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Chapter 12

Collective modes in
interacting Fermi systems

12.1 Collective modes and response functions.
RPA approach in the normal state.

12.1.1 From response functions to collective modes

Consider response function χA(q, ω) for some quantity A(q, ω). It is defined as
the expectation value of the operator Â induced by the external field hA(q, ω),
which is thermodynamically conjugate to it. Here thermodynamically conjugate
means that the field hA(q, ω) contributes a term to the Hamiltonian

Hexternal = hAqωe
iωtÂ−q + c.c. (12.1)

Hence the response function is defined by

〈A(q, ω)〉 = χA(q, ω)hA(q, ω) (12.2)

Generally to get a finite expectation value of 〈A(q, ω)〉 one needs to have a
nonzero external field hA(q, ω). One important exception is when the response
function χA(q, ω) is infinite. Then it may be possible to have a finite 〈A(q, ω)〉
with hA(q, ω) = 0. A more accurate argument shows that collective excitations
in the system correspond to poles of the response function χA(q, ω) [1, 8].

12.1.2 Equations of motion method

With few exceptions calculating response functions for interacting many-body
systems can not be done exactly. The approach that we discuss in this chapter
is based on writing equations of motion for density and spin operators Ȯ =
1
i [H, O], and then doing certain approximations to bring them to a closed form.
When O is a two particle operator of the type c†kσck′σ′ , its commutator with
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the interaction term produces a four fermion term, so equations of motion do
not close. RPA approximation replaces the true interacting Hamiltonian with
an effective non-interacting Hamiltonian, where interactions are replaced by
some effective field[8, 2]. For example, when the system is perturbed by the
potential at wavevector q and frequency ω, we take the effective potential to
be Veff(qω) = V (q)〈ρ(q, ω)〉 eiωt, where V (q) is the interaction strength and
〈ρ(q, ω)〉 is the induced density. This potential can be understood as an effective
time- and space- dependent Hartree potential created by other fermions. So
fermions are scattered by the potential, which is the sum of the external and
polarization potentials.

12.1.3 Density sector. Zero sound mode

We consider an interacting Fermi system in the normal state

H =
∑
kσ

ξkc
†
kσckσ + V

∑
k

c†k+q↑c
†
−k↓c−k′↓c−k′+q↑ (12.3)

To calculate the density-density response function we assume that the system
is perturbed by the external potential at wavevector q and frequency ω

Hprobe =
hqω
2
eiωt

∑
pσ

c†p−qσcpσ + c.c. (12.4)

We define operators

ρkqσ = c†k+qσckσ

ρkq = ρkq↑ + ρkq↓ (12.5)

and write their equations of motion. In writing equations of motion we assume
that the system develops expectation values of the density at wavevector q,
which we will need to determine self-consistently. We take

Heff =
∑
kσ

ξkc
†
kσckσ +

(
hqω
2

+ V
〈ρqω〉

2

)
eiωt

∑
k

c†k−qσckσ (12.6)

and find

1
i
ρ̇kqσ = [Heff , ρkqσ] = (ξk+q − ξk)ρkqσ +

(
hqω
2

+ V
〈ρqω〉

2

)
eiωt (nk − nk+q)

(12.7)

In the last term nkσ = c†kσckσ and nk+qσ = c†k+qσck+qσ are, in principle, opera-
tors, but we replace them by their expectation values in the ground state. We
take 〈ρkq(t)〉 = 〈ρkqω〉eiωt and find

(ω − (ξk+q − ξk)) ρkqω = (V 〈ρqω〉+ hqω)(nk − nk+q) (12.8)
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We have 〈ρqω〉 =
∑
k〈 ρkq(ω) 〉 and find

〈ρqω〉 = χ0(q, ω)(V 〈ρqω〉+ hqω) (12.9)

where

χ0(q, ω) =
∑
k

nk − nk+q

ω − (ξk+q − ξk)
(12.10)

Thus we find RPA expression for the response function

χRPA(q, ω) =
χ0(q, ω)

1− V χ0(q, ω)
(12.11)

Poles of the density-density response function describe collective excitations
in the system. So we look for the solution of equation

1− V χ0(q, ω) = 0 (12.12)

