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Chapter 10

Topological Phases of

matter

10.1 Introduction

Exploration of different phases of matter has been the focus of condensed matter
physics, because not only they are the origin of many intriguing phenomena
in nature, but also the deep understanding of such phases led to tremendous
advance in technologies. Cold atom systems further extended the understanding
of the phases such as superfluid phase and Mott insulating phase through the
unprecedented control of the systems. We have seen in the previous lectures how
cold atom systems can study various phases with their unique probes such as
quantum noise, that are often not easily available in condensed matter systems.

Many phases, including superconductivity/superfluidity and ferro/anti-ferromagnetism
we have studied in this course, can be understood in terms of the theory of spon-
taneous symmetry breaking [1]. On the other hand, novel phases of matter that
cannot be understood in the paradigm of spontaneous symmetry breaking are
found through the experimental discoveries of integer and fractional quantum
Hall effects in 1980s[2, 3]. These phases are characterized not by order param-
eters but rather by topology of ground state wave functions. There are two
notable property of such topological phases. One is that topological phases are
characterized by integer numbers called topological invariants, and therefore,
direct manifestations of topological phases show a quantization of physical ob-
servables, corresponding to the topological invariants. We will see below one
such phenomenon through the example of integer quantum Hall(IQH) phase
where Hall conductivity is quantized to be an integer multiple of e2/h. An-
other important property is the robustness of such topological properties due to
the fact that topology is a characterization of ”global shape,” and it does not
change under a small, local deformations. This robustness allows the observa-
tion of the quantization of the Hall conductivity in IQH systems independent
of the shape of the materials as well as the amount of impurities present in the
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Figure 10.1: The configuration we consider in this lecture. Two di-
mensional electron gas is in x − y plane and magnetic field is point-
ing in z direction. The Hall current runs along x axis. reference:
http://www.warwick.ac.uk/ phsbm/qhe.htm

material. Topological robustness can also protect quantum information from
environment, and it has been suggested topological phases can host quantum
computations[4].

The study of topological phases of matter is still an early stage, but its
interest as a new phase of matter has been quickly increasing. In this lecture,
we will study an example of integer quantum Hall effects, and see the connection
between the physical phenomena and its topological origin.

10.2 Integer quantum Hall effect

10.2.1 phenemenon

Integer quantum Hall effect is observed in two dimensional electron gas in the
presence of strong transverse magnetic field(see Fig.10.1). Let the two dimen-
sional plane of electrons to be x−y plane, and the direction of magnetic field to
be z. We apply a weak electric field in y direction, and observe the conduction
of current in x and y direction, given by

(

Jx

Jy

)

=

(

σxx σyx
σxy σyy

)(

Ex

Ey

)

(10.1)

where Ey = E and Ex = 0. Because the electric field is in y direction, Jy

reflects the longitudinal conductivity, and Jx is Hall conductivity.
From classical consideration, it is easy to obtain the Hall conductivity. The

electrons that run at velocity v in +x direction feels the force evB/c in y di-
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Figure 10.2: The Hall resistivity of integer quantum Hall system. The red
line is ρxy and the green line is ρxx. Pronounced plateau is clearly observable.
reference: http://www.warwick.ac.uk/ phsbm/qhe.htm

rection, and get deflected on the edges. The accumulation of charges on the
edge continues until the electrostatic force coming from the accumulated charge
equals the force coming from the magnetic field. Therefore, E in y direction
is given by E = −vB/c. At this point, the current along x direction is given
by Jx = −env where n is the density of conduction electrons in the system.
Therefore, the Hall conductivity is σxy = enc

B . In this classical, simple analysis,
we see that the Hall conductivity is inversely proportional to B.

The actual experimental result of resistivity, which is the inverse of conduc-
tivity, is shown in Fig. 10.2. We see that for small magnetic field B, the Hall
resistivity indeed linearly increases with B, in agreement with the classical Hall
resistance we computed above. However for strong magnetic field, we see that
the transverse resistance ρxy becomes flat for a range of values of B. Moreover,
as it turns out, these plateaux occur precisely at values h

e2s with integers s. The
quantization of Hall resistance is so precise (more than 1 part in 107!) that it

can be used as the standard of fundamental constant α = e2

hc . Because funda-
mental constant α can also be determined by the measurements of electron g
factor (the ratio of spin angular momentum and magnetic moment) together
with Quantum Electro Dynamics calculations, integer quantum Hall effect is
even useful for the test of QED[5].

