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Photons rarely interact—which makes it challenging to build all-optical devices in which one light signal controls another. Even in
nonlinear optical media, in which two beams can interact because of their influence on the medium’s refractive index, this interaction
is weak at low light levels. Here, we propose a novel approach to realizing strong nonlinear interactions at the single-photon level,
by exploiting the strong coupling between individual optical emitters and propagating surface plasmons confined to a conducting
nanowire. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire,
which can be coherently controlled using conventional quantum-optical techniques. Furthermore, we discuss how the interaction can
be tailored to create a single-photon transistor, where the presence (or absence) of a single incident photon in a ‘gate’ field is sufficient
to allow (or prevent) the propagation of subsequent ‘signal’ photons along the wire.

In analogy with the electronic transistor, a photonic transistor
is a device where a small optical ‘gate’ field is used to control
the propagation of another optical ‘signal’ field via a nonlinear
optical interaction1,2. Its fundamental limit is the single-photon
transistor, where the propagation of the signal field is controlled
by the presence or absence of a single photon in the gate
field. Such a nonlinear device has many interesting applications
from optical communication and computation2 to quantum-
information processing3. However, its practical realization is
challenging because the requisite single-photon nonlinearities are
generally very weak1. Several schemes for producing nonlinearities
at the single-photon level are currently being explored, ranging
from resonantly enhanced nonlinearities of atomic ensembles4–8

to individual atoms coupled to photons in cavity quantum
electrodynamics (QED)9–13, and possibilities of single-photon
switching in these contexts have also been proposed5,14. However,
a robust, practical approach has yet to emerge.

Recently, a new method to achieve strong coupling between
light and matter was proposed15. It makes use of the tight
concentration of optical fields associated with guided surface
plasmons on conducting nanowires to achieve strong interaction
with individual optical emitters. The tight localization of these
fields causes the nanowire to act as a very efficient lens that
directs the majority of spontaneously emitted light into the surface-
plasmon modes, resulting in efficient generation of single surface
plasmons (that is, single photons)15. Here, we show that such
a system enables the realization of remarkable nonlinear optical
phenomena, where individual photons strongly interact with each
other. As an example, we describe how this nonlinearity may
be exploited to implement a single-photon transistor. Although
ideas for developing plasmonic analogues of electronic devices by
combining surface plasmons with electronics are already being
explored16,17, the process we describe here opens up fundamentally
new possibilities, in that it combines the ideas of plasmonics with
the tools of quantum optics5,7,8,10 to achieve unprecedented control
over the interactions of individual light quanta.

NANOWIRE SURFACE PLASMONS: INTERACTION WITH MATTER

Surface plasmons are propagating electromagnetic modes confined
to the surface of a conductor–dielectric interface16,18. Their unique
properties make it possible to confine them to subwavelength
dimensions, which has led to fascinating new approaches to
waveguiding below the diffraction limit19, enhanced transmission
through subwavelength apertures20, subwavelength imaging21,22 and
enhanced fluorescence23–25. Recently, signatures of strong coupling
between molecules and surface plasmons have also been observed
via a splitting of the surface-plasmon mode dispersion26,27. It is
important to emphasize that these observations can be described
in terms of classical, linear optical effects. Below, however, we
consider how the confinement of surface plasmons on a conducting
nanowire and their coupling to an individual, proximal optical
emitter (see Fig. 1a,b) can also give rise to controllable nonlinear
interactions between single photons.

