM7KM)
(206)

Integral over ¢ can be simplified further, since the determinant in (206) has a form
Ao+ A,e'?. The form above follows from the fact that a part of the matrix which depends
on ¢'? has a rank 1 and the formula for the determinant of the sum of the matrices (see
page 221 of [51]). Let’s for a moment introduce a notation z = ¢'?. Integration over ¢ with
a weigh e '? extracts the term A;, which can be alternatively written as a difference
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between two determinants, one when z = 1 and the other when z = 0 (¢/(\/,/,]) is given by
(190))

S (ier, ... ks d) = (N — MM — 1)!(=1)""

[g2(0,0,x1,x1)  g°(0,0,x1,%0) ... g°(0,0, K1, Ky)
« det gh(0a07 KZ’KI) gb(0707K2»K2) gh(oaoa K27KM)
L £°(0,0, KM,K?l) 22(0,0, k57, 7¢2) ... g%(0,0, 11, Kar)
— (N = M)(M = D) (—1)*"!
[&/(0,,1,%1)  g/(0,k1,%2) ... g/ (0,1, %)
« det 2 (0,k0,k1)  g(0,k2,k2) ... g0,k K1)
Lg/ (0, k0, 61) & (0,kar,2) ... & (0, K, Kar)
(207)

We note, that a similar trick is explained on the page 609 of [52]. After that, summation
over different k; can be performed similar to the case of fermions:

do i(N-M
SP(dspi T) = (N = MM — D) (~1)*" /OZR 0
€ f(1)0,0,1,1)  f(1)0,0,1,2) .. £(1)g(0,0,1,N)
« det £(2)¢"(0,0,2,1)  €”+£(2)g"(0,0,2,2) ...  f(2)g"(0,0,2,N)
f(N)g"(0,0,N,1) f(N)g"(0,0,N,2) ... "4 f(N)g"(0,0,N,N)
—%Sf(d;p;T),

(208)
where S'(d;p; T) is defined in (194).

7. Experimental considerations and conclusions

In this section, we will consider in detail possible ways to realize the system under inves-
tigation in experiments with cold atoms.

An array of one-dimensional tubes of cold atoms along x direction has been realized
experimentally using strong optical lattices in two dimensions [7-9,32,53] y and z. The
large number of tubes provides a good imaging quality, but the number of atoms and
the ratio between Bose and Fermi particle numbers varies from tube to tube, and may
complicate the interpretation of the experiments (one of the ways to fix the ratio between
Bose and Fermi numbers for all tubes will be discussed later). In addition, due to harmonic
confinement along the axis of the tube, Bose and Fermi densities vary within each tube,
which causes non-homogeneous broadening of the momentum distribution. Alternatively,
single copies of one-dimensional mixtures with constant densities along the axis can be
realized in micro traps on a chip [54], or using cold atoms in a 1d box potential [55]. Here,
we will mostly concentrate on a realization of 1d system using strong 2D optical lattice in y
and z directions.



A. Imambekov, E. Demler | Annals of Physics 321 (2006) 2390-2437 2431

First of the conditions (2), m;, = my, is approximately satisfied for isotopes of the atoms,
and one can expect our theory to be valid with high accuracy for them. Some of the
promising candidates are *“VK — *°K [56], "'Yb + "2 ¥b [57], and 3CBYRp — FTEIRp
[58]. Different isotopes of potassium have already been cooled to quantum degeneracy
[1,60] by sympathetic cooling with Rb. There is another way to satisfy the first condition
of (2) using already available degenerate mixtures [1]. If one uses an additional optical lat-
tice along the x direction with filling factors much smaller than one, then (1) is an effective
Hamiltonian describing this system with the effective masses determined by the tunneling,
similar to a recent realization of Tonks—Girardeau gas for bosons [8]. Finally, we note that
one can realize experimentally the model, which has the same energy eigenvalues as (1),
using a mixture of two bosonic atoms (see next paragraph). If one chooses two magnetic
sublevels of the same atom, equality of masses will be satisfied automatically.