Because the longitudinal resistivity is zero at each plateau(see Fig.10.2), we
find that the resistivity tensor and conductivity tensors at the plateau take the
form

(

ρxx ρyx
ρxy ρyy

)

=

(

0 h
e2s

h
e2s 0

)

(10.2)

(

σxx σyx
σxy σyy

)

=

(

0 e2s
h

e2s
h 0

)

(10.3)
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where s is an integer which differs for each plateau. In this lecture, we will try
to understand this quantization of conductance in two different ways. First, the
quantizations of Hall conductivity can be simply explained by considering free
electrons in the presence of strong magnetic field. While this explanation gives
an explicit demonstration of quantized Hall conductance in this ideal situation,
it does not explain why such a phenomenon should be robust against disorders
and interactions. There are many different ways to account for this rich physics,
but we will take the approach from topology, and show that a hidden topological
structure of this phenomenon gives a generic explanation of the robustness.

10.2.2 Hall conductivity of translationally invariant sys-

tem

Hall conductivity of infinite two dimensional electron system in the presence
of magnetic field can be rather easily obtained by going to a moving frame[5].
As before, suppose that the electric field points in y direction with magnitude
E. If we move along x direction with velocity v = −cE

B , this electric field
disappears (in the lab frame, the force on electrons coming from the electric
field is cancelled with the force from magnetic field). Since there is no preferred
direction in this moving frame, it is clear that there is no current in the moving
frame. This implies, in return, that the current in the lab frame must be given
by Jx = −env = encE

B , where n is the density of electrons.

This expression of Hall current obtained in this fashion is valid not only
in classical treatment but also in quantum treatment as well, because we only
used the property of Galilean invariance to derive the result. Now from this
expression, it is seen that the quantization of Hall conductance is in principle
possible, if, for a range of magnetic fields, the density of electrons linearly scales
with magnetic field, i.e. n ∝ B. In the following sections, we will see how this
occurs in

10.2.3 Quantum mechanical treatment of free electrons in

the magnetic field

The Hamiltonian of free electrons in the presence of magnetic field can be written
as

H =
1

2m

(

−i~∂ − e

c
~A
)2

(10.4)

where we take the symmetric gauge for the vector potential and choose ~A =
B
2 (y,−x). This vector potential produces the magnetic field in z direction, i.e.
~B = ∇× ~A = Bẑ. Here we set ~ = 1. (One can confirm that this is a correct
Hamiltonian for the problem by, for example, writing the equation of motion
and checking that it correctly reproduces the equation of motion of the particle
in the presence of magnetic field).
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We can find the kinetic momenta πx and πy through

πx = m
dx

dt
= −i∂x − e

c
Ax (10.5)

πy = m
dy

dt
= −i∂y −

e

c
Ay (10.6)

It is important to note that the kinetic momenta for x and y do not commute
because of the coordinate dependence of ~A and the commutation relation is
given by

[πx, πy ] = −i eB
c

(10.7)

Here we define the characteristic length scale of the system l through l2 = c~
eB .

Let us define the ”raising” and ”lowering” operator through the relation

a† =
l√
2
(πx + iπy) a =

l√
2
(πx − iπy) (10.8)

They indeed satisfy the correct commutation [a, a†] = 1 as one can explicitly
check. Then it is easy to see that the Hamiltonian in Eq. (10.4) is given by

H =
~ωc

2
(a†a+ aa†) (10.9)

where ωc =
eB
cm is again cyclotron angular frequency.