Much like a single-mode fibre, the surface-plasmon modes
of a conducting nanowire constitute a one-dimensional single-
mode continuum that can be indexed by the wavevectors k along
the direction of propagation15,19,28. Unlike a fibre29, however, the
nanowire exhibits good confinement and guiding even when its
radius is reduced well below the optical wavelength (R � l0).
Specifically, in this limit, the surface plasmons exhibit strongly
reduced wavelengths and small transverse-mode areas relative
to free-space radiation, which scale as lpl ∝ 1/k ∝ R and
Aeff ∝ R2, respectively. The tight confinement results in a large
coupling constant g ∝1/

√
Aeff between the surface-plasmon modes

and any proximal emitter with a dipole-allowed transition. The
reduction in group velocity also yields an enhancement of the
density of states, D(ω) ∝ 1/R. The spontaneous emission rate into
the surface plasmons, Γpl ∼ g2(ω)D(ω) ∝ (l0/R)3, can therefore
be much larger than the emission rate Γ ′ into all other possible
channels. Physically, Γ ′ includes contributions both from emission
into free space and non-radiative emission via ohmic losses in
the conductor15. A relevant figure of merit is an effective Purcell
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Figure 1 Interaction of single surface plasmons with a single emitter. a, Two-level emitter interacting with the nanowire. States |g〉 and |e〉 are coupled via the
surface-plasmon modes with a strength g. b, Schematic diagram of a single incident photon scattered off a near-resonant emitter. The interaction leads to reflected and
transmitted fields whose amplitudes can be calculated exactly. c, The maximum Purcell factor of an emitter positioned near a silver nanowire (ε ≈ −50+0.6i ) and
surrounded by a uniform dielectric (ε = 2), as a function of wire diameter. The plot is calculated using the method in refs 15,28 and the silver properties used correspond to a
free-space wavelength of l0 = 1 µm. d, Probabilities of reflection (solid line), transmission (dotted line) and loss (dashed line) for a single photon incident on a single emitter,
as a function of detuning. The Purcell factor for this system is taken to be P= 20.

factor, P ≡ Γpl/Γ ′, which can exceed 103 in realistic systems
(see Fig. 1c). This result is in contrast with nanoscale optical
fibres, where the inability to confine photons below the diffraction
limit results in values of P ∼

< 1 (ref. 30). Furthermore, we note
that this strong coupling is broadband, as it arises purely from
geometrical considerations as opposed to any resonant features
of the surface plasmons. This is in direct contrast, for example,
to the mechanism by which strong coupling is achieved in
cavity QED.

Motivated by these considerations, we now describe a general
one-dimensional model of an emitter strongly coupled to a set of
travelling electromagnetic modes (see Fig. 1a,b). We first consider
a simple two-level configuration for the emitter, consisting of
ground and excited states (|g〉,|e〉) separated by frequency ωeg. The
corresponding hamiltonian is

H = h̄(ωeg − iΓ ′/2)σee +

∫
dk h̄c|k|â†

k âk

− h̄g

∫
dk

(
σeg âkeikza +h.c.

)
, (1)

where σij = |i〉〈j|, âk is the annihilation operator for the mode
with wavevector k and za is the emitter position. We have assumed
that a linear dispersion relation holds over the relevant frequency
range, νk = c|k|, where c is the group velocity of the surface
plasmons, and similarly that g is frequency-independent. In the
spirit of the ‘quantum jump’ description of an open system31, we
have also included a non-Hermitian term in H due to the decay
of state |e〉 at a rate Γ ′ into the other channels. This effective
hamiltonian accurately describes the dynamics provided that the
thermal energy kBT � h̄ωeg, where kB is the Boltzmann constant
(see the Supplementary Information for further discussion of
this model).

SINGLE EMITTER AS A SATURABLE MIRROR

The propagation of surface plasmons can be markedly altered
by interaction with the single two-level emitter. In particular,
for low incident powers, the interaction occurs with near-unit
probability, and each photon can be reflected with very high
efficiency. However, for higher powers the emitter response rapidly
saturates, as it is not able to scatter more than one photon at a time.
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Figure 2 Second-order correlation function g (2) (t ) for the reflected and transmitted fields at low incident power (Ωc/Γ = 0.01). g (2) (t ) for the reflected field is
independent of P at low powers. For the transmitted field, going from left to right, the Purcell factors are P= 0.6,1,1.5 and 2, respectively. A rise in g (2) (0) for large Purcell
factors indicates a strong initial bunching of photons at the transmitted end. This initial bunching is accompanied by an antibunching effect, g (2) (t0 )≈ 0, at some later time
t0 = (4logP )/Γ for P≥ 1. For high incident powers (not shown), g (2) (t ) approaches unity for all times owing to a saturation of the atomic response.

