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We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-
Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters,
within which the vortices are partially delocalized, tunneling between classically degenerate configura-
tions. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder
mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic

number of classically degenerate ground states.
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The existence of quantized vortices is one of the most
dramatic manifestations of the macroscopic wave function
(““order parameter’’) in superfluid (SF) Bose gases. Con-
siderable theoretical [1] and experimental [2] effort has
thus been applied to the study of SF vortices in cold atoms
systems. Vortices are usually regarded as classical objects
that form regular lattices due to long-range repulsive inter-
actions between them. Intuitively, this point of view seems
to be in accord with the fact that vortices are topological
objects, i.e., the existence of an isolated vortex in the sys-
tem can be established by observing phase winding infi-
nitely far away from the vortex core. However, analogies
withtwo-dimensional (2D) electronic systems in high mag-
netic fields, exhibiting the fractional quantum Hall (FQH)
effect, suggest that under certain conditions vortex lattices
may be melted by quantum fluctuations, and various strongly
correlated vortex liquid states may thus emerge [3].

Optical lattices offer additional opportunities to explore
the quantum mechanical behavior of vortices by allowing
one to tune the strength of quantum fluctuations. Several
approaches to stabilizing FHQ states in cold atoms systems
using optical lattices have already been proposed [4-6].
More generally, of interest are situations in which vortices
may behave as strongly interacting quantum particles,
moving in a periodic optical lattice potential. Such a pos-
sibility appears to be rather counterintuitive, since naively
we think of vortices as macroscopic objects. Nevertheless,
the common view nowadays is that vortices in 2D systems
can be considered as quantum particles with a finite mass
[7]. It is then interesting to find experimentally observable
phenomena in cold atoms systems in which this quantum
nature of vortices is manifested. In particular, manifesta-
tions of the quantum mechanical behavior of vortices may
be most dramatic in situations when long-range intervortex
interactions are frustrated, which strongly enhances the
effect of quantum fluctuations. Such a frustration in optical
lattice systems may be engineered by choosing the appro-
priate combination of the optical lattice geometry and the
vortex density. We should point out that some classical
commensuration effects between vortex lattices and the
underlying optical lattice pinning potential have already
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been studied, both theoretically [8] and experimentally [9],
but the possible quantum effects have not been previously
considered.

In this Letter we discuss an example of such a quantum
mechanical behavior of SF vortices in an optical lattice.
We show that for a particular combination of the optical
lattice geometry and the vortex filling, for which classical
vortex configurations are strongly frustrated, a vortex-
Peierls (VP) state is realized. By VP state we mean a vortex
lattice, in which vortices are not localized at the maxima of
the optical lattice potential, but are instead partially delo-
calized, resonating quantum mechanically between degen-
erate pinned configurations. Peierls ordering has been
extensively studied, most recently in the context of quan-
tum magnetism of localized spin systems [see Ref. [10] for
review]. Here we demonstrate that such ordering may,
under certain conditions, occur for vortices in optical
lattice superfluids.

We consider a SF system of cold bosonic atoms, loaded
in an optical periodic potential with the dice lattice ge-
ometry, shown in Fig. 1. The fascinating features of the
quantum mechanics of particles on the dice lattice in a

FIG. 1 (color online). Optical dice lattice created by super-
imposing three laser field potentials I,(r), I,(r), and I;(r) (see
text). a; = %fc — ‘/759 and a, = 5% + \/75)7 are the basis direc-
tions. Lighter areas correspond to potential minima. Inequivalent
sites in the three-site unit cell of the dice lattice are labeled as 1,

2, and 3.
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perpendicular magnetic field were first pointed out by
Vidal et al. [11] and extensively studied in a number of
subsequent works [see, e.g., [12] and references therein].
Atoms in an optical lattice can be described by the Bose-
Hubbard model [13], in which bosons are assumed to
tunnel between nearest-neighbor sites of the lattice and
interact when they are on the same site. We will assume
that the average number of bosonic atoms per site of the
dice lattice 7 is an integer. In this case increasing the on-
site interaction energy U relative to the hopping amplitude
t until U/t~ 1 will induce a SF-Mott Insulator (MI)
transition [14] when 7 bosons will be localized on each
site to minimize the interaction energy.