In the longwavelength limit (q → 0) and at T = 0 we can take

χ0(q, ω) =
∑
k

(−∂n∂ε ) ( ~q~vp )
(ω − ~q~vp )

=
N(0)

2

∫
dΩp
4π

~q~vp
(ω − ~q~vp )

= N(0)[−1 +
λ

2
log

λ+ 1
λ− 1

]

(12.13)

where λ = ω/qvf . In writing equation (12.13) we used ∂n
∂ε = −δ(ε− εf). So we

have
1

V N(0)
= −1 +

λ

2
log

λ+ 1
λ− 1

(12.14)

For repulsive interactions this equation describes zero sound excitations[8, 1].
Note that zero sound mode is above the particle-hole continuum.

12.1.4 Spin sector. Stoner instability

We now consider probing the system in the spin sector

Hprobe =
hZqω
2
eiωt

∑
pσ

σc†p−qσcpσ + c.c. (12.15)

Analysis similar to the one we discussed in the previous subsection gives

χZRPA(q, ω) =
χ0(q, ω)

1 + V χ0(q, ω)
(12.16)

Spin wave modes can be found from the equation

− 1
V N(0)

= −1 +
λz

2
log

λz + 1
λz − 1

(12.17)

For repulsive interactions with V N(0) > 1 we find imaginary frequency of the
modes. This corresponds to exponentially growing magnetization and signals
instability of the system to spontaneous polarization[8, 1]. This is the so-called
Stoner instability[12].
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12.2 Anderson-Bogoliubov mode in the paired
state

12.2.1 RPA approach in the paired state.

In the presence of pairing we need to change the ”bare” quadratic Hamiltonian
to the BCS form

H =
∑
kσ

{
ξkc
†
kσckσ + ( ∆ c†k↑ c

†
−k↓ + c.c. )

}
(12.18)

Moreover, external field that couples to the density operator induces not only
the expectation value of the density ρq =

∑
kσ c
†
k+qσckσ, but also anomalous

expectation values

〈b†q〉 =
∑
k

〈c†k+q↑c
†
−k↓〉

〈b−q〉 =
∑
k

〈c−k−q↓ ck↑〉 (12.19)

This reflects particle-hole mixing in the superfluid state arising from the con-
densate of Cooper pairs Hence

Heff =
∑
kσ

{
ξkc
†
kσckσ + ( ∆ c†k↑ c

†
−k↓ + c.c. )

}
+
(
hqω
2

+ V
〈ρqω〉

2

)
eiωt

∑
k

c†k−qσckσ

+ V 〈b†q〉
∑
k

c−k↓c−k+q↑ + V 〈b−q〉
∑
k

c†k−q↑c
†
−k↓ (12.20)

Equations of motion couple particle-hole operators ρkqσ = c†k+qσckσ with two-
particle-particle operators b†kq = c†k+q↑c

†
−k↓ and two-hole operators bk−q =

c†−k−q↓ck↑. We have

[Heff , ρkq↑] = (ξk+q − ξk)ρkq↑ −∆b†kq + ∆∗bk−q +
(
hqω
2

+ V
〈ρqω〉

2

)
eiωt (nk − nk+q)

+ V 〈b†q〉〈c−k↓ck↑ 〉+ V 〈b−q〉〈c†k↑c
†
−k↓ 〉 (12.21)

and similar equations for [Heff , ρkq↓], [Heff , b
†
kq] and [Heff , bkq]. These equations

of motion can be solved and in the BCS regime we obtain a collective mode
with the long wavelength dispersion [2]

ωq =
vf√

3
q (12.22)

This is the celebrated Anderson-Bogoliubov mode[3, 2].
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12.2.2 Hydrodynamic approach

We now present an alternative approach to calculating the sound mode (12.22).
We write hydrodynamic equations of motion[11, 7]

∂n

∂t
+ ~∇(n~v) = 0

m
∂~v

∂t
+ ~∇(

1
2
mv2 + µ(n)) = 0 (12.23)

In the linearized regime, the second equation can be written as

m
∂~v

∂t
+
(
∂n

∂µ

)
~∇n = 0 (12.24)