The low-power behaviour can be understood by first
considering the scattering of a single photon, as shown
schematically in Fig. 1b. As we are interested only in surface-
plasmon modes near the optical frequency ωeg, we can
effectively treat left- and right-propagating surface plasmons
as completely separate fields. We define operators that
annihilate a left (right)-propagating photon at position z,
ÊL(R)(z) = (1/

√
2π)

∫
dk eikz âL(R),k, where operators acting on the

left and right branches are assumed to have vanishing commutation
relations with the other branch. An exact solution to the scattering
from the right to left branches in the limit P → ∞ was derived in
ref. 32 by solving for the scattering eigenstates of the system, and the
approach can be generalized to finite P (see the Methods section).
The reflection coefficient for an incoming photon of wavevector
k is

r(δk) = −
1

1+Γ ′/Γpl −2iδk/Γpl

, (2)

where δk ≡ ck − ωeg is the photon detuning, whereas the
transmission coefficient is given by t(δk) = 1 + r(δk). Here,
Γpl = 4πg2/c is the decay rate into the surface plasmons, as
obtained by application of Fermi’s golden rule to the hamiltonian
in equation (1). On resonance, r ≈ −(1−1/P), and thus for large
Purcell factors the emitter in state |g〉 acts as a nearly perfect
mirror, which simultaneously imparts a π-phase shift on reflection.
The bandwidth 1ω of this process is determined by the total
spontaneous emission rate, Γ = Γpl + Γ ′, which can be quite
large. Furthermore, the probability κ of losing the photon to the
environment is strongly suppressed, κ≡1−R−T =2R/P, where
R(T ) ≡ |r|2(|t|2) is the reflectance (transmittance). These results
are shown in Fig. 1d, where R,T and κ are plotted as a function of
detuning δk, taking a conservative value of P = 20.

The nonlinear response of the system can be seen by
considering the interaction of a single emitter not just with a
single photon, but with multiphoton input states. To be specific,
we consider the case when the incident field consists of a coherent
state, the quantum-mechanical state that most closely corresponds
to a classical field31 (note also similar work in refs 33,34 where
scattering of two-photon states is considered). We assume that
the incident field propagates to the right, with 〈ÊR〉 = Ec(z, t),
and that the emitter is initially in the ground state. As shown in
the Methods section, by transformation the initial coherent state
can be formally mapped to an external Rabi frequency (given by
Ωc =

√
2πgEc) in the hamiltonian, which allows all quantities of

interest (for example, field correlation functions) to be calculated

exactly. For a narrow bandwidth (δω�Γ ), resonant (δk =0) input
field, the steady-state transmittance and reflectance are found to be

T =
1+8(1+P)2(Ωc/Γ )2

(1+P)2(1+8(Ωc/Γ )2)
,

R =

(
1+

1

P

)−2 1

1+8(Ωc/Γ )2
.

At low powers (Ωc/Γ � 1), the emitter has scattering
properties identical to the single-photon case, R ≈ (1 + 1/P)−2,
T ≈ (1+P)−2, and for large Purcell factors the single emitter again
acts as a perfect mirror. At high incident powers (Ωc/Γ � 1),
however, the emitter saturates and most of the incoming photons
are transmitted past with no effect, T → 1,R ∼ O((Γ /Ωc)

2).
The significance of these results can be understood by noting that
saturation is achieved at a Rabi frequency Ωc ∼Γ that, in the limit
of large P, corresponds to a switching energy of a single quantum
(∼h̄ν) within a pulse of duration ∼1/Γ .