To induce vortices in the SF we add an effective perpen-
dicular “magnetic field.” We will comment on particular
methods that could be used to create such an effective field
at the end of the Letter. We will focus on a specific value of
the flux per plaquette of the dice lattice 27 f = 27/3,
where f = 1/3 has the physical meaning of the vortex
filling, i.e., the average number of vortices per plaquette.
Centers of dice plaquettes can be associated with sites of
the dual kagomé lattice, which correspond to the maxima
of the optical lattice potential. It is then convenient to
assume that the vortex cores are located on the kagomé
lattice sites. Since vortices interact via a long-range repul-
sive potential, they will try to arrange themselves in pat-
terns on the kagomé lattice that maximize the distance
between each vortex and its neighbors. As shown by
Korshunov [15], at filling factor f = 1/3 the set of vortex
configurations that minimize the classical interaction en-
ergy between the vortices consists of all states, where every
triangular plaquette of the kagomé lattice is occupied by
exactly one vortex. The number of such configurations
grows exponentially with the system size and the classical
ground state of vortices has only algebraic order at zero
temperature, but no true long-range order [15].

Nevertheless, below we will demonstrate that strong
quantum fluctuations near the SF-MI transition lift the
classical degeneracy and select a vortex state with a true
long-range order. This state has, however, a manifestly
quantum mechanical nature, in that the vortices are not
simply localized on sites of the kagomé lattice, but are
instead partially delocalized over plaquettes, thus exhibit-
ing what we call a VP ordering.

To approach the problem analytically, we will take
advantage of the presumed proximity of our system to
the SF-MI critical point. Since the bosons are at an integer
filling, the standard Landau-Ginzburg (LG) theory can be
applied not too far away from the critical point. The
imaginary time LG functional of the SF order parameter
fields is given by [16]:
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Here ®; is the local SF order parameter, u denote the
nearest-neighbor vectors of the dice lattice, J ~ Unt,
uy, ug > 0, and r tunes the system across the SF-MI tran-
sition. To find the ordering patterns near the transition, we
need to diagonalize the first term in Eq. (1) [17]. Choosing
Landau gauge for the vector potential A;, = 27fi (1 —
8 ,,) one obtains the following dispersion for the lowest
Hofstadter band: e(k) = —J[6 + cos(k;) + cos(k,) —
2cos(k; — ky) + +/3sin(k;) + +/3sin(ky)]'/2, where k =
kib; + kybyand by, = 1% * %fz are the reciprocal lattice
vectors of the dice lattice. The boson dispersion has two
minima inside the first Brillouin zone of the dice lattice, at
wave vectors ko = (0,27/3) and k, = (27/3,0). The
corresponding eigenvectors are given by v° = (1, 1,0)
and v' = (e~27/3 0, 1). We can then write the lattice order
parameter fields ®; as linear combinations of these two low
energy modes @,(r;) = 3, @ vie® T, where the in-
dex i labels the unit cells of the dice lattice, o = 1,2, 3
labels sites within each unit cell, and ¢, are the fields,
corresponding to the low energy boson modes. To obtain
the LG action in terms of the fields ¢, in its most gen-
eral form we need to know how these fields transform
under the symmetry operations of the dice lattice. The
relevant operations are the elementary translations along
the basis directions 7 and T, rotations by 7r/3 around
the sixfold coordinated sites R/, and reflections with
respect to the x and y axes I, . These transformations are
given by: Ty: g¢ — @ee *™8, Tt gp — 2™V,
R7r/3: 0 — ¢€+le*2ﬂ'i(€+1)/3’ Ix: 0 — g026*2771'(5/3,
I,: ¢ — @}, ,€*™/3, where the subscripts of the fields
are taken modulo 2. Using these transformations, the
most general form of the imaginary time LG action is
found to be [18]
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In the mean-field approximation, which we expect to be
accurate for the effective classical 2 + 1-dimensional sys-
tem, described by Eq. (2), three different SF phases are
possible, depending on the signs of the v and w couplings.