Hence

∂2n

∂t2
− n

m

(
∂n

∂µ

)
∇2n = 0 (12.25)

In the BCS regime µ = EF = k2
f

2m ∼ n
2/3 and ∂n

∂µ = 2
3
µ
n . This gives

ω2
q =

k2
f

3m
q2 = (

vf√
3
q)2 (12.26)

We can apply hydrodynamic analysis in the BEC regime using

µ = gMnM (1 +
32

3
√
π

√
nMa3

M + . . . ) (12.27)

Here nM is the density of molecules and gM is the interaction strength between
molecules, which can be expressed using the mass of molecules M and their
scattering length aM as gM = 2~2aM

M . Analysis in ref[10] shows that aM = 0.6a.
So we find

v =
~
M

√
2aMnM (12.28)

At unitarity we expect to find

µ = (1 + β)
~2

2m
(6π2)2/3n2/3 (12.29)

where β is known from theory. In the mean-field analysis β = −0.41, Quantum
Monte Carlo gives β = −0.58.

Hydrodynamic approach can be extended to include effects of the confining
potential[13, 14]. Equations of motion in this case can be written as

∂n

∂t
+ ~∇(n~v) = 0 (12.30)

m
∂~v

∂t
+ ~∇(

mv2

2
+ µ(n) + Vext) = 0 (12.31)
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Figure 12.1: Compression oscillations in superfluid Fermi gas. Second figure
shows good agreement of theoretical calculations with experiments. Figures
taken from [4].

To obtain linearized equations we can take the time derivative of (12.30) and
substitute (12.31) for ∂~v/∂t. In the second term in (12.30), the time derivatie
should only be applied to ~v, since both ∂n/∂t and ~v are first order in the
deviation from equilibrium. However we can not take n outside ~∇ since the
equilibrium density is not uniform. We find the following linearized equation

∂2δn

∂t2
− 1
m
~∇(n

∂µ

∂n
~∇ δn) = 0 (12.32)

Far on the BEC side these equations can be simplified further. In this case
the system is similar to a gas of weakly interacting bosons, so we can take
∂µ
∂n = g, where g is a constant. Then we have

∂2δn

∂t2
− g

m
~∇(n ~∇δn) = 0 (12.33)

In equilirium gn(r) = µ− Vext(r). Hence we find

∂2δn

∂t2
+

1
m

[ ~∇Vext
~∇δn− (µ− V (r))∇2δn] = 0 (12.34)

This equation needs to be solved subject to the boundary conditions that the
solution is nonsingular at the origin and vanishes at the Thomas-Fermi radius,
where the equilibrium density goes to zero.

Experimentally one often studies lowest energy collective modes. Figure
(12.1) shows analysis of the quadrupolar (compressional) mode across the BCS/BEC
crossover. It may seem surprising that the mode frequency does not change dra-
matically with interactions. The sound velocity should depend very strongly on
the scattering length on the BEC side and at unitarity. A hand-waving argument
is that for stronger interactions the sound wave velocity goes up dramatically,
but so does the size of the cloud (think of the Thomas-Fermi approximation).
And in the oscillation frequency, which we can estimate as the ratio of the two
quantities, the net change ends up being small [9].
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Figure 12.2: Signatures of Stoner instability. Figures taken from [6].

12.3 Competition of Stoner instability and molecule
formation near Feshbach resonance

12.3.1 Ferromagnetism in itinerant electron systems

Question of magnetism in itinerant systems of fermions is one of the longest
standing problems in physics. Mean-field argument by Stoner suggests that such
transition should take place when interactions become strong enough. Using
analysis of collective modes we derived earlier that such transition occurs when
N(0)V = 1. Several counter-arguments have been suggested to Stoner’s original
mean-field reasoning. For example, Kanamori argued that one should take
screened value of the interaction, which may never exceed the Fermi energy.
Since the density of states N(0) is inversely proportional to the Fermi energy,
Kanamori argued that N(0)V can not be made arbitrarily large, as Stoner’s
simple argument would suggest.

The idea of studying ferromagnetism with ultracold fermions has been pro-
posed by several groups[?].