PHOTON CORRELATIONS

The strongly nonlinear atomic response at the single-photon level
leads to pronounced modification of photon statistics that cannot
be captured by only considering average intensities, but appear in
higher-order correlations of the transmitted and reflected fields.
Specifically, we focus on the normalized second-order correlation
functions, g (2)

R,L(t), which for a stationary process are defined as

g (2)

β=R,L(z, t) ≡ 〈Ê†
β(z,τ)Ê†

β(z,τ+ t)Êβ(z,τ+ t)Êβ(z,τ)〉/

〈Ê†
β(z,τ)Êβ(z,τ)〉2,

where t denotes the difference between the two observation times τ
and τ+ t .

The statistics of the reflected field is identical to the well-known
result for resonance fluorescence31 in three dimensions (see Fig. 2)
because it is a purely scattered field. It follows that the field is
strongly antibunched, g (2)(0) = 0, as the emitter can only absorb
and re-emit one photon at a time. The transmitted field, however,
has unique properties because it is a sum of the incident and
scattered fields. For near-resonant excitation and low powers (see
the Methods section),

g (2)(t) = e−Γ t
(
P2

−eΓ t/2
)2

+O(Ω 2
c /Γ

2),
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Figure 3 Schematic diagram of transistor operation involving a three-level emitter. In the storage step, a gate pulse consisting of zero or one photon is split equally in
counter-propagating directions and coherently stored using an impedance-matched control field Ω (t ). The storage results in a spin flip conditioned on the photon number. A
subsequent incident signal field is either transmitted or reflected depending on the photon number of the gate pulse, owing to the sensitivity of the propagation to the internal
state of the emitter.

whereas for high powers, g (2)(t) approaches unity for all times
owing to saturation of the atomic response. The low-power
behaviour reflects that of an efficient single-photon switch.
Specifically, for P � 1, individual photons have a large reflection
probability, but when two photons are incident simultaneously the
transition saturates, so that pairs have a much larger probability
of transmission (for P � 1, the emitter has little influence and the
transmitted statistics are almost unchanged). This phenomenon
yields a strong bunching effect at t = 0 that behaves like
g (2)(0) ≈ P4. Furthermore, at time t0 = (4 log P)/Γ there is a
subsequent antibunching and perfect vanishing of g (2)(t) for weak
input fields. A more detailed analysis of these features is given in
the Supplementary Information (also see ref. 35 for a discussion of
a similar phenomenon in cavity QED).

IDEAL SINGLE-PHOTON TRANSISTOR

A greater degree of coherent control over the field interaction can
be gained by considering a multilevel emitter, such as the three-
level configuration shown in Fig. 3. Here, a metastable state |s〉
is decoupled from the surface plasmons owing to, for example,
a different orientation of its associated dipole moment, but is
resonantly coupled to |e〉 via some classical, optical control field
with Rabi frequency Ω (t). States |g〉 and |e〉 remain coupled via
the surface-plasmon modes as discussed earlier. Using this system,
we now describe a process in which a single ‘gate’ photon can
completely control the propagation of subsequent ‘signal’ pulses
consisting of either individual or multiple photons, whose timing
can be arbitrary. In analogy to the electronic counterpart, this
corresponds to an ideal single-photon transistor.

We first describe how one can achieve coherent storage of a
single photon, which is an important ingredient as it provides an
atomic memory of the gate field and thus allows the gate to interact
with the subsequent signal. We initialize the emitter in |g〉 and
apply the control field Ω (t) simultaneous with the arrival of a
single photon in the surface-plasmon modes. The control field, if
properly chosen (or ‘impedance-matched’)36, will result in capture
of the incoming single photon while inducing a spin flip from |g〉

to |s〉. Generally, by time-reversal symmetry37, the optimal storage
strategy is the time-reversed process of single-photon generation,

where the emitter is driven from |s〉 to |g〉 by the external field
while emitting a single photon whose wavepacket depends on Ω (t).
By this argument, it is evident that optimal storage is obtained
by splitting the incoming pulse and having it incident from both
sides of the emitter simultaneously (see Fig. 3), and that there is
a one-to-one correspondence between the incoming pulse shape
and the optimal field Ω (t). The storage efficiency is identical to
that of single-photon generation and is thus given by ∼1 − 1/P
for large P (ref. 15) (also see the Supplementary Information for
an exact solution of the system dynamics). A detailed analysis
reveals that this optimum is achievable for any input pulse of
duration T � 1/Γ and for a certain class of pulses of duration
T ∼ 1/Γ (ref. 37). Finally, if no photon impinges on the emitter,
the pulse Ω (t) has no effect and the emitter remains in |g〉 for the
entire process. The result is more generally described as a mapping
between single surface-plasmon states and metastable atomic states
(α|0〉+β|1〉)|g〉 → |0〉(α|g〉+β|s〉).