(1) v>0: either || # 0or @] #0.(2) v <0, w <O0:
|0l = || # 0. The relative phase 0 = arg[¢;¢;] is de-
termined by the last term in Eq. (2) and is given by 8 =
2an/3, n=10,1,2. 3) v<0,w>0: |gy| = |e,| # 0.
The relative phase is given by 8 = 2n + 1)7/3, n =
0, 1, 2. To reinterpret the states we have found in the vortex
language, it is convenient to calculate gauge-invariant
supercurrents on each bond, which we define as J;, ~
Im (®; P, e~ ). In the v > 0 state we find that super-
currents vanish on every bond. This fact, combined with
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the picture of this state in terms of the SF order parameter,
leads to the vortex configuration shown in the right panel of
Fig. 2. Since this state contains configurations, in which
two vortices are located on nearest-neighbor sites, it cannot
be the true ground state of the vortices.

Calculating supercurrents in the second candidate
ground state, realized when v, w <0, we obtain the con-
figuration shown in the right panel of Fig. 3. Vortices in this
case are localized on the dice lattice plaquettes, which have
supercurrents circulating around them in the counterclock-
wise direction. This configuration is a member of the
classical ground state manifold, since none of the vortices
have nearest neighbors.

Finally, the supercurrent pattern in the state, realized
when v <0 and w >0, is shown in the right panel of
Fig. 4. One can see that none of the dice plaquettes in
this case have a full vortex localized in it. Instead, the
vortices appear to be bound in partially delocalized triplets,
populating the six dice lattice plaquettes, adjacent to the
sixfold coordinated sites with zero order parameter expec-
tation values. The fact that the order parameter vanishes on
these sites means that vortices are moving around such
sites, locally destroying phase coherence. It also means
that the boson number does not fluctuate on such sites, i.€.,
the bosons on these sites are in the Mott phase. The only
vortex state that is consistent with this picture, and also
does not violate the constraint of no-nearest-neighbor vor-
tices, is the one in which the vortex triplets resonate
between two degenerate configurations (corresponding in-
stantaneous order parameter phase configurations are ex-
plicitly shown in Fig. 4). This state is clearly more
energetically favorable than the state in Fig. 3, since it
does not violate the no-nearest-neighbor constraint but also
allows the vortices to gain kinetic energy by partially

FIG. 2 (color online). (Left) Order parameter configuration
corresponding to the v > 0 state. Direction of each arrow rep-
resents the phase of the corresponding order parameter field,
while length represents the magnitude. Expectation values of the
order parameter vanish on all sites of type 3 (shown by dots).
(Right) Corresponding vortex configuration. Shaded triangles
contain a vortex, uniformly delocalized over the three sites of
each triangle. Note that the supercurrents vanish on every bond
of the dice lattice.

delocalizing over hexagonal plaquettes of the dual kagomé
lattice. We can estimate the energy gain in this state due to
the vortex delocalization, compared to the w < O state, as
follows. Interaction energy of the vortices (energy of the
supercurrents) is of order 71t per lattice site. Vortex kinetic
energy (energy gain from phase fluctuations) is of order U
per site. Therefore, the energy gain in the w > 0 state,
compared to the w < 0 state, is of order 7it(U/iit)?, which
is not small when U ~ 7it. Thus, we find that the state in
Fig. 4 is the ground state of the vortices in our problem.
Since the vortices are not localized on sites of the kagomé
lattice, but are partially delocalized over plaquettes, we call
this state a VP state.