12.3.2 MIT experiments

Recent experiments on the BEC side of the Feshbach resonance have been in-
terpreted as providing signatures of the Stoner instability [6]. Main features
observed in experiments are summarized in figure 12.2. There is an abrupt in-
crease in the kinetic energy as the system approaches the resonance, a maximum
in the system size, and suppression of the molecule formation rate.

To get strong repulsive interaction one needs to bring the system to the
BEC side of the resonance close to unitarity. The equilibrium state in this case
would be a condensate of molecule. In interpreting their experiments as Stoner
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instability Jo et al. assumed that the rate of molecule formation is smaller than
the rate with which magnetization develops. Our goal is to analyze the rate of
molecule formation taking into account many-body character of the system.

12.3.3 Molecule formation

We start with interacting fermions in the normal state and analyze the rate of
molecule formation in the same approach as we used earlier. We analyze collec-
tive modes that correspond to the Cooper channel. If we find imaginary value
for the frequency, it will suggest that the system is unstable toward developing
pairing with the rate given by the magnitude of the mode frequency[5].

We use RPA analysis

H =
∑
k

ξkc
†
kσckσ + (V b∗q + h∗∆q)

∑
k

c−k↓ck+q↑ + (V bq + h∆q)
∑
k

c†k+q↑c
†
−k↓(12.35)

We take the operator b†pq = c†p+q↑c
†
−p↓. Equations of motion for b†pq are given by

[H, b†pq] = (ξp+q + ξ−p)b†pq + (V b∗q + h∗∆q) (1− np+q − n−p) (12.36)

We find for the Cooper pair response functions (Cooperon)

χCRPA =
χC0

1− V χC0

χC0 =
∑
p

1− np+q − n−p
ω − (ξp+q − ξ−p)

(12.37)

To find collective modes we need to solve

1
V
−
∑
p

1− np+q − n−p
ω − (ξp+q − ξ−p)

= 0 (12.38)

We can again trade the bare interaction for the scattering length using

m

4πas
=

1
V

+
∑
k

m

k2
(12.39)

For the most unstable mode at q = 0 we obtain

m

4πas
−
∑
p

[
1− 2np
ω − 2ξp

+
m

p2

]
= 0 (12.40)

The rate of molecule formation as a function of the scattering length is shown
in fig. 12.3. We can also use this analysis to calculate the rate of change of
the kinetic energy of fermions that do not become converted into molecules.
Essentially the argument is that the imaginary part of the pole of the Cooperon
gives the rate of molecule formation and the real part gives the energy of the
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Figure 12.3: The left plot shows the rate of molecule formation. The right
plot shows the rate of change of the kinetic energy of fermions due to molecule
formation [5].

molecular state, i.e. the energy of fermions being ”extracted” from the sea as
a result of the molecule formation. Then the product of the two gives the rate
of change of the fermion kinetic energy. Both quantities behave qualitatively
similar to the experimental results shown in fig. 12.2.

We observe that the physics of molecule formation can explain two features
observed in experiments [6]. Additional experiments are need to discriminate
between molecule formation and the Stoner instability in the vicinity of the
Feshbach resonance.

12.4 Problems to Chapter 12

Problem 1. Scaling solution
In the limit when ∂µ/∂n = g is constant and the trap is parabolic, one can

solve nonequilibrium hydrodynamic equations beyond the linearized approxima-
tion discussed in section 12.2.2. For example, let us consider exciting the system
by changing the strength of the periodic potential. Equation (12.31) becomes

m
∂~v

∂t
+ ~∇(

mv2

2
+ gn+

1
2
mω2(t) r2) = 0 (12.41)

a) Show that equations (12.30) and (12.41) can be solved by the scaling
ansatz

~v(r, t) = ~r
ḃ(t)
b(t)

n(r, t) =
1

b3(t)
n0(

r

b(t)
) (12.42)

Here n0(r) is the equilibrium density when the confining potential strength is
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ω0, and b(t) is the scaling function that satisfies

b̈

b
= −ω2(t) +

ω2
0

b4
(12.43)

b) Solve the problem of sudden release of the condensate from the trap. This
corresponds to taking ω(t) = θ(−t)ω0 and initial conditions b(t = 0) = ḃ(t =
0) = 0.
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