Next, we consider the reflection properties of the emitter when
the control field Ω (t) is turned off. If the emitter is in |g〉,
the reflectance and transmittance derived above for the two-level
emitter remain valid. On the other hand, if the emitter is in
|s〉, any incident fields will simply be transmitted with no effect
because |s〉 is decoupled from the surface plasmons. Therefore,
with Ω (t) turned off, the three-level system effectively behaves as
a conditional mirror whose properties depend sensitively on its
internal state.

The techniques of state-dependent conditional reflection and
single-photon storage can be combined to create a single-photon
transistor, whose operation is shown in Fig. 3. The key principle is
to use the presence or absence of a photon in an initial ‘gate’ pulse to
conditionally flip the internal state of the emitter during the storage
process, and to then use this conditional flip to control the flow of
subsequent ‘signal’ photons arriving at the emitter. Specifically, we
first initialize the emitter in |g〉 and apply the storage protocol for
the gate pulse, which consists of either zero or one photon. The
presence (absence) of a photon causes the emitter to flip to (remain
in) state |s〉 (|g〉). Now, the interaction of each signal pulse arriving
at the emitter depends on the internal state following storage. The
storage and conditional spin flip causes the emitter to be either
highly reflecting or completely transparent depending on the gate,

810 nature physics VOL 3 NOVEMBER 2007 www.nature.com/naturephysics

© 2007 Nature Publishing Group 

 



ARTICLES

Emitter–surface-plasmon coupling

Surface-plasmon–waveguide coupling

Losses

Tapered nanowire

Dielectric waveguide

Figure 4 Schematic diagram of in- and out-coupling of surface plasmons on a
tapered nanowire to an evanescently coupled low-loss dielectric waveguide.
Here, a single photon originally in the waveguide is transferred to the nanowire,
where it interacts with the emitter before being transferred back into the waveguide.
The coupling between the nanowire and waveguide is efficient only when they are
phase-matched (in the regions indicated by the blue peaks). The phase-matching
condition is poor in the regions of the wire taper and in the bending region of the
waveguide away from the nanowire. Dissipative losses (in red) are concentrated to a
small region near the nanowire taper, owing to a large concentration of fields here.

and the system therefore acts as an efficient switch or transistor for
the subsequent signal field.

The ideal operation of the transistor is limited only by the
characteristic time over which an undesired spin flip can occur. In
particular, if the emitter remains in |g〉 after storage of the gate
pulse, the emitter can eventually be optically pumped to |s〉 on
the arrival of a sufficiently large number of photons in the signal
field. For strong coupling, the number of incident photons, n, that
can be scattered before pumping occurs is given by the branching
ratio of decay rates from |e〉 to these states, n ∼ Γe→g/Γe→s, which
can be large owing to the large decay rate Γe→g ≥ Γpl. Thus, n ∼

> P
and the emitter can reflect O(P) photons before an undesired spin
flip occurs. This number corresponds to the effective ‘gain’ of the
single-photon transistor.

Finally, we note that there are other possible realizations of a
single-photon transistor. The ‘impedance-matching’ condition and
need to split a pulse for optimal storage, for example, can be relaxed
using a small ensemble of emitters and photon storage techniques
on the basis of electromagnetically induced transparency38. Here,
storage also results in a spin flip within the ensemble that sensitively
alters the propagation of subsequent photons.