Let us now discuss how to observe the VP state experi-
mentally. Creating an optical lattice with a dice geometry
experimentally is more difficult than most other 2D latti-
ces, but fortunately still possible with the current technol-
ogy. We propose the following procedure [see Ref. [12] for
an alternative proposal]. One first creates a kagomé lattice,
which is done using the laser field potential proposed in
Ref. [19]: Ii(r) = 37_[cos(k; - r + ) + 2 cos(3 k; -
r+ @)]2, where k; = (m, \/3m), k, = (7, —/37),
k; = (—27,0), 0, = 03 =1, and o, = —1. Here the
maxima of the potential correspond to the kagomé lattice
sites. To create a perfect dice lattice we superimpose two
additional laser potentials that have a triangular lattice
geometry: L(r) =437 cos’(Gk;r), and IL(r) =
_4Z?=1 COSz(gi : I'), where g1 = (77" W/\/§)9 g =
(0, —27r/~/3), and g3 = (—, /+/3). Here I,(r) has max-
ima at the sixfold coordinated sites of the dice lattice, while
I;(r) has minima at both threefold and sixfold coordinated
sites. The superposition of I(r), I,(r), and I3(r) creates a
perfect dice lattice, in which all potential wells have equal
depth. Effective magnetic flux in this setup can be created
by the rotating mask method [9], which generates a rotat-
ing optical lattice potential.

Alternatively, the proposal of Ref. [4] can be used to
create the effective perpendicular field. One uses the com-
bination of a time-dependent quadrupolar potential V(¢) =
Vgp sin(w?)xy and a temporal modulation of the tunneling

FIG. 3 (color online). (Left) Order parameter configuration
corresponding to the v, w <0 state. (Right) Corresponding
supercurrent  configuration. Plaquettes, containing vor-
tices (shown by circles), are the ones that have supercurrents
circulating around them in the counterclockwise direction.
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FIG. 4 (color online). (Left) Order parameter configuration
corresponding to the v <0, w > 0 state. Expectation value of
the order parameter vanishes on some of the sixfold coordinated
sites (shown by dots). (Right) Corresponding supercurrent con-
figuration. Note that none of the plaquettes contain a full vortex.
Instead, vortices are bound into triplets populating the groups of
six plaquettes, adjacent to sixfold coordinated sites with zero
order parameter expectation value. Below, SF order parameter
phase snapshots, corresponding to the two resonating vortex
triplet configurations are shown.

amplitudes for different nearest-neighbor directions in the
dice lattice. Modulation of the tunneling amplitudes can be
achieved in our case by varying the strengths of the three
components of the I(r) potential. To achieve the flux of
27/3 per plaquette, the parameters of the quadrupolar
potential have to be chosen such that V,,/hw = 7/ 2./3.
In this setup, time-of-flight interference imaging can be
used to study the periodic structure of the vortex lattice.
Lattice periodicity, however, is not enough to distinguish
the VP state we found from the state in Fig. 3, since they
have identical reciprocal lattice vectors. VP ordering can
be detected by analyzing nontrivial noise correlations [20]
that will be present in the time-of-flight image. Namely, in
addition to the sharp peaks in the density distribution (i.e.,
first order correlation function), corresponding to the re-
ciprocal lattice vectors g;/3 of the vortex lattice, one
should observe strong incoherent background. Such a
background would be absent in a regular superfluid, in
which all vortices are strictly localized. This is due to the
fact that the vortex motion locally destroys phase coher-
ence on some sites of the optical lattice. In the case of the
VP state, described above, the incoherent background con-
tains correlations at the same wave vectors g;/3, which
may be found by measuring the density autocorrelation
function. If the perpendicular field is created by the rotat-
ing mask technique, one can use interference between two
identical corotating condensates [21] to image the vortex
lattice configurations.

In conclusion, we have proposed that vortices in optical
lattice SF may exist in VP ground states, which are direct
analogs of valence-bond-solid states of interacting bosons.
In particular, we have demonstrated that in the case of a
dice optical lattice with vortex filling of 1/3 per plaquette,
the ground state of the vortices is a plaquette VP state, in
which vortices bind into triplets that resonate between two
degenerate configurations on plaquettes of the dual ka-
gomé lattice. Such unconventional vortex ordering is a
result of an order-by-disorder phenomenon, where exten-
sive degeneracy of frustrated classical vortex configura-
tions is lifted by quantum fluctuations.
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