From this expression of Hamiltonian, it is clear that the energy of free elec-
trons in the presence of magnetic field is quantized to be ~ωc(n+ 1/2) where n
is an integer. These states are often referred to as states in nth Landau levels.
The lowest energy state, or states in the first Landau level, is determined by
the condition a|G〉 = 0. A simple way to obtain the ground states is to use the
complex variable z = x+ iy and its derivative ∂z = (∂x− i∂y)/2. Notice that its
conjugates z̄ = x− iy and ∂z̄ = (∂x+ i∂y)/2 commute, such that ∂z z̄ = ∂z̄z = 0.
Using these variables, the annihilation operator a can be written as

a =
−i√
2

( z̄

2l
+ 2l∂z

)

(10.10)

and therefore, the wavefunctions of a ground state are given by

ψ0,0(z, z̄) =
1√
2πl2

e−zz̄/4l2 (10.11)

This wave function has the probability distribution that is peaked at the origin
(x, y) = (0, 0) and exponentially decays away from the origin within the length
scale of l.

Notice that because a does not involve the derivative of ∂z̄, any powers of z̄
can be multiplied to ψ0,0 and still they represent ground states with the same
energy ~ωc/2. Such degeneracy is what we have already seen in classical picture;
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it is the degeneracy coming from the choice of center coordinates for cyclotron
motion. All the ground state wave functions are then given by

ψ0,m(z, z̄) =
1

√

2πl2(2l2)mm!
z̄me−zz̄/4l2 (10.12)

It is straightforward to work out that these states are concentrated at radius
rm = l

√

2(m+ 1). These are quantum analogue of cyclotron motion obtained in
classical picture above. One heuristic way to understand rm is the quantization
condition coming from Abrahanov-Bohm effect. When electrons makes a circle
in the presence of magnetic field, it accumulates the phase corresponding to the
magnetic flux enclosed by the motion, e

cΦ. Because electron wave function has
to be singled-valued, this has to be an integer multiple of 2π, so that we require
eπr2mB

c = 2π(m+ 1), leading to the value r2m = 2(m+ 1)l2.
With this explicit solutions in hand, it is now possible to work out many

properties of electrons in magnetic fields. Here, we contend with calculating
the density of electrons in the ground states. If we fill the ground states, the
probability to find an electron at a given point becomes

∞
∑

m

|ψ0,m(z, z̄)|2 =

∞
∑

m

1

2πl2(2l2)mm!
|z|2me−|z|2/2l2 (10.13)

=
1

2πl2

∞
∑

m

rm

m!
e−r r =

|z|2
2l2

(10.14)

=
1

2πl2
(10.15)

Therefore, the density of electron in the ground state is given by 1
2πl2 = Be

2πc .
The density in the ground state is proportional to the magnetic field. It is
straightforward to show that each filled Landau level contributes the density of
electron 1

2πl2 .
Now in order to account for the integer quantum Hall effect, we note that

experiments are often done at a constant chemical potential. Suppose we start
from the system which has N filled Landau levels, and the chemical potential
lies between ~ωc(N + 1/2) and ~ωc(N + 1 + 1/2)(see Fig.10.3). The density of
electrons in the thermodynamic limit is then given by N

2πl2 . According to the
argument given in the previous section, this implies Hall conductance is Ne2/h!
As we increase the magnetic field, the energies of Landau levels increase as
magnetic field is increased(ωc ∝ B). However, since chemical potential lies
in the gap, the number of filled Landau levels does not change and therefore,
the Hall conductance is constant at the value Ne2/h. Moreover, notice that
when chemical potential lies inbetween the Landau levels, the system is ”band
insulator” and therefore, the longitudinal conductivity must be zero. When the
magnetic field is increased so that the chemical potential goes below ~ωc(N +
1/2), Nth Landau level is emptied, and the Hall conductance jumps fromNe2/h
to (N − 1)e2/h. This behavior qualitatively agrees with the experimental result
presented in Fig.10.2 and the equation Eq. (10.3).
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Figure 10.3: The Landau levels in the presence of disorder get broadened,
but for weak disorder, the levels are still well-separated. (a), (b)The Lan-
dau levels increase its energy as magnetic field becomes strong. As long as
the chemical potential lies in the gap of Landau levels, the Hall conductivity
does not change and it takes the quantized value. (c) The Hall conductiv-
ity changes when the chemical potential crosses the Landau levels. reference:
http://www.warwick.ac.uk/ phsbm/qhe.htm

10.2.4 Topological aspect of integer quantum Hall effect

In the previous section, we have shown the quantization of Hall conductivity
for the ideal case of infinite two dimensional electron gas in the presence of
magnetic field. In the real material, where the experiments were carried out,
this ideal situation is far from the reality. There are, for example, effects of
lattices, disorder and interactions to consider. Yet the experiments show that
the quantization of Hall conductivity survives in the presence of these effects as
long as their effects are not too strong.