INTEGRATED SYSTEMS

Inevitably, surface plasmons experience losses as they propagate
along the nanowire, which could potentially limit their feasibility
as long-distance carriers of information and in large-scale devices.
For the nanowire, we must consider the trade-off between the
larger Purcell factors obtainable with smaller diameters and a
commensurate increase in dissipation due to the tighter field
confinement. However, these limitations are not fundamental if
we can integrate surface-plasmon devices with low-loss dielectric
waveguides. Here, the surface plasmons can be used to achieve
strong nonlinear interactions over very short distances, but are
rapidly in- and out-coupled to conventional waveguides for long-
distance transport. One such scheme is shown in Fig. 4, where
excitations are transferred to and from the nanowire via an
evanescently coupled, phase-matched dielectric waveguide. The
losses will be small provided that the distance needed for the
surface plasmons to be coupled in and out and interact with the
emitter is smaller than the characteristic dissipation length, which
can be accomplished using optimized surface-plasmon geometries
(for example, tapered wires or nanotips15,28) or periodic structures

with engineered surface-plasmon dispersion relations39. Coupling
efficiencies of ∼95%, for example, are predicted using simple
systems28. Such a conductor–dielectric interface would provide
convenient integration with conventional optical elements, enable
many nonlinear operations without loss and make large-scale
integrated photonic devices feasible.

Another key feature of nanoscale surface plasmons is that the
strong interaction is very robust. Because the large coupling occurs
over a very large bandwidth and requires no special tuning of
either the emitter or nanowire, surface plasmons are promising
candidates for use with solid-state emitters such as quantum-dot
nanocrystals40 or colour centres41, where the spectral properties
can vary over individual emitters. Colour centres in diamond41,
for instance, are especially promising because they offer sharp
optical lines and three-level internal configurations. At the same
time, guided surface plasmons might be used for trapping isolated
neutral atoms in the vicinity of suspended wires, thereby creating
an effective interface for isolated atomic systems.

OUTLOOK

A single-photon transistor can be used for many important
applications such as efficient single-photon detection, where the
large gain in the signal field enables efficient detection of the
gate pulse. This system also finds applications in quantum-
information science. Schrodinger cat states of photons can be
prepared, for example, if the gate pulse contains a superposition
of zero and one photon, as this initial pulse becomes entangled
with the propagation direction of potentially many subsequent
signal photons. The controlled-phase gate for photons proposed
in ref. 11 for cavity QED is also directly extendable to our
system. In particular, this scheme relies on conditional phase
shifts acquired as photons are reflected from a resonant cavity
containing a single atom, which are analogous to the reflection
dynamics derived for single surface plasmons here. In addition,
by using surface plasmons it is possible to achieve very large
optical depths with just a few emitters, which makes this system
effective for realizing electromagnetically induced transparency-
based nonlinear schemes4,6–8. Finally, the present system is an
intriguing candidate to observe phenomena associated with
strongly interacting, one-dimensional many-body systems. For
example, non-perturbative effects such as dynamical cross-overs42

involving photons can be explored. Higher-order correlations
created in the transmitted field can become a useful tool to
study and probe the non-equilibrium quantum dynamics of these
strongly interacting photonic systems.

METHODS

SINGLE-PHOTON DYNAMICS
Because we are interested only in the dynamics of near-resonant photons with
an emitter, we can make the approximation that left- and right-propagating
photons form completely separate quantum fields32. We define annihilation
and creation operators for the two fields, âL(R),k , â†

L(R),k , where the index k
runs over the range ±∞; in principle, this allows for the existence of
negative-energy modes, but this is unimportant if we consider near-resonant
dynamics. Under this approximation, the relevant terms in equation (1) are
transformed via

∫
dk h̄c|k|â†

k âk →
∫

dk h̄ck(â†
R,k âR,k + â†

L,−k âL,−k) and
σeg âkeikza → σeg(âR,k + âL,k)eikza .

