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BOSE–EINSTEIN CONDENSATES

Fluctuating fringes
When two one-dimensional Bose–Einstein condensates interfere, they exhibit a 
fl uctuating interference pattern. The full statistical distribution of the interference 
amplitude can be predicted, thanks to a remarkable connection to several 
exactly solvable problems.
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An interference experiment is perhaps the best 
way to demonstrate the importance of the 
concept of ‘quantum phase’. When confronted 

with the double-slit experiment, we all have to accept 
quantum mechanics, however strange the theory 
may seem. Interference between Bose–Einstein 
condensates was fi rst demonstrated1 in 1996, 
providing clear evidence for phase coherence over 
the condensate. Th is fi nding also introduced a way 
to study quantum phases in many-particle systems. 
Interference between two one-dimensional Bose–
Einstein condensates might seem uninteresting, as 
strong fl uctuations in one dimension kill the global 
phase coherence. However, the interference between 
fl uctuating local quantum phases still yields a non-
vanishing interference fringe, whose amplitude also 
fl uctuates. Th us the statistics of the interference fringe 
amplitude do indeed contain valuable information on 
the phase fl uctuations. As reported on page 705 of this 
issue2, Gritsev et al. predict exactly the full statistical 
distribution of the interference signal in the low-
energy limit, using an interesting connection to many 
diff erent physical problems in one dimension.

Th e strong fl uctuations in one dimension make it 
diffi  cult to apply conventional theoretical tools such 
as mean-fi eld theory. On the other hand, the long 
quest to solve interacting quantum many-particle 
systems has led to several beautiful exact solutions 
specifi c to one dimension. As early as 1931, Bethe 
found exact eigenstates for the spin-1/2 Heisenberg 
chain3. Th e ‘Bethe Ansatz’ solution evolved into a 
rich fi eld of integrable systems. In 1950, Tomonaga4 
showed that a certain model of interacting fermions in 
one dimension can be mapped exactly to a quantized 
sound wave: a system of non-interacting phonons. 
Later works by Luttinger, Luther, Haldane and many 
others have established that the quantized sound wave 
exactly describes the low-energy limit of a wide range 
of one-dimensional systems, including interacting 
fermions, spin chains and condensates of interacting 
bosons. Such a state is now called a Tomonaga–
Luttinger liquid (TLL) or simply Luttinger liquid.

It is not specifi c to one dimension that the 
sound wave appears as a collective excitation in an 
interacting many-particle system. Th e miracle in 
one dimension is that all the fl uctuations in the low 
energy limit can be captured in terms of the ‘phonon 
fi eld’ describing the density fl uctuation. Th is property 
is deeply connected to the fact that the ‘phase fi eld’, 
which describes the local quantum phase fl uctuation, 
can be defi ned in terms of the phonon fi eld. Th ese 
fi elds, which are two faces of a coin, satisfy a sort of 
uncertainty relation generalizing the well-known one 
between the particle number and the phase.

Interesting physical quantities, such as the local 
density of states, which is relevant for tunnelling and 
photoemission experiments, are oft en related to two-
point correlation functions (the correlation function 
of operators at two diff erent points). In a TLL, all such 
correlation functions decay algebraically as a function 
of distance, refl ecting the critical nature of the state. 
Th is algebraic decay implies various power-law 
anomalies in physical quantities, some of which have 
indeed been confi rmed experimentally.