One way to understand such robustness was provided by Thouless, Kohmoto,
Niu and Nightingale. They calculated the Hall conductivity of electron gas in
two dimensional lattice, and related it to the topological property of ground
wave function. The topology of the ground state wavefunction is character-
ized by a topological invariant called Chern number, and they showed, through
TKNN formula, that Hall conductivity is simply given by a fundamental con-
stant e2/h times the Chern number. The topological characterization of the
ground state wavefunction is, as it turns out, possible even in the presence of
disorder and interactions, and Hall conductivity is related in the same way to
the Hall conductivity. Because Chern number only takes integer values, it is
now clear that Hall conductivity has to be quantized even in the presence of
disorder and interactions.

TKNN formula demonstrated that integer quantum Hall system presents a
very first example where a phase is not captured by an order parameter of spon-
taneous symmetry breaking, but it is characterized by a topological number of a
ground state. Moreover, because Chern number captures the topological struc-
ture of the ground state wave function, and topology is a global property that
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cannot be changed by a small perturbations to the system, a generic robustness
of such Hall conductivity could be argued based on the general property of topol-
ogy. Hall conductivity is, in a sense, a ”peek” into the topological structure of
the integer quantum Hall phase. Apart from the explanation of integer quantum
Hall effect, this understanding of quantum Hall phase as a phase characterized
by a topological invariant called a Chern number allows us to generalize the
concept of topological phases. From this more general point of view, magnetic
field is not a necessary condition to have topological phases; in fact recent study
has predicted and realized other topological phases called topological insulators
in the absence of magnetic field.

In the following, we explain TKNN formula. The aim here is to give a flavor
of how some ”topological invariant” can be defined for a given ground state.
We will give a simpler example where Chern number can be understood in an
intuitive fashion.

A short introduction to topology

Before we describe the topology of two dimensional electron gas, let’s first get
a feeling for what topology is, and how physics could have anything to do with
it.

For simplicity, here we consider the topology of a closed line or a loop in two
dimensional plane, with a hole at the origin. The topology of the closed line
can be characterized by an integer number given by the winding number of the
line around the origin(Fig.10.4). This winding number is invariant under the
continuous deformation of the loop, provided that it does not cross the hole at
the origin. Because of this property, the winding number is called ”topological
invariant.” Topology, in a general sense, is a property of an object or shape which
is invariant under continuous transformations. As we have seen in the example
of the winding number, topology is often characterized by discrete values such
as integers, and the change of the topology is usually ”a sudden change.”

The connection of the concept of topology described above with physics is
made by identifying the loop as a ground state wave function described by some
periodic parameter(see Fig.10.5). For example, we can think of non-interacting
one dimensional lattice system, whose ground state is the filled lowest band.
Then the ground state is made up of eigenstates labeled by quasi-momentum
k, which is periodic. The two dimensional plane is an abstract space in which
eigenstates of the system resides. The hole at the origin represents a ”topolog-
ical” phase transition point. The winding number of the loop can be related to
some physical observables such as Hall conductivity. Through this relation, the
observable becomes a direct consequence of topological structure of the ground
state wave function.

The ground state wave function can be continuously deformed by some per-
turbations such as interactions or disorder. However, the topology of a loop is
robust against such continuous change, and the winding number does not change
for weak perturbations. For strong perturbations, the ground state ”loop” can
cross the topological phase transition point, and change its topology.
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hole

Winding number =0 Winding number =1

Figure 10.4: Illustration of the topology of a loop in two dimensional plane
with a hole at the origin. Its topological structure is captured by the winding
number of the loop around the circle. Such winding number is invariant under
the continuous deformations of the loop, provided that the loop does not cross
the origin.

topology of two dimensional system

Here, we give an explicit expression of a topological number called Chern number
for two dimensional system, and show how the structure we outlined above
appear.