To solve for the reflection and transmission coefficients of single-photon
scattering, we write the general wavefunction for a system containing one
(either photonic or atomic) excitation in the following way (here, a two-level
emitter is assumed),

|ψk〉 =

∫
dz

(
φL(z)Ê†

L(z)+φR(z)Ê†
R(z)

)
|g ,vac〉+ ce|e,vac〉.
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The field amplitudes are chosen to correspond to photons of well-defined
momenta in the limits z → ±∞, for example, φR(z → −∞) ∼ eikz ,
φR(z → ∞) ∼ teikz and φL(z → −∞) ∼ re−ikz for a photon propagating
initially to the right, where t(r) is the transmission (reflection) coefficient.
Following ref. 32, we obtain equation (2) by solving the time-independent
Schrodinger equation H|ψk〉 = Ek|ψk〉 for r, t and ce . Here the loss term in the
effective hamiltonian yields the probability that the incoming photon is lost
during the scattering process, and it is not necessary to take quantum jumps
into account regardless of the jump probability.

MULTIPHOTON DYNAMICS
For a coherent state input and for an emitter initialized in its ground state, the
initial state can be written in the form |ψ̃(t → −∞)〉 = D({αke−iνk t

})|vac〉|g〉,
where the displacement operator D({αk}) ≡ exp(

∫
dk â†

R,kαk −α∗

k âR,k) creates
a multimode coherent state from vacuum31. This property of the displacement
operator motivates a state transformation given by43

|ψ̃〉 = D
(
{αke−iνk t

}
)
|ψ〉, (3)

so that the initial state is transformed into |ψ(t → −∞)〉 = |vac〉|g〉. In the
Heisenberg picture (and for a field initially propagating to the right), the
right-going field operator transforms as ÊR(z, t) → ÊR(z, t)+Ec(z, t), where
the external field amplitude is Ec(z, t) = (1/

√
2π)

∫
dk αkeikz−iνk t . The

transformation thus maps the initial coherent state to a classical Rabi frequency
in the interaction hamiltonian, while simultaneously mapping the initial
photonic state to vacuum. The dynamics of the emitter interacting with the
field modes can now be treated under the Wigner–Weisskopf approximation,
that is, interaction with the vacuum modes gives rise to an exponential decay
rate from |e〉 to |g〉 at a rate Γ . The evolution of the atomic operators
consequently reduces to the usual Langevin–Bloch equations31, which enables
all properties of the atomic operators and the scattered field to be calculated.
Note that in these equations, the dissipative term in the effective hamiltonian of
equation (1) and the quantum-jump picture is now rigorously replaced by
dissipation and fluctuation (that is, noise) operators that influence evolution of
the atomic operators31.

In the two-branch approximation, the Heisenberg equations of motion for
the fields are given by(

∂

∂z
+

1

c

∂

∂t

)
ÊR(z, t) =

√
2πig

c
σge(t)δ(z − za),

which can be formally integrated, giving

ÊR(z, t) = ÊR,free(z − ct)+

√
2πig

c
σge (t − (z − za)/c)Θ (z − za), (4)

where Θ (z) is the step function. A similar equation holds for ÊL . Assuming
that the field initially propagates to the right, ÊR(z, t) is the field transmitted
past the emitter for z > za , whereas for z < za , ÊL(z, t) is the reflected field.

Under the transformation given by equation (3), the first-order correlation
function for the right-going field is given by

G(1)
R (z, t) = 〈(Ê†

R(z, t)+E∗

c (z, t))(ÊR(z, t)+Ec(z, t))〉, (5)

which on evaluating at z > za yields the average transmitted intensity (a similar
expression holds for the reflected intensity). We proceed by substituting
equation (4) into equation (5). Because the initial photonic state is vacuum
following the transformation, ÊR,free has no effect and thus calculation of G(1)

reduces to calculating correlations between atomic operators. Techniques for
evaluating these correlations are well known using the Langevin–Bloch
equations31. Calculation of g (2)(t) proceeds in a similar manner by using
equation (4) to express g (2)(t) in terms of two-time atomic correlations, which
can be evaluated using the well-known quantum-regression theorem31.
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