Second of the conditions (2), g5, = g»y> 0, can also be satisfied in current experiments,
using a combination of several approaches. First, one can use Feshbach resonances to con-
trol the interactions: this is particularly straightforward for Li — Na of K — Rb mixtures,
where resonances have already been observed experimentally [4,3]. Second, we point out
that it is sufficient to have equal (positive) signs for the two scattering lengths, but not nec-
essarily their magnitudes. Well away from confinement induced resonances [59], 1D inter-
actions are given by gy, = 2hwpiap, &,y = 2h\/0y O a5, Where wpy, wp are radial
confinement frequencies, and a;, a;r are 3D scattering lengths. For a fixed value of
applays, one can always choose the detuning of the optical lattice laser frequencies in such
a way that gz, = g5 After that, one can vary the intensity of the y, z optical lattice beams
and change g, while always being on the integrable line of the phase diagram. Combina-
tion of these two approaches to control 1D interactions gives a lot of freedom for exper-
imental realization of equal one-dimensional interactions. Finally, lets describe how to
realize the bosonic model, which has the same eigenvalues as the model (1). Bosonic sys-
tem is characterized by 3 interaction parameters, g1, 222, g12- If one tunes g;; to +oo, then
bosons of type 1 get “fermionized” within the same type, and the model will be equivalent
in terms of energy spectrum, density profiles and collective modes to (1). Note, however,
that single-particle correlation functions will be different, and the results of Sections 5 and
6 (except for 6.2) are not applicable. This general equivalence between Bose-Bose and
Bose—Fermi models is valid for any ratio between g», and g;,. One can push this result
even further, by tuning g,,» to +oo. In this case, eigenstates of (1) are equivalent to spin
—1/2 fermi system [20,21,61], and some predictions for those systems can be applied for
bosons.

Detection of the properties of the system may be hindered by the fact, that both
number of atoms and relative fraction of bosons o vary from tube to tube. However,
one can use Feshbach resonances to fix the boson fraction to be o =1/2 in each tube
[64]. To do this, one can use Feshbach resonance for Bose—Fermi scattering to adiabat-
ically create molecules before loading the mixture in strong y, z optical lattice. If one
gets rid of unpaired atoms at this stage, switches on y, z optical lattice, and adiabat-
ically dissociates the molecules, boson fraction will be fixed in each tube to be « = 1/2.
Most of our figures have been calculated for this particular boson fraction. Our results
in harmonic traps are presented as functions of y, = mg/(h’ny), where ny is a total den-
sity in the center of a one-dimensional trap, and y, is the Lieb—Liniger [28] parameter
in the center of the trap. yo>> 1 corresponds to a strongly interacting regime. n, varies
from tube to tube, and to be able to compare theoretical predictions precisely with
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experiments, one should be able to have an optical access to regions where variation of
ngy is small.

Most of our experimental predictions, except for those in Section 6, deal with zero tem-
perature case. Experimentally, one needs to verify the quantum degeneracy of the gases in
1D regime. A possible way to identify the onset of quantum degeneracy is based on density
profiles [2]. In Figs. 2 and 3, we show the density profiles at zero temperature for weak and
strong interactions, when the harmonic confinement frequency w is the same for bosons
and fermions. In both cases, only central part is occupied by bosons, and outer shells con-
sist of fermions only. In addition, for the strong interactions fermi density develops a
strong peak at the edge of bosonic cloud. When the interactions are not strong
(70 £ 1), one can estimate the temperature at which quantum effects become important
for ground state density profile to be of the order of Niw,, where N is the total number
of atoms in a tube. In the strongly interacting regime (yo > 1), however, situation is very
different. There are two temperature scales in the problem: E? = (nhno)*/(2m), and
E(;/ Yo K E? As the temperature goes up from 0 to ~ E}) /7o, density profile changes as
shown in Fig. 14, and the peak in the fermion density disappears. However, total density
profile does not change much as long as 7' <« E}’ This effect can be qualitatively under-
stood as the demonstration of the “fermionization” of the Bose-Fermi cloud, as will be
explained in the next paragraph.

First, lets consider the case without a harmonic potential. When interactions are strong,
bosons tend to avoid fermions and other bosons. Whenever coordinates of any two par-
ticles coincide, wavefunction is close to 0. Effectively, the gas is mutually “fermionized”,
and the ground state energy of the system is close to the ground state energy of the pure
noninteracting fermi gas with a density equal to the zotal density of bosons and fermions.
Dependence of the energy on the relative density (or boson fraction «) appears only in the
next order in 1/y expansion, and two first terms in this expansion are given by (54). Since
dependence of the energy on boson fraction « is y > 1 times smaller than dependence on
total density, the “quantum degeneracy’” temperature for relative density excitations is
also y times smaller than quantum degeneracy temperature for fermions with density n,
hence it is ~E,y. When harmonic trap is present at 7 = 0, relative density distributes itself
to minimize the total energy. As temperature becomes of the order of several EJ? /70> almost
all relative density modes get excited, and boson fraction becomes uniform along the trap.
Total density modes are still not excited, since their quantum degeneracy temperature is
E(}, and therefore the total density profile does not change much. Temperature E? /70> 18
important not only for density distribution, but also for correlation functions, as will be
discussed later.