In order to define the topological invariant in the simplest form, we consider
non-interacting electrons in two dimensional lattice. The construction of the
Chern number can be extended to the case of the presence of interactions and
disorder. In the presence of the lattice, eigenstates of the system are given by
Bloch wave functions. Now we suppose that the chemical potential lies in the
band gap, and the ground state of the system is the filled lowest m bands. The
existence of an excitation gap is essential for the definition of topology. In the
case of integer quantum Hall phase, we can consider, for example, filled lowest
m Landau levels. Each state |ψ~k, α〉 in the filled bands can be indexed by quasi-

momentum ~k and band or Landau level index α. Because each state is Bloch
wave function, we can write it as |ψ~k, α〉 = e−i~k·~r|u~kα〉 where the wave function
|u~kα〉 is periodic in real space with period of lattice vectors. Now using this
periodic part of the filled eigenstates, we can write the Chern number as

C =

∫

FBZ

d~k

(

∂aky

∂kx
− ∂akx

∂ky

)

(10.16)

aj = −i
∑

α

〈u~kα|∂i|u~kα〉, j = kx, ky (10.17)

where the integration over crystal momentum runs over the first Brillouin zone,
and summation over α runs over the filled bands. This expression is applicable
whenever one has an insulator with filled bands, and not restricted to systems
with magnetic fields. In the case of the system with N filled Landau levels, we
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Winding number =1↔Hall conductivity

Ground state wavefunction

Phase transition point
Deformation is 

perturbation to system

Figure 10.5: Description of how topology of a circle in a two dimensional plane
is related to physics. The loop represents a ground state wave function, such as
the set of single-particle eigenstates labeled by some periodic parameter. The
two dimensional plane is an abstract space in which these eigenstates reside, and
the hole represents a topological phase transition point. The winding number,
which is the topological invariant of the ground state wave function, can be
related to a physical observable such as Hall conductivity. The introduction
of perturbations to Hamiltonian such as disorder and interactions lead to the
deformation of the ground state ”loop,” but the topology is robust against such
weak and continuous introduction of perturbations.

get C = N .
An intuitive understanding of Chern number comes from considering a two

band model. We consider the following Hamiltonian in quasi-momentum space
for spin 1/2 in square lattice[6]

H(~k) = (sin kx)σx + (sin ky)σy + (m+ cos kx + cos ky)σz (10.18)

where σa are the Pauli matrixes, and the lattice constant is set to 1. This
model has two bands coming from the spin degrees of freedom. We consider
filling the lower band, and calculate the Chern number of the lower band. Now,
the eigenstate of lower band for a given quasi-momentum ~k can be represented
as a point on a Bloch sphere. If we map the eigenstates of lower band for
the whole first Brillouin zone, the eigenstates cover a certain area of Bloch
sphere (see Fig. 10.6). Because of the periodicity condition of Brillouin zone,
such area has to cover the whole Bloch sphere for integer number of times.
This integer number is exactly the Chern number. If we write the Hamiltonian
above as H(~k) = E(~k)~n(~k) · σ, where ~n(~k) is a unit vector, the Chern number
in Eq.(10.16) can be rewritten as

C =
1

4π

∫

BZ

d2k[n · (∂kx
n× ∂ky

n)] (10.19)

We urge the reader to confirm from the expression in Eq.(10.19) does measure
the area covered by the eigenstates of the lower band in the first Brillouin zone.
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∂ kx n
n

n · ∂ kx n × ∂ ky n

∂ ky n
ky

-π π
π

-π

kx

Brillouin zone

Bloch sphere

Figure 10.6: Chern number of two band model can be easily visualized as the
area on the Bloch sphere covered by the lower band in the first Brillouin zone.

At m = 1, the lower band of the Hamiltonian in Eq.(10.18) has Chern number
= 1. This Chern number of the lower band can change if and only if the lower
band mix with the upper band through the closing of the gap. These closing
of gaps signals topological (quantum) phase transition point. This occurs, for
example, at m = 0 and m = 2.