Concerning the interference between two 
one-dimensional Bose–Einstein condensates, the 
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Figure 1 Too hard to climb? 
If each step represents the 
calculation of a moment, it 
seems impossible to determine 
the statistical distribution of 
the interference amplitude by 
computing all the moments. 
Higher-order moments are 
related to correlations among 
a larger number of points, 
and are increasingly diffi cult 
to evaluate. To determine 
the full distribution, we need 
to know all the moments 
up to infi nite order. This is 
similar — in fact essentially 
identical — to the diffi culty in 
carrying out perturbation theory 
on an interacting system to 
higher orders.
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interference signal is related to the correlation 
between local phases of the two condensates. If each 
condensate had a rigid global phase, the amplitude 
of the interference fringe would be constant, with 
just the relative phase being random. In fact, the 
phase also fl uctuates within each one-dimensional 
condensate, leading to a statistical fl uctuation of the 
amplitude of the interference fringe. Polkovnikov and 
co-workers5 pointed out that the squared average of 
the amplitude is related to the two-point correlation 
function, which indicates the loss of phase coherence 
as a function of distance. However, the statistical 
distribution of the amplitude contains much more 
information than just its average value. In fact, the 
full distribution specifi es all the moments, which are 
the average of (2n)th powers of the amplitude for all 
n = 1, 2, 3, 4… Th e (2n)th moment is related to the 
2n-point function that indicates the phase correlation 
at 2n diff erent locations within each one-dimensional 
condensate. Th us the full statistical distribution of the 
interference amplitude provides an intriguing way to 
characterize the phase fl uctuation, beyond the two-
point correlation function that is usually studied.

At the same time, it presents a challenging 
problem for theorists. It seems impossible to obtain 
the full distribution function by evaluating all the 
moments up to infi nite order. Actually, this is similar 
to the general diffi  culty in dealing with an interaction. 
A standard approach is the perturbative expansion 
in powers of the interaction. In principle it would be 
possible to obtain an exact result by summing over 
all orders of the perturbative expansion, where the 
mth-order term is given by an m-point correlation 
function in the free theory. But needless to say, this 
is usually practically impossible, with each successive 
step becoming more diffi  cult (Fig. 1); otherwise many 
of the current issues would have been solved.

Amusingly, the above ‘similarity’ is not just an 
analogy. Let us consider the diff erent physical problem 
of an impurity in a TLL, which is interesting in its 
own right6. Th e impurity tends to pin the phonon fi eld 
at the impurity location to a preferred value. It induces 
a local anharmonicity, or interaction among phonons. 
Th e perturbative expansion with respect to this 
‘interaction’ actually matches exactly the moments of 
the interference amplitude discussed above.

Th e remarkable point is that the impurity problem 
is exactly solvable7 in the above context, using the 
Bethe Ansatz approach. Going backwards from the 
exact solution, we can read off  all the moments for 

the interference amplitude distribution. Actually, to 
construct the full statistical distribution, it is necessary 
to solve an apparently unphysical problem, where the 
impurity strength is purely imaginary — a situation 
that cannot be easily handled using the original 
Bethe Ansatz approach. In 1971, Baxter introduced 
the concept of a Q-operator, in order to solve the 
spin-1/2 chain with a completely anisotropic exchange 
interaction8. Extended to conformal fi eld theory, an 
important class of exactly solvable theory (which 
actually includes TLL as a special case) formulated in 
1983 by Belavin, Polyakov and Zamolodchikov9, the 
Q-operator turns out to give the desired solution for 
the imaginary impurity strength2,10.

Connecting all these links, the full distribution 
function can fi nally be calculated2. Gritsev et al. 
have thus succeeded in making a highly non-trivial 
prediction of a quantum phenomenon, bringing 
together achievements of mathematical physics over 
several decades.

Our mathematically oriented colleagues 
oft en have had diffi  cult confrontations with other 
physicists (sometimes including myself) who ask 
how all these funny mathematics are related to 
any physics. Th ose physicists might become more 
sympathetic if they recall their own diffi  culty with a 
non-scientist who questions the practical benefi t of 
physics research. In parallel to the relation between 
science and technology, mathematics does not always 
follow demands, but could have quite unexpected 
applications in describing observable phenomena. As 
the work by Gritsev et al. testifi es, this tendency seems 
even more true than ever; something diffi  cult to fi nd 
in nature could be engineered in artifi cial structures, 
especially with cold atoms. We can hope that cold 
atoms will link more (seemingly) ‘purely imaginary’ 
theories with reality.
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