Knowledge of the exact dependence of the energy as the function of densities and inter-
actions allows to investigate not only the static properties, but also dynamic behavior. In
Section 4, we developed a two-fluid hydrodynamic approach to calculate the frequencies
of collective oscillations. In the strongly interacting limit we predict the appearance of
low-lying modes, with a frequency scaling as ~ wy/,/7,. These modes correspond to
“out of phase” oscillations of Bose and Fermi clouds that keep the total density approx-
imately constant. These modes can be understood as follows: due to fermionization effects
discussed in previous paragraph, for yo > | the energetic penalty for changing the relative
density of bosons and fermions is small, and hence it does not cost too much energy to
create “out of phase” oscillations that do not change the total density. Dependence of
the frequencies of low-lying oscillations with small quantum numbers on overall boson
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fraction in a tube is shown in Fig. 8. In addition to low lying “out of phase’ oscillations,
the cloud has “in phase” oscillations, with the frequencies w, = nw,, similar to Tonks—
Girardeau gas of bosons [36]. These modes have frequencies considerably higher than
“out of phase” modes, and are not shown in Fig. 8. One can excite any of these excitations
by adding a perturbation of the matching frequency, similar to what has been done to
bosons in [32]. A different manifestation of the slow “out of phase” dynamics can be
observed looking at the evolution of density perturbations: initial perturbation will split
into fast “in phase” part, moving at fermi velocity, and slow “out of phase” part. This
is similar to “spin-charge separation”, proposed for fermi [61] or Bose [62] spin-1 mixtures.
When interactions are not strong (7o < 1), one can obtain frequencies of all modes using
mean-field energy. Fig. 4 shows the dependence of frequencies for equal number of bosons
and fermions (« = 1/2) on y,. Even in mean-field regime frequency of “out of phase” oscil-
lations gets smaller as interactions get stronger. Already for yg= 1 results for yo > 1
extrapolate mean-field results very well.

Finally, lets discuss theoretically the most interesting and sensitive measure of the cor-
relations, single particle correlation function, considered in Sections 5 and 6. Fourier
transform of the single particle correlation function is an occupation number, and it
can be measured experimentally using Bragg spectroscopy [43] or time of flight measure-
ments [8]. We can calculate these correlation functions in strongly interacting regime under
periodic boundary conditions for any temperatures. At zero temperature Bose momentum
distribution has a singularity (159) at kK = 0 reminiscent of BEC in higher dimensions, and
its strength is controlled by Luttinger liquid parameter K;, which depends only on boson
fraction for strong interactions. For fermions, momentum distribution has a lot of inter-
esting features. At zero temperature, several momentum distributions are presented in
Figs. 11-13. One sees, that due to strong interactions, fermi step at kr gets smeared out
even at T=0, and #/(k) is considerably different from 0 at wave vectors far away from
ks. However, total change of #/(k) as one crosses kis quite large. In addition, #/(k) devel-
ops an extra singularity [17] at k,+ 2k;, and the strength of this singularity is higher for
small boson fractions. As the temperature rises, momentum distribution changes consid-
erably in the region of low temperatures of the order of E//y, and its evolution as a func-
tion of temperature is shown in Fig. 15. For E//y < T < Ej, one enters so called “spin
disordered” regime [46,47], where singularity at k, gets completely washed out, and for
equal densities of bosons and fermions momentum distribution gets almost twice as wide
compared to T < E(/) /7. A strong change of the momentum distribution in a small range of
temperatures can be used to perform a thermometry at very small temperatures. To verify
experimentally exact numerical correlation functions one needs to work with systems at
constant densities along x direction. Such constant density can be achieved in experiments
with micro traps [54], or in 2D arrays of tubes, if one makes a very shallow harmonic con-
finement, and creates strong box-like impenetrable potential at the sides of the tubes with
the help of additional lasers. If the system is in harmonic trap, lots of the features of cor-
relations themselves (i.e., singularity at k,+ 2k;) get washed out due to averaging over
inhomogeneous density profile [63]. However, the averaged correlation function still shows
significant change in the region of temperatures of the order of E;) /70- and the results for
T < EYy/y, and EY [y, < T < E} are shown in Fig. 16. The point where N (k) has a dis-
continuous derivative for 7= 0 corresponds to the fermi wave vector for the maximal den-
sity of fermions (at the edge of the bosonic cloud). For comparison, we also show N (k) for
the same number of fermions in the same trap for noninteracting case.
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Fig. 16. Momentum distribution for fermions after averaging by inhomogeneous density profile for harmonic
confinement. Results are shown for 7'= 0, (thick line), E? /70 KT < E(} (normal line) and for the same number of
noninteracting fermions (dashed). Overall number of bosons in a trap equals the total number of fermions, n is
the total density in the center of the trap, E0 (nhng)*/(2m), 70 > 1 is the Lieb—Liniger parameter in the center of
the trap, and 2xis the total size of the cloud In the range of the temperatures ~ E +/7o fermi correlation function
changes considerably due to transition from true ground state to “‘spin dlsordered” regime.