10.3 Realizing topological phases with cold atoms

10.3.1 overview

As we have seen in the previous section, a strong magnetic field suppress the
kinetic energy and macroscopic number of states become degenerate. This im-
plies that the physics of electrons in a strong magnetic field is dominated by
other effects such as disorder and interactions, which we ignored in the previ-
ous section. In particular, when interactions dominate the phase, it is known
that a very intriguing phase of matter called fractional quantum Hall states
appears[3]. This phase is argued to have excitations with non-abelian statistics,
which, in return, can host topological quantum computations. Both integer
quantum Hall phase as well as fractional quantum Hall phase can be catego-
rized as ”topological phases” in a sense that the phases can be characterized by
topological properties. In order to probe the physics of such topological phases,
it is desirable to realize the phases with a well-controlled system, such as cold
atoms.

There are few different approaches to realize topological phases in cold atom
systems. One obvious option is to imitate the electrons in a strong magnetic
field. Particles used in cold atom systems are not charged, and therefore, they
do not couple with electromagnetic fields. Mathematically equivalent effects can
be obtained by rotating the systems[7, 8] or coupling the atoms with Raman
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Figure 10.7: Creation of vortices in the rotating condensates. From the Wolf-
gang Ketterle’s experiment[7]

lasers[9]. In the following section, we briefly describe these experiments.
On the other hand, the physics of topological phases can also be studied by

effectively simulating the Hamiltonians with non-trivial topology by dynamically
driving the system. This approach is quite unique to cold atom systems because
(coherent) dynamical drive of systems with condensed matter materials is much
harder. We give an example of such dynamics with topological property in the
last section through a dynamical protocol called quantum walk.

10.3.2 creating effective magnetic field

rotating the condensates

Many groups have created an ”effective magnetic field” by rotating a condensate.
In the frame that rotates at constant speed, the particles feel both centrifugal
force and Coriolis force

F = Fext − 2m~Ω× ~v −m~Ω× (~Ω× ~r) (10.20)

where the velocity is written in the rotating frame. It is clear that the Coriolis
force imitates the magnetic field through the identification ~B = 2~Ω. In cold
atoms, they rotated a Bose-Einstein condensate, and as a result, many vortices
were created in analogy with the vortices of superconductors in the presence of
magnetic field (see Fig.10.7[7])

Recently, using the effective magnetic field of rotations, the group of Steven
Chu created a strongly correlated phase called fractional quantum Hall phase[8].

Coupling with lasers

Originally the creation of the effective magnetic field through rotations encoun-
tered a technical problem which led to the instability of the system (rotation
was not perfect and the system was easily heated), and fast rotation could not
be achieved. The group of Ian Spielman used a more ingenious method to cre-
ate the effective magnetic field which avoids the problem of heating due the the
rotations.
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Figure 10.8: Creation of effective magnetic field through Raman coupling of
atoms. The figure from the paper of Spielman’s group[9]

HIs approach is to couple three different hyperfine states through Raman
coupling. By using the two lasers with x-momentum difference, they achieved

the dispersionH = (~k−kminx̂)
2

2m whose shift kmin is determined by detuning of the
Raman laser. By changing the detuning in y spatial direction through Zeeman
effect, they successfully created the magnetic field ~A = kmin(y)x̂ which linearly
changes in y direction. This effectively creates the magnetic field. While they
could not achieve the degenerate states of Landau levels, they obtained the
signature of magnetic field through the observation of vortices (see Fig.10.8)[9].

10.3.3 Dynamical simulation of topological phases

In cold atom systems, coherence is maintained for a long time, and quantum dy-
namics is possible. Because of this long coherence, it is possible to use dynamics
to simulate Hamiltonians with non-trivial topology.

The idea is the following. Suppose we drive the system in a periodic fashion
and obtain the evolution operator after one period

U(T ) = T e−i
∫

T

0
H(t)dt, (10.21)

where H(t) is time-dependent Hamiltonian and T is one period of the dynamics.
Now we define a (time-independent) effective Hamiltonian as follows

U(T ) ≡ e−iHeffT (10.22)
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Through this definition of Heff , one can interpret the dynamics as stroboscop-
ically realizing the effective Hamiltonian at integer multiple times of T . In this
fashion, one can realize the dynamics with topological properties.

One simple example of such dynamical simulations of topological phases is
given by so-called quantum walk[10].
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