In conclusion, we presented a model for interacting Bose-Fermi mixture in 1D,
which is exactly solvable by Bethe ansatz technique. We obtained the energy numerical-
ly in the thermodynamic limit, and used it to prove the absence of the demixing under
conditions (2), contrary to prediction of a mean-field approximation. Combining exact
solution with local density approximation (LDA) in a harmonic trap, we calculated the
density profiles and frequencies of collective modes in various limits. In the strongly
interacting regime, we predicted the appearance of low-lying collective oscillations which
correspond to the counterflow of the two species. In the strongly interacting regime, we
used exact wavefunction to calculate the single particle correlation functions for bosons
and fermions at zero temperature under periodic boundary conditions. We derived an
analytical formula, which allows to calculate correlation functions at all distances
numerically for a polynomial time in system size. We investigated numerically two
strong singularities of the momentum distribution for fermions at k, and k,+ 2k,
We extended the results for correlation functions for low temperatures, and calculated
correlation functions in the crossover regime from 7'=0 to “spin disordered” regime.
We also calculated the evolution of the density profile in a harmonic trap at small non-
zero temperatures. We showed, that in strongly interacting regime correlation functions
change dramatically as temperature changes from 0 to a small temperature ~E//y < Ej,
where E,= (mhin)*/(2m), n is the total density and y is the Lieb—Liniger parameter. Final-
ly, we analyzed the experimental situation, proposed several ways to implement the
exactly solvable hamiltonian and combined the results for correlation functions with
LDA.
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Appendix A

In this appendix, we will prove that all solutions of Egs. (28) and (29)
Mk — A, +ic/2

_— = ={l,....M Al
1:1 kl—Ay—ic/z 3 a {7 ) }7 ( )
M .
o ki — Ag+ic/2
ik;L j p .
J :”7 ={1,...,N A2
€ 'B:l k/_A/}_IC/2’ J {3 Y } ( )

are always real. This is a major simplification for the analysis of the excited states com-
pared to spin-} fermion systems, where one has to consider complex solutions [22].
Suppose that solutions of (A.1) and (A.2) are complex numbers, such that
inf Imk; =k~ <supIm k; =k, (A.3)
infImA, = A~ <sup Im A, = A", (A.4)
We need to prove that k- =k =A" = A" =0.
First, lets prove that

k<A, (A.5)

AT <k (A.6)
Suppose that (A.5) is not valid, i.e.,

Jo:Im k; —Im A, > OV). (A7)
Then

% > 1 (A8)

and absolute value of the L.h.s. of Eq. (A.1) is bigger than 1, which contradicts the equa-
tion. Eq. (A.6) can be proven similarly.
Now, lets prove that

k<0, (A.9)
k= > 0. (A.10)

These equations together with (A.5) and (A.6) would imply k- =k"=A4" = A" =0.
Suppose that (A.9) is not valid, i.e., 3 j:Im k; = k> 0. From (A.6) it follows that:

therefore
SN | A.12
ki — Aﬂ—&—ic/Z‘ v ( )

and absolute value of the r.h.s. of Eq. (A.2) is not smaller than 1. On the other hand, by
assumption l.h.s. of this equation is smaller than 1:

et = e < 1. (A.13)

Contradiction proves the validity of (A.9), and (A.10) can be proven similarly.
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